The Relative Rank of $\mathcal{O P R}(X)$ Modulo $\mathcal{O}(X)$

Kittisak Tinpun
Department of Mathematics and Computer Science
Faculty of Science and Technology
Prince of Songkla University, Pattani Campus
Pattani 94000, Thailand
email: kittisak.ti@psu.ac.th

(Received May 14, 2021, Accepted July 6, 2021)

Abstract

In this paper, X is an infinite linearly ordered set and $\mathcal{T}(X)$ is the set of all full transformation semigroups. First, we describe the relative rank of the semigroup $\mathcal{O P}(X)$ of all orientation-preserving transformations modulo the semigroup $\mathcal{O}(X)$ of all order-preserving transformations. Moreover, we get the relative rank of the semigroup $\mathcal{O} \mathcal{P} \mathcal{R}(X)$ of all orientation-preserving or orientation-reversing transformations modulo the semigroup $\mathcal{O}(X)$. Furthermore, we illustrate our result with an example.

1 Introduction and Preliminaries

Let X be an infinite linearly ordered set and let $x \in X$. Denote by $\mathcal{T}(X)$ the monoid of all the full transformations on X with operation as the composition of functions. In this paper, we write functions from the right, $x \alpha$ rather than $\alpha(x)$ and compose from the left to the right; i.e., $x(\alpha \beta)=(x \alpha) \beta$ rather than $(\alpha \beta)(x)=\alpha(\beta(x))$. Let $\alpha \in \mathcal{T}(X)$. We denote by $\operatorname{im}(\alpha)$ the image of α and define $\operatorname{im}(\alpha):=X \alpha:=\{x \alpha: x \in X\}$ and denote the cardinality of $\operatorname{im}(\alpha)$ by $\operatorname{rank}(\alpha)$; i.e., $\operatorname{rank}(\alpha):=|\operatorname{im}(\alpha)|$. For sets $A_{1}, A_{2} \subseteq X$, we write $A_{1}<A_{2}$ if $x_{1}<x_{2}$ for all $x_{1} \in A_{1}$ and for

Key words and phrases: Linearly ordered set, orientation-preserving, orientation-reversing.
AMS (MOS) Subject Classifications: 20M20, 20M15.
ISSN 1814-0432, 2022, http://ijmcs.future-in-tech.net
all $x_{2} \in A_{2}$. Given a subset A of X, denote by $\left.\alpha\right|_{A}$ the transformation $\left.\alpha\right|_{A}: A \rightarrow X$ with $x\left(\left.\alpha\right|_{A}\right):=x \alpha$ for all $x \in A$; i.e., $\left.\alpha\right|_{A}$ is the transformation α restricted to A.

The generating sets of a semigroup S play an important role with the semigroup. A set G is a generating set of S, denoted by $\langle G\rangle=S$, such that S is the least semigroup containing G. The rank of S is the minimal size of a generating set of S defined by $\operatorname{rank}(S):=\min \{|G|: G \subseteq S,\langle G\rangle=S\}$. In the case when X is infinite, the size and the rank of the full transformation semigroup $\mathcal{T}(X)$ are infinite. This gives rise to the definition of the relative rank as follows:
The relative rank of S modulo U is the minimal size of a subset $G \subseteq S$ such that $G \cup U$ generates S :
$\operatorname{rank}(S: U):=\min \{|G|: G \subseteq S,\langle G \cup U\rangle=S\}$. A set $G \subseteq S$ with $\langle G \cup U\rangle=S$ is called a generating set of S modulo U. The concept of a relative rank generalizes the concept rank of a semigroup and was introduced by Howie, Ruškuc and Higgins [10].

Let X be a non-empty set. We consider the set $\mathcal{O}^{\prime}(X)$ of all orderreversing transformations, the semigroup $\mathcal{O}(X)$ of all order-preserving transformations, the semigroup $\mathcal{O P}(X)$ of orientation-preserving transformations, the set $\mathcal{O} \mathcal{R}(X)$ of all orientation-reversing transformations, and the semigroup $\mathcal{O P} \mathcal{R}(X)$ of all orientation-preserving or orientation-reversing transformations. A transformation $\alpha \in \mathcal{T}(X)$ is called orientation-preserving (orientation-reversing) if there is a decomposition $X=[\alpha]_{1} \cup[\alpha]_{2}$ with $[\alpha]_{1}<[\alpha]_{2}, y_{1} \alpha \geq y_{2} \alpha\left(y_{1} \alpha \leq y_{2} \alpha\right)$ for all $y_{1} \in[\alpha]_{1}$ and $y_{2} \in[\alpha]_{2}$, and $x \alpha \leq y \alpha(x \alpha \geq y \alpha)$ for all $x \leq y \in[\alpha]_{1}$ or $x \leq y \in[\alpha]_{2}$. By the definition, we obtain $\mathcal{O}(X) \subseteq \mathcal{O P}(X) \subseteq \mathcal{O P \mathcal { R }}(X) \subseteq \mathcal{T}(X)$ and $\mathcal{O}(X), \mathcal{O P}(X)$, and $\mathcal{O P} \mathcal{R}(X)$ are subsemigroups of $\mathcal{T}(X)$. In 2000s, the order-preserving transformation semigroup, the orientation-preserving transformation semigroup and the orientation-preserving or orientation-reversing transformation semigroup caught the interest of many researchers see [1], [2], [3], [4], [5], [7], [8]. The semigroups $\mathcal{O}(X)$ and $\mathcal{O P}(X)$ have been widely studied and investigated for a finite set X. In [2] and [7], the authors have determined the rank of these semigroups on a finite set X. The rank of $\mathcal{O}(X)$ is equal to n and the rank of $\mathcal{O P}(X)$ is equal to two in [7] and in [2], respectively. Additionally, the relative rank of $\mathcal{O} \mathcal{P}(X)$ modulo $\mathcal{O}(X)$ is equal to one and it was determined by Catarino and Higgins [2]. In particular, we notice that the rank of semigroups $\mathcal{O}(X), \mathcal{O} \mathcal{P}(X)$ and $\mathcal{O P} \mathcal{R}(X)$ are infinite when X is an infinite set. In [8], the authors have computed the relative rank of $\mathcal{T}(X)$ modulo $\mathcal{O}(X)$ is equal to one when X is a countably infinite linearly ordered
set or X is an arbitrary well-ordered set. They also showed that the relative rank of $\mathcal{T}(X)$ modulo $\mathcal{O}(X)$ is infinite when $X=\mathbb{R}$ under the usual order.

In this paper, we consider X as an infinite linearly densely ordered set that has no both minimal and maximal element, and for any decomposition $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}$ holds X_{1} has maximal element or X_{2} has minimal element. Since X has no both minimal and maximal element and for any decomposition $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}$, we have all the possibilities of X_{1} and X_{2} shown in the following cases:

1. X_{1} is a half-open interval with maximal element and X_{2} is a half-open interval with minimal element,
2. X_{1} is an open interval and X_{2} is a half-open interval with minimal element; i.e., $X_{2}=[a, \infty)$, for some $a \in X$,
3. X_{1} is a half open-interval with maximal element, i.e. $X_{1}=(-\infty, a]$, for some $a \in X$ and X_{2} is an open interval,
4. X_{1} and X_{2} are open intervals.

