
International Journal of Mathematics and
Computer Science, 17(2022), no. 1, 63–76

b b

M
CS

The Relative Rank of OPR(X) Modulo O(X)

Kittisak Tinpun

Department of Mathematics and Computer Science
Faculty of Science and Technology

Prince of Songkla University, Pattani Campus
Pattani 94000, Thailand

email: kittisak.ti@psu.ac.th

(Received May 14, 2021, Accepted July 6, 2021)

Abstract

In this paper, X is an infinite linearly ordered set and T (X) is
the set of all full transformation semigroups. First, we describe the
relative rank of the semigroup OP(X) of all orientation-preserving
transformations modulo the semigroup O(X) of all order-preserving
transformations. Moreover, we get the relative rank of the semigroup
OPR(X) of all orientation-preserving or orientation-reversing trans-
formations modulo the semigroup O(X). Furthermore, we illustrate
our result with an example.

1 Introduction and Preliminaries

Let X be an infinite linearly ordered set and let x ∈ X . Denote by
T (X) the monoid of all the full transformations on X with operation as
the composition of functions. In this paper, we write functions from the
right, xα rather than α(x) and compose from the left to the right; i.e.,
x(αβ) = (xα)β rather than (αβ)(x) = α(β(x)). Let α ∈ T (X). We denote
by im(α) the image of α and define im(α) := Xα := {xα : x ∈ X} and
denote the cardinality of im(α) by rank(α); i.e., rank(α) := |im(α)|. For
sets A1, A2 ⊆ X , we write A1 < A2 if x1 < x2 for all x1 ∈ A1 and for
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all x2 ∈ A2. Given a subset A of X , denote by α|A the transformation
α|A : A → X with x(α|A) := xα for all x ∈ A; i.e., α|A is the transformation
α restricted to A.

The generating sets of a semigroup S play an important role with the
semigroup. A set G is a generating set of S, denoted by 〈G〉 = S, such that
S is the least semigroup containing G. The rank of S is the minimal size of
a generating set of S defined by rank(S) := min{|G| : G ⊆ S, 〈G〉 = S}. In
the case when X is infinite, the size and the rank of the full transformation
semigroup T (X) are infinite. This gives rise to the definition of the relative
rank as follows:
The relative rank of S modulo U is the minimal size of a subset G ⊆ S such
that G ∪ U generates S:
rank(S : U) := min{|G| : G ⊆ S, 〈G ∪ U〉 = S}. A set G ⊆ S with
〈G ∪ U〉 = S is called a generating set of S modulo U . The concept of a
relative rank generalizes the concept rank of a semigroup and was introduced
by Howie, Ruškuc and Higgins [10].

Let X be a non-empty set. We consider the set O′(X) of all order-
reversing transformations, the semigroup O(X) of all order-preserving trans-
formations, the semigroup OP(X) of orientation-preserving transformations,
the set OR(X) of all orientation-reversing transformations, and the semi-
group OPR(X) of all orientation-preserving or orientation-reversing trans-
formations. A transformation α ∈ T (X) is called orientation-preserving
(orientation-reversing) if there is a decomposition X = [α]1 ∪ [α]2 with
[α]1 < [α]2, y1α ≥ y2α (y1α ≤ y2α) for all y1 ∈ [α]1 and y2 ∈ [α]2, and
xα ≤ yα (xα ≥ yα) for all x ≤ y ∈ [α]1 or x ≤ y ∈ [α]2. By the defini-
tion, we obtain O(X) ⊆ OP(X) ⊆ OPR(X) ⊆ T (X) and O(X), OP(X),
and OPR(X) are subsemigroups of T (X). In 2000s, the order-preserving
transformation semigroup, the orientation-preserving transformation semi-
group and the orientation-preserving or orientation-reversing transformation
semigroup caught the interest of many researchers see [1], [2], [3], [4], [5],
[7], [8]. The semigroups O(X) and OP(X) have been widely studied and
investigated for a finite set X . In [2] and [7], the authors have determined
the rank of these semigroups on a finite set X . The rank of O(X) is equal
to n and the rank of OP(X) is equal to two in [7] and in [2], respectively.
Additionally, the relative rank of OP(X) modulo O(X) is equal to one and
it was determined by Catarino and Higgins [2]. In particular, we notice that
the rank of semigroups O(X), OP(X) and OPR(X) are infinite when X is
an infinite set. In [8], the authors have computed the relative rank of T (X)
modulo O(X) is equal to one when X is a countably infinite linearly ordered
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set or X is an arbitrary well-ordered set. They also showed that the relative
rank of T (X) modulo O(X) is infinite when X = R under the usual order.

