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Abstract

In this paper, X is an infinite linearly ordered set and 7 (X) is
the set of all full transformation semigroups. First, we describe the
relative rank of the semigroup OP(X) of all orientation-preserving
transformations modulo the semigroup O(X) of all order-preserving
transformations. Moreover, we get the relative rank of the semigroup
OPR(X) of all orientation-preserving or orientation-reversing trans-
formations modulo the semigroup O(X). Furthermore, we illustrate
our result with an example.

1 Introduction and Preliminaries

Let X be an infinite linearly ordered set and let z € X. Denote by
T (X) the monoid of all the full transformations on X with operation as
the composition of functions. In this paper, we write functions from the
right, xa rather than «(xz) and compose from the left to the right; i.e.,
z(af) = (za)p rather than (af)(z) = a(B(x)). Let a € T(X). We denote
by im(«) the image of a and define im(a) := Xa := {za : z € X} and
denote the cardinality of im(«) by rank(«); ie., rank(a) := |im(«)|. For
sets A1, Ay C X, we write A; < Ay if 1 < x5 for all 7 € A; and for
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all xzo € Ay. Given a subset A of X, denote by «|4 the transformation
ala: A— X with z(als) := za for all z € A; i.e., a4 is the transformation
« restricted to A.

The generating sets of a semigroup S play an important role with the
semigroup. A set G is a generating set of S, denoted by (G) = S, such that
S is the least semigroup containing GG. The rank of S is the minimal size of
a generating set of S defined by rank(S) := min{|G|: G C S,(G) = S}. In
the case when X is infinite, the size and the rank of the full transformation
semigroup 7 (X)) are infinite. This gives rise to the definition of the relative
rank as follows:

The relative rank of S modulo U is the minimal size of a subset G C S such
that G U U generates S:

rank(S : U) = min{|G| : G C S,(GUU) = S}. A set G C S with
(GUU) = S is called a generating set of S modulo U. The concept of a
relative rank generalizes the concept rank of a semigroup and was introduced
by Howie, Ruskuc and Higgins [10].

Let X be a non-empty set. We consider the set O'(X) of all order-
reversing transformations, the semigroup O(X) of all order-preserving trans-
formations, the semigroup OP(X) of orientation-preserving transformations,
the set OR(X) of all orientation-reversing transformations, and the semi-
group OPR(X) of all orientation-preserving or orientation-reversing trans-
formations. A transformation o € T(X) is called orientation-preserving
(orientation-reversing) if there is a decomposition X = [a]; U [a], with
[a]i < [a]s, yrae = pa (1o < yoa) for all y1 € [a]; and yo € [a)s, and
zo < ya (za > ya) for all v < y € [a]; or x < y € [a],. By the defini-
tion, we obtain O(X) C OP(X) C OPR(X) C T(X) and O(X), OP(X),
and OPR(X) are subsemigroups of 7(X). In 2000s, the order-preserving
transformation semigroup, the orientation-preserving transformation semi-
group and the orientation-preserving or orientation-reversing transformation
semigroup caught the interest of many researchers see [1], [2], [3], [4], [5],
[7], [8]. The semigroups O(X) and OP(X) have been widely studied and
investigated for a finite set X. In [2] and [7], the authors have determined
the rank of these semigroups on a finite set X. The rank of O(X) is equal
to n and the rank of OP(X) is equal to two in [7] and in [2], respectively.
Additionally, the relative rank of OP(X) modulo O(X) is equal to one and
it was determined by Catarino and Higgins [2]. In particular, we notice that
the rank of semigroups O(X), OP(X) and OPR(X) are infinite when X is
an infinite set. In [8], the authors have computed the relative rank of 7 (X)
modulo O(X) is equal to one when X is a countably infinite linearly ordered
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set or X is an arbitrary well-ordered set. They also showed that the relative
rank of 7(X) modulo O(X) is infinite when X = R under the usual order.