Since X is a dense set, case 1 will not happen. Since X_{1} has maximal element or X_{2} has minimal element, case 4 also will not happen. We can conclude that the possibilities of decomposition $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}$ which satisfy the condition of X will be only cases 2 and 3 . This means that X_{1} is an open interval and $X_{2}=[a, \infty)$ for some $a \in X$ or $X_{1}=(-\infty, a]$ and X_{2} is an open interval for some $a \in X$. We can also write $X_{1}=(-\infty, a)$ and $X_{2}=[a, \infty)$ or $X_{1}=(-\infty, a]$ and $X_{2}=(a, \infty)$ for some $a \in X$ because X is a dense set and cases (i) and (iv) are impossible as we have already shown. So the purpose of this paper is to determine the relative rank of $\mathcal{O P} \mathcal{R}(X)$ modulo $\mathcal{O}(X)$ when X satisfies a condition in case 2 or case 3 .

2 Main results

2.1 The relative rank $\mathcal{O P}(X)$ modulo $\mathcal{O}(X)$

In this section, we describe the relative rank of the semigroup $\mathcal{O P}(X)$ orientationpreserving transformations modulo the semigroup $\mathcal{O}(X)$ of all order-preserving transformations as shown in the following propositions.

Proposition 2.1. [12] Let X be an infinite linearly densely ordered set that has no both minimal and maximal element and, for any decomposition $X=$
$X_{1} \cup X_{2}$ with $X_{1}<X_{2}, X_{1}$ has a maximal element or X_{2} has a minimal element. If there exists an order-isomorphic transformation between two open intervals, then $\operatorname{rank}(\mathcal{O P}(X): \mathcal{O}(X)) \leq 2$.

Proposition 2.2. [12] Let X be an infinite linearly densely ordered set that has no both minimal and maximal element and, for any decomposition $X=$ $X_{1} \cup X_{2}$ with $X_{1}<X_{2}, X_{1}$ has a maximal element or X_{2} has a minimal element. If there exists an order-isomorphic transformation between two open intervals, then $\operatorname{rank}(\mathcal{O P}(X): \mathcal{O}(X)) \geq 2$.

Theorem 2.3. [12] $\operatorname{rank}(\mathcal{O P}(X): \mathcal{O}(X))=2$.
Example 2.4. Let $X \in\{\mathbb{Q}, \mathbb{R}\}$. Since \mathbb{Q} and \mathbb{R} are infinite linearly densely ordered set that have neither a minimal nor a maximal element, and for any decomposition $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}$ holds X_{1} has maximal element or X_{2} has minimal element, we have $\operatorname{rank}(\mathcal{O P}(X): \mathcal{O}(X))=2$.

2.2 The relative rank of $\mathcal{O P} \mathcal{R}(X)$ modulo $\mathcal{O}(X)$

In this section, we extend the result from Section 2.1 in order to calculate the relative rank of the semigroup $\mathcal{O P} \mathcal{R}(X)$ of all orientation-preserving or orientation-reversing transformations modulo the semigroup $\mathcal{O}(X)$ of all order-preserving transformations as follows:

Lemma 2.5. Let X be an infinite linearly densely ordered set that has no minimal or maximal element, and for any decomposition $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}$ holds X_{1} has maximal element or X_{2} has minimal element. If $\alpha \in \mathcal{O} \mathcal{R}(X) \backslash \mathcal{O}^{\prime}(X)$, then im (α) has a maximal or a minimal element.

Proof. Suppose that X is an infinite linearly densely ordered set that has neither a minimal nor a maximal element and, for any decomposition $X=$ $X_{1} \cup X_{2}$, with $X_{1}<X_{2}$ holds X_{1} has maximal element or X_{2} has minimal element. Let $\alpha \in \mathcal{O} \mathcal{R}(X) \backslash \mathcal{O}^{\prime}(X)$. Since $\alpha \in \mathcal{O} \mathcal{R}(X) \backslash \mathcal{O}^{\prime}(X)$, there is a decomposition $X=[\alpha]_{1} \cup[\alpha]_{2}$ with $[\alpha]_{1}<[\alpha]_{2}$ that satisfies the definition of an orientation-reversing transformation. Since X is densely ordered set and, for any decomposition $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}, X_{1}$ has a maximal element or X_{2} has a minimal element, we have $[\alpha]_{1}$ is an open interval and $[\alpha]_{2}=[a, \infty)$ or $[\alpha]_{1}=(-\infty, a]$ and $[\alpha]_{2}$ is an open interval for some $a \in X$.

So, we consider the first case; that is, $[\alpha]_{1}$ is an open interval and $[\alpha]_{2}=$ $[a, \infty)$ for some $a \in X$. We claim that $a \alpha$ is the maximal element of image α. Let $y \in i m(\alpha)$. Then there is $x \in X$ such that $x \alpha=y$. If $x \in[a, \infty)$,
then $a \alpha \geq x \alpha$. If $x \in[\alpha]_{1}$, then $x \alpha \leq c \alpha$ for all $c \in[a, \infty)$; i.e., $x \alpha \leq a \alpha$. Combining, we obtain $a \alpha$ is the maximal element of image α. For the second case, we have $[\alpha]_{1}=(-\infty, a]$ for some $a \in X$ and $[\alpha]_{2}$ is an open interval. We claim that $a \alpha$ is the minimal element of image α. Let $y \in \operatorname{im}(\alpha)$. Since $y \in \operatorname{im}(\alpha)$, there is $x \in X$ such that $x \alpha=y$. If $x \in(-\infty, a]$, then $x \alpha \geq a \alpha$. If $x \in[\alpha]_{2}$, then $x \alpha \geq c \alpha$ for all $c \in(-\infty, a]$; i.e.,, $x \alpha \geq a \alpha$. Combining, we obtain $a \alpha$ is the minimal element of image α. Therefore, $\operatorname{im}(\alpha)$ has a maximal or minimal element.

Lemma 2.6. Let X be an infinite linearly densely ordered set that has no minimal or maximal element and, for any decomposition $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}, X_{1}$ has maximal element or X_{2} has minimal element. If $\alpha \in$ $\mathcal{O R}(X) \backslash \mathcal{O}^{\prime}(X)$, then there is $p \in X$ such that $p \leq x \alpha$ for all $x \in[\alpha]_{2}$ and $p \geq x \alpha$ for all $x \in[\alpha]_{1}$.

Proof. Let $\alpha \in \mathcal{O} \mathcal{R}(X) \backslash \mathcal{O}^{\prime}(X)$. Since $\alpha \in \mathcal{O} \mathcal{R}(X) \backslash \mathcal{O}^{\prime}(X)$, there is a decomposition $X=[\alpha]_{1} \cup[\alpha]_{2}$ with $[\alpha]_{1}<[\alpha]_{2}$ that satisfies the definition of an orientation-preserving transformation. Since X is a densely ordered set and, for any decomposition $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}, X_{1}$ has a maximal element or X_{2} has a minimal element, we have $[\alpha]_{1}$ is an open interval and $[\alpha]_{2}=[a, \infty)$ or $[\alpha]_{1}=(-\infty, a]$ and $[\alpha]_{2}$ is an open interval for some $a \in X$. Since $\alpha \in \mathcal{O} \mathcal{R}(X) \backslash \mathcal{O}^{\prime}(X)$ with $\left.\alpha\right|_{[\alpha]_{1}}$ and $\left.\alpha\right|_{[\alpha]_{2}}$ are orderreversing, there is $p_{1}=\inf \left([\alpha]_{2} \alpha\right)$ such that $p_{1} \leq x \alpha$ for all $x \in[\alpha]_{2}$ and there is $p_{2}=\sup \left([\alpha]_{1} \alpha\right)$ such that $p_{2} \geq x \alpha$ for all $x \in[\alpha]_{1}$. Moreover, it is possible that $p_{1} \geq p_{2}$. Therefore, there is $p \in\left\{p_{1}, p_{2}\right\}$ such that $p \leq x \alpha$ for all $x \in[\alpha]_{2}$ and $p \geq x \alpha$ for all $x \in[\alpha]_{1}$.