In this paper, we consider X as an infinite linearly densely ordered set
that has no both minimal and maximal element, and for any decomposition
X = X1 ∪X2 with X1 < X2 holds X1 has maximal element or X2 has min-
imal element. Since X has no both minimal and maximal element and for
any decomposition X = X1 ∪X2 with X1 < X2, we have all the possibilities
of X1 and X2 shown in the following cases:

1. X1 is a half-open interval with maximal element and X2 is a half-open
interval with minimal element,

2. X1 is an open interval and X2 is a half-open interval with minimal
element; i.e., X2 = [a,∞), for some a ∈ X ,

3. X1 is a half open-interval with maximal element, i.e. X1 = (−∞, a],
for some a ∈ X and X2 is an open interval,

4. X1 and X2 are open intervals.

Since X is a dense set, case 1 will not happen. Since X1 has maximal element
or X2 has minimal element, case 4 also will not happen. We can conclude
that the possibilities of decomposition X = X1 ∪ X2 with X1 < X2 which
satisfy the condition of X will be only cases 2 and 3. This means that X1 is
an open interval and X2 = [a,∞) for some a ∈ X or X1 = (−∞, a] and X2

is an open interval for some a ∈ X . We can also write X1 = (−∞, a) and
X2 = [a,∞) or X1 = (−∞, a] and X2 = (a,∞) for some a ∈ X because X is
a dense set and cases (i) and (iv) are impossible as we have already shown.
So the purpose of this paper is to determine the relative rank of OPR(X)
modulo O(X) when X satisfies a condition in case 2 or case 3.

2 Main results

2.1 The relative rank OP(X) modulo O(X)

In this section, we describe the relative rank of the semigroupOP(X) orientation-
preserving transformations modulo the semigroupO(X) of all order-preserving
transformations as shown in the following propositions.

Proposition 2.1. [12] Let X be an infinite linearly densely ordered set that
has no both minimal and maximal element and, for any decomposition X =
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X1 ∪ X2 with X1 < X2, X1 has a maximal element or X2 has a minimal
element. If there exists an order-isomorphic transformation between two open
intervals, then rank(OP(X) : O(X)) ≤ 2.

Proposition 2.2. [12] Let X be an infinite linearly densely ordered set that
has no both minimal and maximal element and, for any decomposition X =
X1 ∪ X2 with X1 < X2, X1 has a maximal element or X2 has a minimal
element. If there exists an order-isomorphic transformation between two open
intervals, then rank(OP(X) : O(X)) ≥ 2.

Theorem 2.3. [12] rank(OP(X) : O(X)) = 2.

Example 2.4. Let X ∈ {Q,R}. Since Q and R are infinite linearly densely
ordered set that have neither a minimal nor a maximal element, and for any
decomposition X = X1 ∪X2 with X1 < X2 holds X1 has maximal element or
X2 has minimal element, we have rank(OP(X) : O(X)) = 2.

2.2 The relative rank of OPR(X) modulo O(X)

In this section, we extend the result from Section 2.1 in order to calculate
the relative rank of the semigroup OPR(X) of all orientation-preserving
or orientation-reversing transformations modulo the semigroup O(X) of all
order-preserving transformations as follows:

Lemma 2.5. Let X be an infinite linearly densely ordered set that has no
minimal or maximal element, and for any decomposition X = X1 ∪X2 with
X1 < X2 holds X1 has maximal element or X2 has minimal element. If
α ∈ OR(X) \ O

′

(X), then im(α) has a maximal or a minimal element.

Proof. Suppose that X is an infinite linearly densely ordered set that has
neither a minimal nor a maximal element and, for any decomposition X =
X1 ∪ X2, with X1 < X2 holds X1 has maximal element or X2 has minimal
element. Let α ∈ OR(X) \ O

′

(X). Since α ∈ OR(X) \ O
′

(X), there is a
decomposition X = [α]1 ∪ [α]2 with [α]1 < [α]2 that satisfies the definition
of an orientation-reversing transformation. Since X is densely ordered set
and, for any decomposition X = X1 ∪X2 with X1 < X2, X1 has a maximal
element or X2 has a minimal element, we have [α]1 is an open interval and
[α]2 = [a,∞) or [α]1 = (−∞, a] and [α]2 is an open interval for some a ∈ X .