In this paper, we consider X as an infinite linearly densely ordered set
that has no both minimal and maximal element, and for any decomposition
X = X UX, with X; < X5 holds X; has maximal element or X5 has min-
imal element. Since X has no both minimal and maximal element and for
any decomposition X = X; U X, with X; < X5, we have all the possibilities
of X7 and X5 shown in the following cases:

1. Xj is a half-open interval with maximal element and X5 is a half-open
interval with minimal element,

2. X; is an open interval and X, is a half-open interval with minimal
element; i.e., Xy = [a,00), for some a € X,

3. X is a half open-interval with maximal element, i.e. X; = (—o0,q],
for some a € X and X, is an open interval,

4. X, and X, are open intervals.

Since X is a dense set, case 1 will not happen. Since X; has maximal element
or Xy has minimal element, case 4 also will not happen. We can conclude
that the possibilities of decomposition X = X; U X, with X; < X5 which
satisfy the condition of X will be only cases 2 and 3. This means that X, is
an open interval and Xy = [a,00) for some a € X or X; = (—o0,a] and X,
is an open interval for some a € X. We can also write X; = (—o0,a) and
Xy = [a,00) or Xj = (—00,a] and X5 = (a,00) for some a € X because X is
a dense set and cases (i) and (iv) are impossible as we have already shown.
So the purpose of this paper is to determine the relative rank of OPR(X)
modulo O(X) when X satisfies a condition in case 2 or case 3.

2 Main results

2.1 The relative rank OP(X) modulo O(X)

In this section, we describe the relative rank of the semigroup OP(X) orientation-
preserving transformations modulo the semigroup O(X) of all order-preserving
transformations as shown in the following propositions.

Proposition 2.1. [12] Let X be an infinite linearly densely ordered set that
has no both minimal and maximal element and, for any decomposition X =
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X1 U Xy with X7 < Xo, X1 has a maximal element or Xy has a minimal

element. If there exists an order-isomorphic transformation between two open
intervals, then rank(OP(X) : O(X)) < 2.

Proposition 2.2. [12] Let X be an infinite linearly densely ordered set that
has no both minimal and maximal element and, for any decomposition X =
X1 U Xy with X7 < Xy, X1 has a maximal element or Xy has a minimal

element. If there exists an order-isomorphic transformation between two open
intervals, then rank(OP(X) : O(X)) > 2.

Theorem 2.3. [12] rank(OP(X): O(X)) = 2.

Example 2.4. Let X € {Q,R}. Since Q and R are infinite linearly densely
ordered set that have neither a minimal nor a maximal element, and for any
decomposition X = X1 U Xy with X1 < X3 holds X, has mazimal element or
Xy has minimal element, we have rank(OP(X) : O(X)) = 2.

2.2 The relative rank of OPR(X) modulo O(X)

In this section, we extend the result from Section 2.1 in order to calculate
the relative rank of the semigroup OPR(X) of all orientation-preserving
or orientation-reversing transformations modulo the semigroup O(X) of all
order-preserving transformations as follows:

Lemma 2.5. Let X be an infinite linearly densely ordered set that has no
minimal or maximal element, and for any decomposition X = X; U Xy with
X1 < X5 holds Xi has mazimal element or Xy has minimal element. If
a € OR(X)\ O'(X), then im(c) has a mazimal or a minimal element.

Proof. Suppose that X is an infinite linearly densely ordered set that has
neither a minimal nor a maximal element and, for any decomposition X =
X7 U Xy, with X7 < X5 holds X; has maximal element or X, has minimal
element. Let o € OR(X)\ O'(X). Since a € OR(X) \ O'(X), there is a
decomposition X = [a]; U [a]s with [a]; < [a]s that satisfies the definition
of an orientation-reversing transformation. Since X is densely ordered set
and, for any decomposition X = X; U X, with X; < X5, X; has a maximal
element or X, has a minimal element, we have [a]; is an open interval and
[a]a = [a,00) or [a]; = (—o00,a] and [a]s is an open interval for some a € X.

So, we consider the first case; that is, [a]; is an open interval and [a]y =
[a, 00) for some a € X. We claim that ac is the maximal element of image
a. Let y € im(a). Then there is x € X such that za = y. If x € [a, 00),
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then aa > za. If @ € [a]y, then za < ca for all ¢ € [a,00); Le., za < aa.
Combining, we obtain ac« is the maximal element of image a.. For the second
case, we have [a]; = (—o00,a] for some a € X and [a]; is an open interval.
We claim that aa is the minimal element of image . Let y € im(«). Since
y € im(«), there is © € X such that za = y. If z € (—o00, a], then za > aa.
If z € [a]y, then za > ca for all ¢ € (—o0,al; i.e.,, xa > aa. Combining,
we obtain ac is the minimal element of image «. Therefore, im(«) has a
maximal or minimal element. O

Lemma 2.6. Let X be an infinite linearly densely ordered set that has no
minimal or maximal element and, for any decomposition X = X; U Xy with
X1 < Xs, X1 has mazimal element or Xo has minimal element. If a €
OR(X)\ O'(X), then there is p € X such that p < za for all x € [a]y and

p > za for all x € |al;.