Theorem 2.7. Let X be an infinite linearly densely ordered set that has neither a minimum element nor a maximum element and, for any decomposition $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}, X_{1}$ has a maximum element or X_{2} has minimum element. If there exist order-isomorphic transformation and anti-isomorphic transformation between two open intervals, then $\operatorname{rank}(\mathcal{O P} \mathcal{R}(X): \mathcal{O}(X)) \leq$ 2.

Proof. Suppose that X is an infinite linearly densely ordered set that has neither a minimum element nor a maximum element and, for any decomposition $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}, X_{1}$ has a maximum element or X_{2} has a minimum element.

Let $\alpha \in \mathcal{O P \mathcal { P }}(X) \backslash \mathcal{O}(X)$. Then $\alpha \in \mathcal{O P}(X) \backslash \mathcal{O}(X)$ or $\alpha \in \mathcal{O} \mathcal{R}(X)$.
Case 1. $\alpha \in \mathcal{O} \mathcal{R}(X)$. We will consider two cases:

Case 1.1. $\alpha \in \mathcal{O} \mathcal{R}(X) \backslash \mathcal{O}^{\prime}(X)$. Since $\alpha \in \mathcal{O} \mathcal{R}(X) \backslash \mathcal{O}^{\prime}(X)$, there is a decomposition $X=[\alpha]_{1} \cup[\alpha]_{2}$ with $[\alpha]_{1}<[\alpha]_{2}$ that satisfies the definition of an orientation-reversing transformation. Since X is a densely ordered set and, for any decomposition $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}, X_{1}$ has a maximal element or X_{2} has a minimal element, we have $[\alpha]_{1}$ is an open interval and $[\alpha]_{2}=[a, \infty)$ or $[\alpha]_{1}=(-\infty, a]$ and $[\alpha]_{2}$ is an open interval for some $a \in X$. Hence, we consider two subcases:

Case 1.1.1. $[\alpha]_{1}$ is an open interval and $[\alpha]_{2}=[a, \infty)$ for some $a \in X$. Since X is a densely ordered set and for any decomposition $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}$ holds X_{1} has maximal element or X_{2} has minimal element, we can write $X_{1}=(-\infty, m)$ and $X_{2}=[m, \infty)$ for some $m \in X$. Since there exists an order-isomorphic transformation between two open intervals, there are two transformations
$\nu_{1}:[\alpha]_{1} \rightarrow(-\infty, m)$ and $\nu_{2}:(a, \infty) \rightarrow(m, \infty)$ which are order-isomorphic. We define $a \nu_{2}:=m$. Then we define a transformation θ from X to X by

$$
x \theta_{1}:= \begin{cases}x \nu_{1} & \text { if } x \in[\alpha]_{1} \\ x \nu_{2} & \text { if } x \in[a, \infty) .\end{cases}
$$

Since $\nu_{1}:[\alpha]_{1} \rightarrow(-\infty, m)$ and $\nu_{2}:[\alpha]_{2} \rightarrow[m, \infty)$ are order-isomorphic transformations, we get $\theta_{1} \in \mathcal{O}(X)$ which is a bijective transformation on X.

Let $n \in X$ with $m<n$. Since there exists an anti-isomorphic transformation between two open intervals, there are two transformations μ_{1} : $(-\infty, m) \rightarrow(m,-\infty)$ and $\mu_{2}:(m, \infty) \rightarrow(n, m)$ which are anti-isomorphic. We define $m \mu_{2}:=n$. Then we define a transformation γ_{1} from X to X by

$$
x \gamma_{1}:= \begin{cases}x \mu_{1} & \text { if } x \in(-\infty, m) \\ x \mu_{2} & \text { if } x \in[m, \infty)\end{cases}
$$

It is clear that $X=(-\infty, m) \cup[m, \infty)$. Since $\mu_{1}:(-\infty, m) \rightarrow(m,-\infty)$ and $\mu_{2}:[m, \infty) \rightarrow[n, m)$ are anti-isomorphic transformations and $(-\infty, m) \gamma_{1}=$ $(-\infty, m) \mu_{1}=(m,-\infty)<[n, m)=[m, \infty) \mu_{1}=[m, \infty) \gamma_{1}$, we obtain that $\gamma_{1} \in \mathcal{O} \mathcal{R}(X)$ which is an injective transformation on X. Since the product of an order-preserving transformation and an orientation-preserving transformation is an orientation-preserving transformation, we obtain $\theta_{1} \gamma_{1}$ which is an injective transformation and $\operatorname{im}\left(\theta_{1} \gamma_{1}\right)=(m,-\infty) \cup[n, m)$.

Next, we define a transformation $\theta_{2}:(m,-\infty) \cup[n, m) \rightarrow i m(\alpha)$ by $x \theta_{2}:=x \gamma_{1}^{-1} \theta_{1}^{-1} \alpha$ for all $x \in(m,-\infty) \cup[n, m)$. So, we need to extend the transformation θ_{2} to be a transformation $\theta_{2}^{\prime} \in \mathcal{O}(X)$. Let us consider the two cases $x>n$ and $x=m$. For $x>n$, we define $x \theta_{2}^{\prime}:=a \alpha:=\max \{x \alpha: x \in X\}$. For $x=m$, there exists $p \in X$ such that $p \leq y_{2} \alpha$ for all $y_{2} \in[\alpha]_{2}$ and $p \geq y_{1} \alpha$
for all $y_{1} \in[\alpha]_{1}$. So, we define $m \theta_{2}^{\prime}:=p$. Hence, we define a transformation θ_{2}^{\prime} from X to X by

$$
x \theta_{2}^{\prime}:= \begin{cases}a \alpha & \text { if } x>n \\ p & \text { if } x=m \\ x \theta_{2} & \text { if } x \in(-\infty, m) \cup(m, n] .\end{cases}
$$