So, we consider the first case; that is, [α]1 is an open interval and [α]2 =
[a,∞) for some a ∈ X . We claim that aα is the maximal element of image
α. Let y ∈ im(α). Then there is x ∈ X such that xα = y. If x ∈ [a,∞),
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then aα ≥ xα. If x ∈ [α]1, then xα ≤ cα for all c ∈ [a,∞); i.e., xα ≤ aα.
Combining, we obtain aα is the maximal element of image α. For the second
case, we have [α]1 = (−∞, a] for some a ∈ X and [α]2 is an open interval.
We claim that aα is the minimal element of image α. Let y ∈ im(α). Since
y ∈ im(α), there is x ∈ X such that xα = y. If x ∈ (−∞, a], then xα ≥ aα.
If x ∈ [α]2, then xα ≥ cα for all c ∈ (−∞, a]; i.e.,, xα ≥ aα. Combining,
we obtain aα is the minimal element of image α. Therefore, im(α) has a
maximal or minimal element.

Lemma 2.6. Let X be an infinite linearly densely ordered set that has no
minimal or maximal element and, for any decomposition X = X1 ∪X2 with
X1 < X2, X1 has maximal element or X2 has minimal element. If α ∈
OR(X) \ O

′

(X), then there is p ∈ X such that p ≤ xα for all x ∈ [α]2 and
p ≥ xα for all x ∈ [α]1.

Proof. Let α ∈ OR(X) \ O
′

(X). Since α ∈ OR(X) \ O
′

(X), there is a
decomposition X = [α]1 ∪ [α]2 with [α]1 < [α]2 that satisfies the definition
of an orientation-preserving transformation. Since X is a densely ordered
set and, for any decomposition X = X1 ∪ X2 with X1 < X2, X1 has a
maximal element or X2 has a minimal element, we have [α]1 is an open
interval and [α]2 = [a,∞) or [α]1 = (−∞, a] and [α]2 is an open interval for
some a ∈ X . Since α ∈ OR(X) \ O

′

(X) with α|[α]1 and α|[α]2 are order-
reversing, there is p1 = inf([α]2α) such that p1 ≤ xα for all x ∈ [α]2 and
there is p2 = sup([α]1α) such that p2 ≥ xα for all x ∈ [α]1. Moreover, it is
possible that p1 ≥ p2. Therefore, there is p ∈ {p1, p2} such that p ≤ xα for
all x ∈ [α]2 and p ≥ xα for all x ∈ [α]1.

Theorem 2.7. Let X be an infinite linearly densely ordered set that has nei-
ther a minimum element nor a maximum element and, for any decomposition
X = X1∪X2 with X1 < X2, X1 has a maximum element or X2 has minimum
element. If there exist order-isomorphic transformation and anti-isomorphic
transformation between two open intervals, then rank(OPR(X) : O(X)) ≤
2.

Proof. Suppose that X is an infinite linearly densely ordered set that has
neither a minimum element nor a maximum element and, for any decompo-
sition X = X1 ∪X2 with X1 < X2, X1 has a maximum element or X2 has a
minimum element.

Let α ∈ OPR(X) \ O(X). Then α ∈ OP(X) \ O(X) or α ∈ OR(X).

Case 1. α ∈ OR(X). We will consider two cases:
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Case 1.1. α ∈ OR(X) \ O′(X). Since α ∈ OR(X) \ O′(X), there is a
decomposition X = [α]1 ∪ [α]2 with [α]1 < [α]2 that satisfies the definition
of an orientation-reversing transformation. Since X is a densely ordered set
and, for any decomposition X = X1 ∪X2 with X1 < X2, X1 has a maximal
element or X2 has a minimal element, we have [α]1 is an open interval and
[α]2 = [a,∞) or [α]1 = (−∞, a] and [α]2 is an open interval for some a ∈ X .
Hence, we consider two subcases:

Case 1.1.1. [α]1 is an open interval and [α]2 = [a,∞) for some a ∈ X .
Since X is a densely ordered set and for any decomposition X = X1 ∪ X2

with X1 < X2 holds X1 has maximal element or X2 has minimal element,
we can write X1 = (−∞, m) and X2 = [m,∞) for some m ∈ X . Since there
exists an order-isomorphic transformation between two open intervals, there
are two transformations
ν1 : [α]1 → (−∞, m) and ν2 : (a,∞) → (m,∞) which are order-isomorphic.
We define aν2 := m. Then we define a transformation θ from X to X by

xθ1 :=

{

xν1 if x ∈ [α]1
xν2 if x ∈ [a,∞).