Proof. Let o € OR(X) \ O'(X). Since a € OR(X) \ O'(X), there is a
decomposition X = [a]; U [a]s with [a]; < [a]y that satisfies the definition
of an orientation-preserving transformation. Since X is a densely ordered
set and, for any decomposition X = X; U Xy, with X; < X5, X; has a
maximal element or X, has a minimal element, we have [a]; is an open
interval and [a]y = [a, 00) or [a]; = (—00,a] and [a] is an open interval for
some a € X. Since @ € OR(X) \ O'(X) with |y, and a|), are order-
reversing, there is p; = inf([a]oa) such that p; < za for all z € [a], and
there is po = sup([a];«r) such that ps > za for all x € [a];. Moreover, it is
possible that p; > py. Therefore, there is p € {p1, p2} such that p < za for
all z € [a]y and p > za for all = € [a];. O

Theorem 2.7. Let X be an infinite linearly densely ordered set that has nei-
ther a minimum element nor a mazimum element and, for any decomposition
X = XiUXy with X7 < Xa, X4 has a mazimum element or Xy has minimum
element. If there exist order-isomorphic transformation and anti-isomorphic
transformation between two open intervals, then rank(OPR(X) : O(X)) <
2.

Proof. Suppose that X is an infinite linearly densely ordered set that has
neither a minimum element nor a maximum element and, for any decompo-
sition X = X; U Xy with X; < X5, X; has a maximum element or X5 has a
minimum element.

Let a« € OPR(X)\ O(X). Then a € OP(X)\ O(X) or a € OR(X).
Case 1. a € OR(X). We will consider two cases:
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Case 1.1. o € OR(X) \ O'(X). Since a € OR(X) \ O'(X), there is a
decomposition X = [a]; U [a]s with [a]; < [a]y that satisfies the definition
of an orientation-reversing transformation. Since X is a densely ordered set
and, for any decomposition X = X; U Xy with X; < X5, X; has a maximal
element or X, has a minimal element, we have [a]; is an open interval and
[a]y = [a,00) or [a]; = (=00, a] and [a]y is an open interval for some a € X.
Hence, we consider two subcases:

Case 1.1.1. [o]; is an open interval and [ay = [a, 00) for some a € X.
Since X is a densely ordered set and for any decomposition X = X; U X5
with X; < X, holds X; has maximal element or X, has minimal element,
we can write X; = (—oo,m) and Xy = [m, 00) for some m € X. Since there
exists an order-isomorphic transformation between two open intervals, there
are two transformations
v [a]; = (—oo,m) and vy : (a,00) — (m, 00) which are order-isomorphic.
We define ary := m. Then we define a transformation 6 from X to X by

| oxy iz e o)
why = { vy ifx € [a,00).

Since vy : [a]; — (—oo,m) and vy : [a]y — [m,00) are order-isomorphic
transformations, we get 6; € O(X) which is a bijective transformation on X.
Let n € X with m < n. Since there exists an anti-isomorphic trans-
formation between two open intervals, there are two transformations p; :
(—o00,m) = (m, —o0) and ps : (m,00) — (n,m) which are anti-isomorphic.
We define mpusy := n. Then we define a transformation ~; from X to X by

oz ifx e (—oo0,m)
T ape ifze [m, 00).

It is clear that X = (—o0, m) U [m, 00). Since p; : (—oo,m) — (m, —oo) and
fe 1 [m,00) — [n,m) are anti-isomorphic transformations and (—oo, m)y; =
(—oo,m)uy = (m,—o0) < [n,m) = [m,00)u; = [m,00)y;, we obtain that
v € OR(X) which is an injective transformation on X. Since the product
of an order-preserving transformation and an orientation-preserving trans-
formation is an orientation-preserving transformation, we obtain 6;7; which
is an injective transformation and im(6,y1) = (m, —o0) U [n, m).