Next, we will show that θ_{2}^{\prime} is an order-preserving transformation; i.e., $\theta_{2}^{\prime} \in$ $\mathcal{O}(X)$. First, let $x \in(-\infty, n]$ and $y \in(n, \infty)$ with $x \leq y$; i.e., $x \in$ $(-\infty, m) \cup(m, n]$ or $x=m$. If $x=m$, then $x \theta_{2}^{\prime}=p \leq a \alpha=y \theta_{2}^{\prime}$; i.e., $x \theta_{2}^{\prime} \leq y \theta_{2}^{\prime}$. If $x \in(-\infty, m) \cup(m, n]$, then $x \theta_{2}^{\prime}=x \theta_{2}=x \beta_{1}^{-1} \theta_{1}^{-1} \alpha \leq a \alpha=y \theta_{2}^{\prime}$; i.e., $x \theta_{2}^{\prime} \leq y \theta_{2}^{\prime}$. Next, let $x, y \in(-\infty, m)$ or $x, y \in(m, n]$ with $x \leq y$. Since $\gamma_{1} \in \mathcal{O} \mathcal{R}(X)$ which is injective, we have $x \gamma_{1}^{-1}, y \gamma_{1}^{-1} \in(-\infty, m)$ or $x \gamma_{1}^{-1}, y \gamma_{1}^{-1} \in[m, \infty)$ such that $x \gamma_{1}^{-1} \geq y \gamma_{1}^{-1}$. Since $\theta_{1} \in \mathcal{O}(X)$ is bijective, we have $x \gamma_{1}^{-1} \theta_{1}^{-1}, y \gamma_{1}^{-1} \theta_{1}^{-1} \in[\alpha]_{1}$ or $x \gamma_{1}^{-1} \theta_{1}^{-1}, y \gamma_{1}^{-1} \theta_{1}^{-1} \in[\alpha]_{2}$ and so $x \gamma_{1}^{-1} \theta_{1}^{-1} \geq y \gamma_{1}^{-1} \theta_{1}^{-1}$. Since $\alpha \in \mathcal{O} \mathcal{R}(X)$ which is injective, we have $x \gamma_{1}^{-1} \theta_{1}^{-1} \alpha \leq y \gamma_{1}^{-1} \theta_{1}^{-1} \alpha$; i.e., $x \theta_{2} \leq y \theta_{2} \Rightarrow x \theta_{2}^{\prime} \leq y \theta_{2}^{\prime}$. Finally, let $x \in$ $(-\infty, m)$ and $y \in(m, n]$ with $x<y$. Since $\gamma_{1} \in \mathcal{O} \mathcal{R}(X)$ which is injective, $y \gamma_{1}^{-1} \in[m, \infty)$ and $x \gamma_{1}^{-1} \in(-\infty, m)$ such that $x \gamma_{1}^{-1}<y \gamma_{1}^{-1}$. Since $\theta_{1} \in \mathcal{O}(X)$ which is bijective, we have $x \gamma_{1}^{-1} \theta_{1}^{-1} \in[\alpha]_{1}$ and $y \gamma_{1}^{-1} \theta_{1}^{-1} \in[\alpha]_{2}$ such that $x \gamma_{1}^{-1} \theta_{1}^{-1}<y \gamma_{1}^{-1} \theta_{1}^{-1}$. Since $\alpha \in \mathcal{O R}(X)$, we get $x \gamma_{1}^{-1} \theta_{1}^{-1} \alpha<$ $y \gamma_{1}^{-1} \theta_{1}^{-1} \alpha \Rightarrow x \theta_{2}<y \theta_{2} \Rightarrow x \theta_{2}^{\prime}<y \theta_{2}^{\prime}$. Combining, we can conclude that $\theta_{2}^{\prime} \in \mathcal{O}(X)$. Next, we show that $\theta_{1} \gamma_{1} \theta_{2}^{\prime}$. Let $x \in X$. Then

$$
x \theta_{1} \gamma_{1} \theta_{2}^{\prime}=x \theta_{1} \gamma_{1} \theta_{2}=x \theta_{1} \gamma_{1}\left(\gamma_{1}^{-1} \theta_{1}^{-1} \alpha\right)=x \theta_{1}\left(\gamma_{1} \gamma_{1}^{-1}\right) \theta^{-1} \alpha=x\left(\theta_{1} \theta_{1}^{-1}\right) \alpha=x \alpha ;
$$

i.e., $\theta_{1} \gamma_{1} \theta_{2}^{\prime}=\alpha$.

Case 1.1.2. $[\alpha]_{1}:=(-\infty, a]$ and $[\alpha]_{2}$ is an open interval for some $a \in X$, the proof is analogous to the Case 1.1 but we use a transformation γ_{2} that is defined as follows Since X is a densely ordered set and, for any decomposition $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}, X_{1}$ has maximal element or X_{2} has minimal element, we can write $X_{1}=(-\infty, m]$ and $X_{2}=(m, \infty)$ for some $m \in X$. Let $l \in X$ with $l<m$. Since there exist an anti-isomorphic transformation between two open intervals, there are two transformations $\delta_{1}:(-\infty, m) \rightarrow(m, l)$ and $\delta_{2}:(m, \infty) \rightarrow(\infty, m)$ are anti-isomorphic. We define $m \delta_{1}:=l$. Then we define a transformation γ_{2} from X to X by

$$
x \gamma_{2}:= \begin{cases}x \delta_{1} & \text { if } x \in(-\infty, m] \\ x \delta_{2} & \text { if } x \in(m, \infty) .\end{cases}
$$

As the transformation γ_{1}, we can similarly show that $\gamma_{2} \in \mathcal{O} \mathcal{R}(X)$ which is an injective transformation. In particular, we can show $\alpha=\theta_{3} \gamma_{2} \theta_{4}^{\prime}$, where $\theta_{3}, \theta_{4}^{\prime} \in \mathcal{O}(X)$.

Let γ_{3} be an order-reversing bijective transformation on X. Next, we show that $\gamma_{2} \in\left\langle\gamma_{1}, \gamma_{3}\right\rangle$. Put $\operatorname{ker}\left(\gamma_{2}\right)=\operatorname{ker}\left(\gamma_{3}\right)$ and define $(-\infty, m] \gamma_{3}:=(\infty, m]$ and $(m, \infty) \gamma_{3}:=(m,-\infty)$, where $m \in X$. So $(-\infty, m] \gamma_{3} \gamma_{1}=(\infty, m] \gamma_{1}=$ $(m, n]$ and $(m, \infty) \gamma_{3} \gamma_{1}=(m,-\infty) \gamma_{1}=(-\infty, m)$. Let $l \in X$ and define $n \gamma_{3}:=l$. Hence $(-\infty, m] \gamma_{3} \gamma_{1} \gamma_{3}=(m, n] \gamma_{3}=(m, l]$ and $(m, \infty) \gamma_{3} \gamma_{1} \gamma_{3}=$ $(-\infty, m) \gamma_{3}=(\infty, m)$; i.e., $\gamma_{2}=\gamma_{3} \gamma_{1} \gamma_{3}$. From Case 1.1.2, we have $\alpha=\theta_{3} \gamma_{2} \theta_{4}^{\prime}$. We know that $\gamma_{2}=\gamma_{3} \gamma_{1} \gamma_{3}$. Thus $\alpha=\theta_{3} \gamma_{2} \theta_{4}^{\prime}=\theta_{2} \gamma_{3} \gamma_{1} \gamma_{3} \theta_{4}^{\prime}$.

Case 1.2. $\alpha \in \mathcal{O}^{\prime}(X)$. Let $\operatorname{dom}(\theta)=X:=\left\{x \gamma_{3}: x \in X\right\}$ and define a transformation θ by $x \theta=x \gamma_{3}^{-1} \alpha$ for all $x \in X$. Let $a, b \in X$ with $a<b$. Since γ_{3} is bijective, $a \gamma_{3}^{-1}>b \gamma_{3}^{-1}$. Since $\alpha \in \mathcal{O}^{\prime}(X), a \gamma_{3}^{-1} \alpha \leq b \gamma_{3}^{-1} \alpha$; i.e., $a \theta \leq b \theta$. Therefore, $\theta \in \mathcal{O}(X)$. Let $x \in X$. Then $x \gamma_{3} \theta=x \gamma_{3}\left(\gamma_{3}^{-1} \alpha\right)=$ $x\left(\gamma_{3} \gamma_{3}^{-1}\right) \alpha=x \alpha$; i.e., $\gamma_{3} \theta=\alpha$.
Case 2. $\alpha \in \mathcal{O P}(X) \backslash \mathcal{O}(X)$. By Proposition 2.1, there are two transformations $\beta_{1}, \beta_{2} \in \mathcal{O} \mathcal{P}(X) \backslash \mathcal{O}(X)$ such that $\left\langle\mathcal{O}(X), \beta_{1}, \beta_{2}\right\rangle=\mathcal{O} \mathcal{P}(X)$. From Proposition 2.1, β_{1} and β_{2} are transformations from X to X which are defined as follows:

$$
x \beta_{1}:= \begin{cases}x \phi_{1} & \text { if } x \in\left(-\infty, m^{\prime}\right) \\ x \phi_{2} & \text { if } x \in\left[m^{\prime}, \infty\right)\end{cases}
$$

such that $\phi_{1}:\left(-\infty, m^{\prime}\right) \rightarrow\left(m^{\prime}, \infty\right)$ and $\phi_{2}:\left[m^{\prime}, \infty\right) \rightarrow\left[l^{\prime}, m^{\prime}\right)$, where $l^{\prime}<m^{\prime} \in X$ are order-isomorphic transformations and

$$
x \beta_{2}:= \begin{cases}x \eta_{1} & \text { if } x \in\left(-\infty, m^{\prime}\right] \\ x \eta_{2} & \text { if } x \in\left(m^{\prime}, \infty\right)\end{cases}
$$

such that $\eta_{1}:(-\infty, m] \rightarrow\left(m^{\prime}, n^{\prime}\right]$ and $\eta_{2}:\left(m^{\prime}, \infty\right) \rightarrow\left(-\infty, m^{\prime}\right)$, where $m^{\prime}<n^{\prime} \in X$, are order-isomorphic transformations.

Next, we show that $\beta_{1}, \beta_{2} \in\left\langle\mathcal{O}(X), \gamma_{1}, \gamma_{3}\right\rangle$. Let $l^{\prime}<m^{\prime} \in X$ and $a^{\prime}<$ $b^{\prime}<c^{\prime} \in X$. Since there exists an order-isomorphic transformation between open intervals, there are two transformations $\xi_{1}:\left(-\infty, m^{\prime}\right) \rightarrow\left(a^{\prime}, b^{\prime}\right)$ and $\xi_{2}:\left(m^{\prime}, \infty\right) \rightarrow\left(b^{\prime}, c^{\prime}\right)$ which are order-isomorphic. We define $m^{\prime} \xi_{1}:=b^{\prime}$. Then we define a transformation θ_{5} from X to X by

$$
x \theta_{5}:= \begin{cases}x \xi_{1} & \text { if } x \in\left(-\infty, m^{\prime}\right) \\ x \xi_{2} & \text { if } x \in\left[m^{\prime}, \infty\right)\end{cases}
$$

It is easy to see that $\theta_{5} \in \mathcal{O}(X)$ by the definitions of transformations ξ_{1} and ξ_{2}. Let $m^{\prime}<i^{\prime}<h^{\prime}<g^{\prime} \in X$. Since there exists an anti-isomorphic transformation between two open intervals, there are two transformations $\mu_{1}:\left(a^{\prime}, b^{\prime}\right) \rightarrow\left(m^{\prime},-\infty\right)$ and $\mu_{2}:\left(b^{\prime}, c^{\prime}\right) \rightarrow\left(g^{\prime}, h^{\prime}\right)$ which are anti-isomorphic.

We define $b^{\prime} \mu_{2}:=g^{\prime}$. Then we define a transformation ρ_{1} from X to X by

$$
x \rho_{1}:= \begin{cases}m^{\prime} & \text { if } x \in\left(-\infty, a^{\prime}\right] \\ x \mu_{1} & \text { if } x \in\left(a^{\prime}, b^{\prime}\right) \\ x \mu_{2} & \text { if } x \in\left[b^{\prime}, c^{\prime}\right) \\ i^{\prime} & \text { if } x \in\left(c^{\prime}, \infty\right)\end{cases}
$$

It is clear that $\rho_{1} \in \mathcal{O} \mathcal{R}(X) \backslash \mathcal{O}^{\prime}(X)$. Indeed, let us put $A_{1}:=\left(-\infty, b^{\prime}\right)$ and $A_{2}:=\left[b^{\prime}, \infty\right)$ for some $b^{\prime} \in X$. So $A_{1} \rho_{1}=\left\{m^{\prime}\right\} \cup\left(-\infty, m^{\prime}\right)>\left(g^{\prime}, h^{\prime}\right) \cup\{i\}$ and $x \rho_{1} \geq y \rho_{1}$ whenever $x<y \in A_{1}$ or $x<y \in A_{2}$. By the same argument, there are two transformations $\zeta_{1}:\left(-\infty, m^{\prime}\right) \rightarrow\left(\infty, m^{\prime}\right)$ and $\zeta_{2}:\left(h^{\prime}, g^{\prime}\right) \rightarrow$ $\left(m^{\prime}, l^{\prime}\right)$ which are anti-isomorphic. We define $g^{\prime} \zeta_{2}:=l^{\prime}$. Then we define a transformation δ_{1} from X to X by

$$
x \delta_{1}:= \begin{cases}x \zeta_{1} & \text { if } x \in\left(-\infty, m^{\prime}\right) \\ m^{\prime} & \text { if } x \in\left[m^{\prime}, h^{\prime}\right] \\ x \zeta_{2} & \text { if } x \in\left(h^{\prime}, g^{\prime}\right] \\ l^{\prime} & \text { if } x \in\left(g^{\prime}, \infty\right)\end{cases}
$$

It is easy to see that $\delta_{1} \in \mathcal{O}^{\prime}(X)$ by the definitions of transformations of ζ_{1} and ζ_{2}. Now, we show that $\beta_{1} \in\left\langle\mathcal{O}(X), \gamma_{1}, \gamma_{3}\right\rangle$. So, we have $\left(-\infty, m^{\prime}\right) \theta_{1} \rho_{1} \delta_{1}=$ $\left(a^{\prime}, b^{\prime}\right) \rho_{1} \delta_{1}=\left(-\infty, m^{\prime}\right) \delta_{1}=\left(m^{\prime}, \infty\right)=\left(-\infty, m^{\prime}\right) \beta_{1}$ and we have $\left[m^{\prime}, \infty\right) \theta_{1} \rho_{1} \delta_{1}=$ $\left[b^{\prime}, c^{\prime}\right) \rho_{1} \delta_{1}=\left(h, g^{\prime}\right] \delta_{1}=\left(l, m^{\prime}\right)=\left[m^{\prime}, \infty\right) \beta_{1}$, i.e., $\beta_{1}=\theta_{5} \rho_{1} \delta_{1}$. Since $\rho_{1} \in$ $\mathcal{O} \mathcal{R}(X) \backslash \mathcal{O}^{\prime}(X) \subseteq \mathcal{O} \mathcal{R}(X)=\left\langle\mathcal{O}(X), \gamma_{1}, \gamma_{3}\right\rangle$, there are $\theta_{6}, \theta_{7} \in \mathcal{O}(X)$ such that $\rho_{1}=\theta_{6} \gamma_{1} \theta_{7}$. Since $\delta_{1} \in O^{\prime}(X)=\left\langle\mathcal{O}(X), \gamma_{3}\right\rangle$, there exists $\theta_{8} \in \mathcal{O}(X)$ such that $\delta_{1}=\gamma_{3} \theta_{8}$.