Next, we define a transformation 6y : (m,—o0) U [n,m) — im(a) by
20y = xy; 07 a for all © € (m, —o0) U [n,m). So, we need to extend the
transformation 6, to be a transformation ¢, € O(X). Let us consider the two
cases x > n and x = m. For z > n, we define 205 := aa := max{za : v € X}.
For x = m, there exists p € X such that p < ysa for all yo € [a]s and p > Yy«
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for all y; € [a]1. So, we define m#b), := p. Hence, we define a transformation
0, from X to X by

ac ifx>n
20y =< p ifx=m
z0y ifx € (—oo,m)U (m,n].

Next, we will show that ¢, is an order-preserving transformation; i.e., 6, €
O(X). First, let x € (—oo,n] and y € (n,00) with = < y; ie., z €
(—oo,m) U (m,n] or x = m. If x = m, then 20, = p < aa = yby; i.e.,
w0y < yby. If x € (—oo, m)U(m,n], then 26y = 20y = x5, 07 a0 < aa = ybl;
ie., z05 < yb,. Next, let x,y € (—oo,m) or z,y € (m,n] with =z < y.
Since v, € OR(X) which is injective, we have zv;*,yy;* € (—o0,m) or
2y Y,y € [m,00) such that xvy;' > yy;'. Since 6, € O(X) is bi-
jective, we have zy; 107",y '07 € [a]y or v 07 !, v 07 € [a]s and
so zy 07t > w07, Since o € OR(X) which is injective, we have
oy 0 e < gyt e, 2y < yfy = b, < yfh. Finally, let €
(—oo,m) and y € (m,n] with x < y. Since 73 € OR(X) which is injec-
tive, yy;* € [m,00) and zy; ' € (—oo,m) such that x7;' < yv;'. Since
0, € O(X) which is bijective, we have z7; 107" € [a]; and yy;'0; " € [as
such that z77 107" < yy 07, Since o € OR(X), we get z7; 07 a <
Yy 0 a = 10y < yby = w6, < yh,. Combining, we can conclude that
0, € O(X). Next, we show that 0;7,05. Let © € X. Then

x@yyl% = x@wlﬁg = 1’91’}/1(’}/1_191_1&) = x@l (’)/1’)/1_1>9_104 = %(91‘91_1)04 = TQ;

i.e., ‘91’)/195 = .
Case 1.1.2. [a]; := (—o0,a] and [a]y is an open interval for some
a € X, the proof is analogous to the Case 1.1 but we use a transformation
o that is defined as follows Since X is a densely ordered set and, for any
decomposition X = X; U Xy with X; < X5, X; has maximal element or
X3 has minimal element, we can write X; = (—oo, m| and Xy = (m, 00) for
some m € X. Let [ € X with [ < m. Since there exist an anti-isomorphic
transformation between two open intervals, there are two transformations
01 : (—oo,m) — (m,1) and 05 : (m,00) — (00, m) are anti-isomorphic. We
define md; :={. Then we define a transformation 7, from X to X by
o { xd ifx € (—o0,m|
’ xdy ifx € (m, 0).

As the transformation ~;, we can similarly show that v € OR(X)which is

an injective transformation. In particular, we can show a = 037,0), where
05,0, € O(X).
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Let 3 be an order-reversing bijective transformation on X. Next, we show
that v2 € (y1,73). Put ker(y2) = ker(v3) and define (—oo, m]ys := (00, m|
and (m, 00)vy; := (m, —00), where m € X. So (—oo,m]y3y1 = (00, m]y; =
(m,n] and (m,00)y3y1 = (m, —o0)y; = (—oo,m). Let [ € X and define
nys = [. Hence (—oo,m]ysy1vs = (m,n]ys = (m,l] and (m, 00)y37173 =
(—o0,m)y3 = (00, m); i.e., vo = v37173. From Case 1.1.2, we have a = 037,0),.
We know that 75 = v37173. Thus a = 0370, = 02371730,

Case 1.2. o € O'(X). Let dom(f) = X := {xy3 : * € X} and define
a transformation 6 by 26 = xy;'a for all x € X. Let a,b € X with a < b.
Since 73 is bijective, ay; ' > by ', Since a € O'(X), av;'a < byyta; e,
af < bh. Therefore, § € O(X). Let # € X. Then 2130 = 2y3(73 ') =
z(v375 M) = za; ie., 136 = a.