Therefore, $\beta_{1}=\theta_{5} \rho_{1} \delta_{1}=\theta_{5} \theta_{6} \gamma_{1} \theta_{7} \gamma_{3} \theta_{8}=\theta_{1}^{\prime} \gamma_{1} \theta_{4} \gamma_{3} \theta_{5}$, where $\theta_{1}^{\prime}=\theta_{5} \theta_{6} \in$ $\mathcal{O}(X)$; i.e., $\beta_{1} \in\left\langle\mathcal{O}(X), \gamma_{1}, \gamma_{3}\right\rangle$. We can show similarly to obtain that $\beta_{2} \in\left\langle\mathcal{O}(X), \gamma_{1}, \gamma_{3}\right\rangle$. So, we have $\alpha \in \mathcal{O} \mathcal{P}(X) \backslash \mathcal{O}(X) \in\left\langle\mathcal{O}(X), \beta_{1}, \beta_{2}\right\rangle \subseteq$ $\left\langle\mathcal{O}(X), \gamma_{1}, \gamma_{3}\right\rangle$.

Altogether, we obtain $\mathcal{O P \mathcal { R }}(X)=\left\langle\mathcal{O}(X), \gamma_{1}, \gamma_{3}\right\rangle$; i.e., $\operatorname{rank}(\mathcal{O P \mathcal { P }}(X)$: $\mathcal{O}(X)) \leq 2$.

Theorem 2.8. Let X be an infinite linearly densely ordered set that has neither a minimum element nor a maximum element, and for any decomposition $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}$ holds X_{1} has maximum element or X_{2} has minimum element. If there exist order-isomorphic transformation and anti-isomorphic transformation between two open intervals, then $\operatorname{rank}(\mathcal{O P \mathcal { R }}(X): \mathcal{O}(X)) \geq 2$ 。

Proof. Let X be an infinite linearly densely ordered set that has neither a minimum element nor a maximum element, and for any decomposition
$X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}$ such that X_{1} has maximum element or X_{2} has minimum element.

Suppose that $A \subseteq \mathcal{O} \mathcal{P} \mathcal{R}(X) \backslash \mathcal{O}(X)$ with $\langle\mathcal{O}(X), A\rangle=\mathcal{O} \mathcal{P} \mathcal{R}(X)$. Let $P(X)$ be the power set of X. Let B be the set of all sets B^{\prime} that there is no $u \in X$ such that $u>B^{\prime}$ and let C be the set of all sets C^{\prime} that there is no $v \in X$ such that $v<C^{\prime}$. Let $a^{\prime}, a, b \in X$ with $a<b \in X$. Since there exists anti-isomorphic transformation between two-open intervals, there are $\theta^{\prime}:\left(-\infty, a^{\prime}\right) \rightarrow(b, a)$ and $\theta^{\prime \prime}:\left(a^{\prime}, \infty\right) \rightarrow(\infty, b)$ which are anti-isomorphic. We define $a^{\prime} \theta^{\prime}:=a$. Then we define a transormation β from X to X by

$$
x \beta:= \begin{cases}x \theta^{\prime} & \text { if } x \in\left(-\infty, a^{\prime}\right] \\ x \theta^{\prime \prime} & \text { if } x \in\left(a^{\prime}, \infty\right) .\end{cases}
$$

Clearly, β is an injective transformation by the definition of transformation of θ^{\prime} and $\theta^{\prime \prime}$. Next, we will show that $\beta \in \mathcal{O} \mathcal{R}(X) \backslash \mathcal{O}^{\prime}(X)$. Let $[\beta]_{1}=\left(-\infty, a^{\prime}\right]$ and $[\beta]_{2}=\left(a^{\prime}, \infty\right)$. It is easy to see that $[\beta]_{1} \beta<[\beta]_{2} \beta$ and $y_{1} \beta \geq y_{2} \beta$ for all $y_{1}, y_{2} \in[\beta]_{1}$ and $y_{1}, y_{2} \in[\beta]_{2}$ because θ^{\prime} and $\theta^{\prime \prime}$ are anti-isomorphic. Therefore, $\beta \in \mathcal{O} \mathcal{R}(X) \backslash \mathcal{O}^{\prime}(X)$.

Since $\beta \in \mathcal{O} \mathcal{R}(X) \backslash \mathcal{O}^{\prime}(X) \subseteq \mathcal{O} \mathcal{P} \mathcal{R}(X)=\langle\mathcal{O}(X), A\rangle$, there are $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathcal{O}(X) \cup A$, where $k \in \mathbb{N}$ such that $\beta=\alpha_{1} \alpha_{2} \cdots \alpha_{k}$. Assume there is no $j \in\{1,2, \ldots, k\}$ with $i m\left(\left.\alpha_{j}\right|_{Y}\right) \in B$ for some $Y \in P(X) \backslash B$. Since $\left(a^{\prime}, b^{\prime}\right) \in P(X) \backslash B$, where $a^{\prime}<b^{\prime}$, we have $\left(a^{\prime}, b^{\prime}\right) \alpha_{1} \alpha_{2} \cdots \alpha_{k} \notin B$ which contradicts $\left(a^{\prime}, b^{\prime}\right) \beta \in B$. So there is $j \in\{1,2, \ldots, k\}$ with $\operatorname{im}\left(\left.\alpha_{j}\right|_{Y}\right) \in B$ for some $Y \in P(X) \backslash B$. It is clear that $\alpha_{j} \notin \mathcal{O}(X)$. Then there is $\alpha_{B} \in A$ with $i m\left(\left.\alpha_{B}\right|_{Y}\right) \in B$ for some $Y \in P(X) \backslash B$.

Assume there is no $p \in\{1,2, \ldots, k\}$ with $\operatorname{im}\left(\left.\alpha_{p}\right|_{Y}\right) \in B \cup C$ for some $Y \in P(X) \backslash(B \cup C)$. Since $\left(a^{\prime}, b^{\prime}\right) \in P(X) \backslash B$, where $a^{\prime}<b^{\prime}$, we have $\left(a^{\prime}, b^{\prime}\right) \alpha_{1} \alpha_{2} \cdots \alpha_{k} \notin B \cup C$, i.e. $\left(a^{\prime}, b^{\prime}\right) \alpha_{1} \alpha_{2} \cdots \alpha_{k} \notin B$ that is a contradiction with $\left(a^{\prime}, b^{\prime}\right) \beta \in B$. So there is $p \in\{1,2, \ldots, k\}$ with $\operatorname{im}\left(\left.\alpha_{p}\right|_{Y}\right) \in B \cup C$ for some $Y \in P(X) \backslash(B \cup C)$. It is clearly that $\alpha_{p} \notin \mathcal{O}(X)$. Then there is $\alpha_{B \cup C} \in A$ with $i m\left(\left.\alpha_{B \cup C}\right|_{Y}\right) \in B \cup C$ for some $Y \in P(X) \backslash(B \cup C)$.

Let $c^{\prime}, c, d \in X$ with $c<d$. Since there exists an anti-isomorphic transformation between two open intervals, there are two transformations $\nu^{\prime}:\left(-\infty, c^{\prime}\right) \rightarrow(c,-\infty)$ and $\nu^{\prime \prime}:\left(c^{\prime}, \infty\right) \rightarrow(d, c)$ which are anti-isomorphic. We define $c^{\prime} \nu^{\prime}:=d$. Then we define a transformation β from X to X by

$$
x \xi:= \begin{cases}x \nu^{\prime} & \text { if } x \in\left(-\infty, c^{\prime}\right) \\ x \nu^{\prime \prime} & \text { if } x \in\left[c^{\prime}, \infty\right) .\end{cases}
$$

Clearly, ξ is an injective transformation by the definitions of transformations ν^{\prime} and $\nu^{\prime \prime}$. Therefore, we can show similarly as a transformation β and
we have $\xi \in \mathcal{O} \mathcal{R}(X) \backslash \mathcal{O}^{\prime}(X)$. Since $\xi \in \mathcal{O} \mathcal{R}(X) \backslash \mathcal{O}^{\prime}(X) \subseteq \mathcal{O P \mathcal { R }}(X)=$ $\langle\mathcal{O}(X), A\rangle$, there are $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{l}$, where $l \in \mathbb{N}$ such that $\xi=\gamma_{1} \gamma_{2} \cdots \gamma_{l}$. Assume there is no $q \in\{1,2, \ldots, l\}$ with $i m\left(\left.\gamma_{q}\right|_{Y}\right) \in C$ for some $Y \in P \backslash C$. Since $\left(k, c^{\prime}\right) \in P(X) \backslash C$, where $k<c^{\prime}$, we have $\left(k, c^{\prime}\right) \gamma_{1} \gamma_{2} \cdots \gamma_{l} \notin C$ which contradicts $\left(k, c^{\prime}\right) \xi \in C$. So there is $q \in\{1,2, \ldots, l\}$ with $\operatorname{im}\left(\left.\gamma_{q}\right|_{Y}\right) \in C$ for some $Y \in P(X) \backslash C$. It is clear that $\gamma_{p} \notin \mathcal{O}(X)$. Then there is $\gamma_{C} \in A$ with $i m\left(\left.\gamma_{C}\right|_{Y}\right) \in C$ for some $Y \in P(X) \backslash C$.

Next, we assume that $\alpha_{B}=\alpha_{B \cup C}=\gamma_{C}$. Then there is $\alpha_{B \cup C} \in A$ with $\operatorname{im}\left(\left.\alpha_{B \cup C}\right|_{Y}\right) \in B \cup C$ for some $Y \in P(X) \backslash(B \cup C)$. Since $\alpha_{B} \in$ $\mathcal{O P} \mathcal{R}(X) \backslash \mathcal{O}(X)$, there is a decomposition $X=\left[\alpha_{B}\right]_{1} \cup\left[\alpha_{B}\right]_{2}$ with $\left[\alpha_{B}\right]_{1}<$ $\left[\alpha_{B}\right]_{2}$ which satisfies the definition of orientation-preserving or orientationreversing transformation. We consider two cases:
Case 1. $i m\left(\left.\alpha_{B \cup C}\right|_{Y}\right) \in B$, i.e. $Y \alpha_{B \cup C} \in B$. Since there is $M \in P(X) \backslash C$ such that $M \gamma_{C} \in C$ and $\alpha_{B \cup C}=\gamma_{C}$, we have $M \alpha_{B \cup C} \in C$. We consider the following cases:

Case 1.1. $Y \subseteq\left[\alpha_{B}\right]_{1}$. So, we consider two subcases:
Case 1.1.1. $\left.\alpha_{B \cup C}\right|_{Y}$ is order-preserving. We consider again two possibilities:
(a) $M \subseteq\left[\alpha_{B}\right]_{1}$. That is $Y \cup M \subseteq\left[\alpha_{B}\right]_{1}$ and $\left.\alpha_{B \cup C}\right|_{Y \cup M}$ is orderpreserving because $\left.\alpha_{B \cup C}\right|_{Y}$ is order-preserving. Since $Y \in P(X) \backslash(B \cup C)$, there is $k \in X$ such that $k>Y$. Therefore, $k \in\left[\alpha_{B}\right]_{1}$ or $k \in\left[\alpha_{B}\right]_{2}$. If $k \in\left[\alpha_{B}\right]_{1}$, then $k \alpha_{B \cup C} \geq Y \alpha_{B \cup C}$ contradicting $Y \alpha_{B \cup C} \in B$. If $k \in\left[\alpha_{B}\right]_{2}$, then $(Y \cup M) \alpha_{B \cup C}>k \alpha_{B \cup C}$; i.e., $M \alpha_{B \cup C}>k \alpha_{B \cup C}$ contradicting $M \alpha_{B \cup C} \in$ C. Combining, $\alpha_{B \cup C} \notin \mathcal{O P \mathcal { P }}(X) \backslash \mathcal{O}(X)$ which is a contradiction since $\alpha_{B \cup C} \in A \subseteq \mathcal{O P R}(X) \backslash \mathcal{O}(X)$.
(b) $M \subseteq\left[\alpha_{B}\right]_{2}$. Then $Y<M$. Since $Y \in P(X) \backslash(B \cup C)$ with $Y \alpha_{B \cup C} \in B, M \in P(X) \backslash C$ with $M \alpha_{B \cup C} \in C$ and all decompositions $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}$ such that X_{1} has a maximum element or X_{2} has a minimum element, there is $k^{\prime} \in X$ such that $Y<k^{\prime}<M$. Therefore, $k^{\prime} \in\left[\alpha_{B}\right]_{1}$ or $k^{\prime} \in\left[\alpha_{B}\right]_{2}$. If $k^{\prime} \in\left[\alpha_{B}\right]_{1}$, then $Y \alpha_{B \cup C} \leq k^{\prime} \alpha_{B \cup C}$ contradicting $Y \alpha_{B \cup C} \in B$. If $k^{\prime} \in\left[\alpha_{B}\right]_{2}$, then $k^{\prime} \alpha_{B \cup C} \leq M \alpha_{B \cup C}$ contradicting $M \alpha_{B \cup C} \in C$. As a result, $\alpha_{B \cup C} \notin \mathcal{O P} \mathcal{R}(X) \backslash \mathcal{O}(X)$ which is a contradiction since $\alpha_{B \cup C} \in A \subseteq \mathcal{O P \mathcal { R }}(X) \backslash \mathcal{O}(X)$.

Case 1.1.2. $\left.\alpha_{B \cup C}\right|_{Y}$ is order-reversing. Since $Y \subseteq\left[\alpha_{B}\right]_{1}$, we have $Y \alpha_{B \cup C}<A_{2} \alpha_{B \cup C}$ contradicting $Y \alpha_{B \cup C} \in B$; that is, $\alpha_{B \cup C} \notin \mathcal{O P \mathcal { R }}(X) \backslash$ $\mathcal{O}(X)$ which is a contradiction because $\alpha_{B \cup C} \in A \subseteq \mathcal{O P \mathcal { R }}(X) \backslash \mathcal{O}(X)$.