Case 2. a € OP(X) \ O(X). By Proposition 2.1, there are two transfor-
mations (i, B € OP(X) \ O(X) such that (O(X), f1, B2) = OP(X). From
Proposition 2.1, 5; and (5 are transformations from X to X which are defined
as follows:

_f x¢y ifz e (—oo,m)

o= { xpy ifx € m,00)

such that ¢, : (—oo,m') — (m/;00) and ¢ : [Mm';00) — [l
I" <m' € X are order-isomorphic transformations and

,m’), where

By = L om if v € (—oo, m/]
T2 o if x € (m',00)

such that n; : (—oo,m| — (m/,n'] and 1y : (m/,;00) — (—o0,m’), where
m’ < n’ € X, are order-isomorphic transformations.

Next, we show that 81,32 € (O(X),71,73). Let I’ <m’ € X and ' <
b < ¢ € X. Since there exists an order-isomorphic transformation between
open intervals, there are two transformations & : (—oo,m’) — (d/,0’) and
& (m';00) — (V,c) which are order-isomorphic. We define m’&; := 0.
Then we define a transformation 65 from X to X by

0 z& ifx € (—oo,m)
T 2k ifx € [m,00).

It is easy to see that 65 € O(X) by the definitions of transformations &;
and &. Let m' < i < I < ¢’ € X. Since there exists an anti-isomorphic
transformation between two open intervals, there are two transformations
py: (a', b)) — (m/, —o0) and ps : (0, ') — (¢', h') which are anti-isomorphic.
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We define V'3 := ¢’. Then we define a transformation p; from X to X by

m' ifx € (—oo,d]

v d T if v e (a,0)
PUZN ap itz e[V, C)
i ifz e (d,00).

It is clear that p; € OR(X) \ O'(X). Indeed, let us put A; := (—o0, ') and
Ay = [V, 00) for some V' € X. So Ajp; = {m'} U (—oo,m') > (¢',h') U {i}
and zp; > yp; whenever x <y € A; or x < y € Ay. By the same argument,
there are two transformations (; : (—oo,m’) — (oo,m’) and ( : (W, ¢") —
(m/,l") which are anti-isomorphic. We define ¢’(s := I". Then we define a
transformation d; from X to X by

x( ifx € (—oo,m’)

m' ifx e [m/ b]

x(y ifz e (b, 4

I ifz e (¢,00).

1'51 =

It is easy to see that §; € O'(X) by the definitions of transformations of (; and
(2. Now, we show that 51 € (O(X),v1,73). So, we have (—oo, m')01p10; =
(@', V)p161 = (—o0,m')d; = (m/, 00) = (—o0, m’)f; and we have [m’, 00)0;p101 =
[0, )p1o1r = (h,g161 = (I, m') = [m',00)B1, ie., f1 = O3p101. Since p; €
OR(X)\ O(X) C OR(X) = (O(X),7,73), there are g, 6; € O(X) such
that p; = g7107. Since §; € O'(X) = (O(X),73), there exists 6y € O(X)
such that d; = ~36s.

Therefore, 51 = 95p151 = 9596’}/197’7398 = 9&’)/194’}/395, where 9& = 95‘96 c
O(X); ie., f1 € (O(X),7,73). We can show similarly to obtain that
Bo € (O(X),71,73). So, we have a € OP(X) \ O(X) € (O(X), p1,P2) C
(O(X),71,73)-

Altogether, we obtain OPR(X) = (O(X),v,73); i.e., rank(OPR(X) :
OX)) <2 O

Theorem 2.8. Let X be an infinite linearly densely ordered set that has
neither a minimum element nor a maximum element, and for any decom-
position X = X; U Xy with X1 < X5 holds Xi has maximum element
or X9 has minimum element. If there exist order-isomorphic transforma-
tion and anti-isomorphic transformation between two open intervals, then

rank(OPR(X) : O(X)) > 2.

Proof. Let X be an infinite linearly densely ordered set that has neither
a minimum element nor a maximum element, and for any decomposition
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X = X; UX, with X; < X, such that X; has maximum element or X, has
minimum element.

Suppose that A € OPR(X) \ O(X) with (O(X),A) = OPR(X). Let
P(X) be the power set of X. Let B be the set of all sets B’ that there is
no v € X such that v > B’ and let C' be the set of all sets C’ that there is
no v € X such that v < C’. Let d’,a,b € X with a < b € X. Since there
exists anti-isomorphic transformation between two-open intervals, there are
0 : (—o0,d') — (b,a) and 0" : (a’,00) — (00,b) which are anti-isomorphic.
We define a’#’ := a. Then we define a transormation 5 from X to X by

f ::{ z0  ifx € (—oo,d|

z0" itz e (d,00).

Clearly, 8 is an injective transformation by the definition of transfor-
mation of 6 and 6”. Next, we will show that 8 € OR(X) \ O'(X). Let
[Bl1 = (—o0,d] and [B]a = (d/,00). It is easy to see that [5]15 < [B]2f
and 115 > yo8 for all yi,yo € [f]1 and yy1,y2 € [B]2 because §' and 0" are
anti-isomorphic. Therefore, 5 € OR(X)\ O'(X).

Since € OR(X)\ O'(X) C OPR(X) = (O(X), A), there are
aq, 0, ..., 05 € O(X)U A, where k € N such that f = ajas - - - . Assume
there is no j € {1,2,...,k} with im(«a;|ly) € B for some Y € P(X) \ B.
Since (a/,V') € P(X)\ B, where a’ < V/, we have (a/,V)ajay - - - ap ¢ B which
contradicts (a’,b')3 € B. So there is j € {1,2,...,k} with im(«a;|y) € B for
some Y € P(X)\ B. It is clear that a; ¢ O(X). Then there is ap € A with
im(agly) € B for some Y € P(X) \ B.

Assume there is no p € {1,2,...,k} with im(a,|y) € B U C for some
Y € P(X)\ (BUC). Since (¢/,b') € P(X)\ B, where a’ < V', we have
(@, V)i -ap € BUC, ie. (d,0)ayay- - ¢ B that is a contradiction
with (a/,b")5 € B. So there is p € {1,2,...,k} with im(ay,|y) € BUC for
some Y € P(X)\ (BUC). It is clearly that o, ¢ O(X). Then there is
apuc € A with im(apucly) € BUC for some Y € P(X)\ (BUC).

Let ¢,¢,d € X with ¢ < d. Since there exists an anti-isomorphic
transformation between two open intervals, there are two transformations
V' (—o0,d) = (¢,—00) and V" : (¢!, 00) — (d, ¢) which are anti-isomorphic.
We define v/ := d. Then we define a transformation 8 from X to X by

£ m xv' ifx € (—o0,d)
ST iz e ¢, ).

Clearly, £ is an injective transformation by the definitions of transforma-
tions ¢/ and . Therefore, we can show similarly as a transformation 3 and
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we have £ € OR(X) \ O'(X). Since £ € OR(X)\ O'(X) C OPR(X) =
(O(X),A), there are 71,7, ...,7, where [ € N such that & = v172--- 7.
Assume there is no ¢ € {1,2,...,1} with im(y,|y) € C for some Y € P\ C.
Since (k,d') € P(X)\ C, where k < ¢, we have (k,c)y172---v ¢ C which
contradicts (k, ') € C. So there is g € {1,2,...,1} with im(v,|y) € C for
some Y € P(X)\ C. It is clear that v, ¢ O(X). Then there is v € A with
im(vyc|y) € C for some Y € P(X)\ C.

Next, we assume that agp = aguc = 7¢. Then there is agye € A
with im(agucly) € BUC for some Y € P(X)\ (BUC). Since ag €
OPR(X)\ O(X), there is a decomposition X = [ap]i U [agls with [ag]; <
[aplo which satisfies the definition of orientation-preserving or orientation-
reversing transformation. We consider two cases:

Case 1. im(apucly) € B, i.e. Yagyc € B. Since there is M € P(X)\ C
such that M~¢ € C' and apyc = o, we have Magyc € C. We consider the
following cases:

Case 1.1. Y C [agpl;. So, we consider two subcases:

Case 1.1.1. agycl|y is order-preserving. We consider again two pos-
sibilities:

(a) M C [apg);. That is Y UM C [ag]; and apuc|yun is order-
preserving because apycly is order-preserving. Since Y € P(X)\ (BUC(C),
there is £ € X such that £ > Y. Therefore, k € [ag]; or k € [agls. If
k € [ag]i, then kag,c > Yapye contradicting Yapuc € B. If k € [ag]s,
then (Y U M)apuc > kapuc; i-e., Mapyc > kagye contradicting Mapyc €
C. Combining, aguc ¢ OPR(X) \ O(X) which is a contradiction since
aguec € AC OPR(X)\ O(X).