Case 1.2. $Y \subseteq\left[\alpha_{B}\right]_{2}$. We consider two subcases:
Case 1.2.1. $\left.\alpha_{B \cup C}\right|_{Y}$ is order-preserving. Since $Y \subseteq\left[\alpha_{B}\right]_{2},\left[\alpha_{B}\right]_{1} \alpha_{B \cup C}>$ $Y \alpha_{B \cup C}$ contradicting $Y \alpha_{B \cup C} \in B$; that is, $\alpha_{B \cup C} \notin \mathcal{O P \mathcal { R }}(X) \backslash \mathcal{O}(X)$ which
is a contradiction because $\alpha_{B \cup C} \in A \subseteq \mathcal{O P \mathcal { R }}(X) \backslash \mathcal{O}(X)$.
Case 1.2.2 $\left.\alpha_{B \cup C}\right|_{Y}$ is order-reversing. So, we will consider again two possibilities:
(a) $M \subseteq\left[\alpha_{B}\right]_{1}$. Then $M<Y$. Since $Y \in P(X) \backslash(B \cup C)$ with $Y \alpha_{B \cup C} \in B, M \in P(X) \backslash C$ with $M \alpha_{B \cup C} \in C$ and all decompositions $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}$ such that X_{1} has a maximum element or X_{2} has a minimum element, there is $g \in X$ such that $M<g<Y$. Therefore, $g \in\left[\alpha_{B}\right]_{1}$ or $g \in\left[\alpha_{B}\right]_{2}$. If $g \in\left[\alpha_{B}\right]_{1}$, then $M \alpha_{B \cup C} \geq g \alpha_{B \cup C}$ contradicting $M \alpha_{B \cup C} \in C$. If $g \in\left[\alpha_{B}\right]_{2}$, then $g \alpha_{B \cup C} \geq Y \alpha_{B \cup C}$ contradicting $Y \alpha_{B \cup C} \in B$. Altogether, $\alpha_{B \cup C} \notin \mathcal{O P \mathcal { P }}(X) \backslash \mathcal{O}(X)$ that is a contradiction since $\alpha_{B \cup C} \in A \subseteq \mathcal{O P} \mathcal{R}(X) \backslash \mathcal{O}(X)$.
(b) $M \subseteq\left[\alpha_{B}\right]_{2}$. That is $Y \cup M \subseteq\left[\alpha_{B}\right]_{2}$ and $\left.\alpha_{B \cup C}\right|_{Y \cup M}$ is orderreversing bcause $\left.\alpha_{B \cup C}\right|_{Y}$ is order-reversing. Since $Y \in P(X) \backslash(B \cup C)$, there is $g^{\prime} \in X$ such that $g^{\prime}<Y$. Therefore, $g^{\prime} \in\left[\alpha_{B}\right]_{1}$ or $g^{\prime} \in\left[\alpha_{B}\right]_{2}$. If $g^{\prime} \in\left[\alpha_{B}\right]_{1}$, then $g^{\prime} \alpha_{B \cup C}<(Y \cup M) \alpha_{B \cup C}$; i.e., $g^{\prime} \alpha_{B \cup C}<M \alpha_{B \cup C}$ contradicting $M \alpha_{B \cup C} \in C$. If $g^{\prime} \in\left[\alpha_{B}\right]_{2}$, then $g^{\prime} \alpha_{B \cup C} \geq Y \alpha_{B \cup C}$, contradicting $Y \alpha_{B \cup C} \in B$. Consequently, $\alpha_{B \cup C} \notin \mathcal{O} \mathcal{P} \mathcal{R}(X) \backslash \mathcal{O}(X)$ which is a contradiction since $\alpha_{B \cup C} \in A \subseteq \mathcal{O P \mathcal { R }}(X) \backslash \mathcal{O}(X)$.

Case 1.3. $Y=Y_{1} \cup Y_{2}$ such that $Y_{1} \subseteq\left[\alpha_{B}\right]_{1}$ and $Y_{2} \subseteq\left[\alpha_{B}\right]_{2}$ with $Y_{1} \neq \emptyset$ and $Y_{2} \neq \emptyset$. So, we will consider the following subcases:

Case 1.3.1. $\left.\alpha_{B \cup C}\right|_{Y}$ is order-preserving, i.e. $\left.\alpha_{B \cup C}\right|_{Y_{2}}$ is order-preserving and $Y_{2} \alpha_{B \cup C} \in B$. Therefore, $\left[\alpha_{B}\right]_{1} \alpha_{B \cup C}>Y_{2} \alpha_{B \cup C}$ which contradicts $Y_{2} \alpha_{B \cup C} \in$ B.

Case 1.3.2. $\left.\alpha_{B \cup C}\right|_{Y}$ is order-reversing; i.e., $\left.\alpha_{B \cup C}\right|_{Y_{1}}$ is order-reversing and $Y_{1} \alpha_{B \cup C} \in B$. Therefore, $\left[\alpha_{B}\right]_{2} \alpha_{B \cup C}>Y_{1} \alpha_{B \cup C}$ which contradicts $Y_{1} \alpha_{B \cup C} \in$ B.
Case 2. $i m\left(\left.\alpha_{B \cup C}\right|_{Y}\right) \in C$, i.e. $Y \alpha_{B \cup C} \in C$. Since there is $N \in P(X) \backslash B$ such that $N \alpha_{B} \in B$ and $\alpha_{B}=\alpha_{B \cup C}$, we have $N \alpha_{B \cup C} \in B$. The rest of the proof of this case is similar to Case 1 .

From both cases, we can conclude that $\alpha_{B} \neq \alpha_{B \cup C}$ or $\alpha_{B \cup C} \neq \gamma_{C}$, i.e. A contains at least two element. Therefore, $\operatorname{rank}(\mathcal{O P \mathcal { R }}(X): \mathcal{O}(X)) \geq 2$.

By Theorems 2.7 and 2.8, we obtain the following corollary.
Corollary 2.9. $\operatorname{rank}(\mathcal{O P \mathcal { R }}(X): \mathcal{O}(X))=2$.
Example 2.10. Let $X \in\{\mathbb{Q}, \mathbb{R}\}$. Since \mathbb{Q} and \mathbb{R} are infinite linearly densely ordered sets that have neither a minimal nor a maximal element and, for any decomposition $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}, X_{1}$ has maximal element or X_{2} has minimal element, we have $\operatorname{rank}(\mathcal{O P} \mathcal{R}(X): \mathcal{O}(X))=2$.

Acknowledgment. The author wishes to thank the Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand.

References

[1] R.E. Arthur, N. Ruškuc, Presentations for two extensions of the monoid of order-preserving mappings on a finite chain, Southeast Asian Bulletin of Mathematics, 24, (2000), 1-7.
[2] P.M. Catarino, P.M. Higgins, The monoid of orientation-preserving mappings on a chain, Semigroup Forum, 58, (1999), 190-206.
[3] I. Dimitrova, V.H. Fernandes, J. Koppitz, The maximal subsemigroups of semigroups of transformations preserving or reversing the orientation on a finite chain, Publ. Math. Debrecen, 81, no. 1-2, (2012), 11-29.
[4] V.H. Fernandes, G.M.S. Gomes, M. M. Jesus, Congruences on monoids of transformations preserving the orientation on a finite chain, Journal of Algebra, 321, (2009), 743-757.
[5] V.H. Fernandes, P. Honyam, T. M. Quinteiro, B. Singha, On semigroups of orientation-preserving transformations with restricted range, Communication in Algebra, 44, (2016), 253-264.
[6] O. Ganyushkin, V. Marzorchuk, Classical finite transformation semigroups, Springer-Verlag, London, 2009.
[7] G. M. S. Gomes, J. M. Howie, On the ranks of certain semigroups of order-preserving transformations, Semigroup Forum, 45, (1992), 272282.
[8] P. M. Higgins, J. D. Mitchell, N. Ruškuc, Generating the full transformation semigroup using order preserving mappings, Glasgow Mathematical Journal, 45, no. 3, (2003), 557-566.
[9] J. M. Howie, Fundamental of a semigroup theory, Oxford University Press, 1995.
[10] J. M. Howie, N. Ruškuc, P. M. Higgins, On relative ranks of full transformation semigroups, Communications in Algebra, 26, no. 3, (1998), 733-748.
[11] D. B. McAlister, Semigroups generated by a group and idempotent, Communications in Algebra, 26, (1998), 243-254.
[12] K. Tinpun, Relative rank of infinite full transformation semigroups with restricted range, University of Potsdam, Ph. D Thesis, Germany, (2019).