(b) M C [aple. Then Y < M. Since Y € P(X) \ (BUC) with
Yaguoe € B, M € P(X)\ C with Mag,c € C and all decompositions
X = Xj U X, with X; < X5 such that X; has a maximum element or X,
has a minimum element, there is &’ € X such that Y < k&’ < M. Therefore,
kK € [ap]i or k' € [agla. If K € [ag]i, then Yag,c < Kapyc contra-
dicting Yagyc € B. If k' € [agls, then Kagye < Mapyc contradicting
Magye € C. As aresult, agye € OPR(X)\ O(X) which is a contradiction
since apuc € A C OPR(X) \ O(X).

Case 1.1.2. apycl|y is order-reversing. Since Y C [ag|;, we have
Yapue < Asapyc contradicting Yap,ec € Bj; that is, ague € OPR(X) \
O(X) which is a contradiction because ap,c € A C OPR(X) \ O(X).

Case 1.2. Y C [ap|s. We consider two subcases:
Case 1.2.1. apycly is order-preserving. Since Y C |aplq, [agliapuc >
Yapyc contradicting Yagyc € B; that is, ague € OPR(X) \ O(X) which
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is a contradiction because ap,c € A C OPR(X) \ O(X).

Case 1.2.2 ap ¢y is order-reversing. So, we will consider again two
possibilities:

(a) M C [ap]i. Then M < Y. Since Y € P(X)\ (BUC(C)
with Yapye € B, M € P(X)\ C with Mag,c € C and all decomposi-
tions X = X; U X, with X; < X5 such that X; has a maximum element
or Xy has a minimum element, there is ¢ € X such that M < g < Y.
Therefore, g € [ag]; or g € [agla. If g € |ap]i, then Map,c > gapue
contradicting Mapg,c € C. If g € [ag|s, then gapuc > Yapye contradicting
Yapuc € B. Altogether, apyc ¢ OPR(X) \ O(X) that is a contradiction
since apuec € A C OPR(X) \ O(X).

(b) M C [ag]s. That is Y UM C [agly and apuc|yun is order-
reversing bcause apycly is order-reversing. Since Y € P(X) \ (B U (O),
there is ¢’ € X such that ¢’ < Y. Therefore, ¢’ € [ag|; or ¢ € [ag]s. If
g € [agli, then ¢agye < (Y U M)apyc; ie., gapuc < Mapyc contra-
dicting Mapyc € C. If ¢ € [ag|s, then gaguc > Yapye, contradicting
Yapuc € B. Consequently, apyc ¢ OPR(X) \ O(X) which is a contradic-
tion since apyc € A C OPR(X) \ O(X).

Case 1.3. Y =Y UY; such that Y7 C [ap]; and Ys C [agly with Y] # ()
and Y3 # ). So, we will consider the following subcases:

Case 1.3.1. apycly is order-preserving, i.e. apycly, is order-preserving
and Ysapue € B. Therefore, [ap|iapuc > Yeapyuc which contradicts Yoap,o €
B.

Case 1.3.2. apycly is order-reversing; i.e., agycly; is order-reversing
and Yiapyc € B. Therefore, [aploapuc > Yiapguc which contradicts Yiapyo €
B.

Case 2. im(apucly) € C, i.e. Yapyc € C. Since there is N € P(X)\ B
such that Nag € B and ag = apyc, we have Nag,c € B. The rest of the
proof of this case is similar to Case 1.

From both cases, we can conclude that ag # agyc or agyc # Yo, i.e. A
contains at least two element. Therefore, rank(OPR(X) : O(X)) >2. O

By Theorems 2.7 and 2.8, we obtain the following corollary.
Corollary 2.9. rank(OPR(X) : O(X)) = 2.

Example 2.10. Let X € {Q,R}. Since Q and R are infinite linearly densely
ordered sets that have neither a minimal nor a mazimal element and, for any
decomposition X = X1 U Xy with X; < X5, Xy has mazimal element or Xo
has minimal element, we have rank(OPR(X) : O(X)) = 2.
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