Since ν1 : [α]1 → (−∞, m) and ν2 : [α]2 → [m,∞) are order-isomorphic
transformations, we get θ1 ∈ O(X) which is a bijective transformation on X .

Let n ∈ X with m < n. Since there exists an anti-isomorphic trans-
formation between two open intervals, there are two transformations µ1 :
(−∞, m) → (m,−∞) and µ2 : (m,∞) → (n,m) which are anti-isomorphic.
We define mµ2 := n. Then we define a transformation γ1 from X to X by

xγ1 :=

{

xµ1 if x ∈ (−∞, m)
xµ2 if x ∈ [m,∞).

It is clear that X = (−∞, m)∪ [m,∞). Since µ1 : (−∞, m) → (m,−∞) and
µ2 : [m,∞) → [n,m) are anti-isomorphic transformations and (−∞, m)γ1 =
(−∞, m)µ1 = (m,−∞) < [n,m) = [m,∞)µ1 = [m,∞)γ1, we obtain that
γ1 ∈ OR(X) which is an injective transformation on X . Since the product
of an order-preserving transformation and an orientation-preserving trans-
formation is an orientation-preserving transformation, we obtain θ1γ1 which
is an injective transformation and im(θ1γ1) = (m,−∞) ∪ [n,m).

Next, we define a transformation θ2 : (m,−∞) ∪ [n,m) → im(α) by
xθ2 := xγ−1

1 θ−1
1 α for all x ∈ (m,−∞) ∪ [n,m). So, we need to extend the

transformation θ2 to be a transformation θ′2 ∈ O(X). Let us consider the two
cases x > n and x = m. For x > n, we define xθ′2 := aα := max{xα : x ∈ X}.
For x = m, there exists p ∈ X such that p ≤ y2α for all y2 ∈ [α]2 and p ≥ y1α
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for all y1 ∈ [α]1. So, we define mθ′2 := p. Hence, we define a transformation
θ′2 from X to X by

xθ′2 :=







aα if x > n
p if x = m
xθ2 if x ∈ (−∞, m) ∪ (m,n].

Next, we will show that θ′2 is an order-preserving transformation; i.e., θ′2 ∈
O(X). First, let x ∈ (−∞, n] and y ∈ (n,∞) with x ≤ y; i.e., x ∈
(−∞, m) ∪ (m,n] or x = m. If x = m, then xθ′2 = p ≤ aα = yθ′2; i.e.,
xθ′2 ≤ yθ′2. If x ∈ (−∞, m)∪(m,n], then xθ′2 = xθ2 = xβ−1

1 θ−1
1 α ≤ aα = yθ′2;

i.e., xθ′2 ≤ yθ′2. Next, let x, y ∈ (−∞, m) or x, y ∈ (m,n] with x ≤ y.
Since γ1 ∈ OR(X) which is injective, we have xγ−1

1 , yγ−1
1 ∈ (−∞, m) or

xγ−1
1 , yγ−1

1 ∈ [m,∞) such that xγ−1
1 ≥ yγ−1

1 . Since θ1 ∈ O(X) is bi-
jective, we have xγ−1

1 θ−1
1 , yγ−1

1 θ−1
1 ∈ [α]1 or xγ−1

1 θ−1
1 , yγ−1

1 θ−1
1 ∈ [α]2 and

so xγ−1
1 θ−1

1 ≥ yγ−1
1 θ−1

1 . Since α ∈ OR(X) which is injective, we have
xγ−1

1 θ−1
1 α ≤ yγ−1

1 θ−1
1 α; i.e., xθ2 ≤ yθ2 ⇒ xθ′2 ≤ yθ′2. Finally, let x ∈

(−∞, m) and y ∈ (m,n] with x < y. Since γ1 ∈ OR(X) which is injec-
tive, yγ−1

1 ∈ [m,∞) and xγ−1
1 ∈ (−∞, m) such that xγ−1

1 < yγ−1
1 . Since

θ1 ∈ O(X) which is bijective, we have xγ−1
1 θ−1

1 ∈ [α]1 and yγ−1
1 θ−1

1 ∈ [α]2
such that xγ−1

1 θ−1
1 < yγ−1

1 θ−1
1 . Since α ∈ OR(X), we get xγ−1

1 θ−1
1 α <

yγ−1
1 θ−1

1 α ⇒ xθ2 < yθ2 ⇒ xθ′2 < yθ′2. Combining, we can conclude that
θ′2 ∈ O(X). Next, we show that θ1γ1θ

′

2. Let x ∈ X . Then

xθ1γ1θ
′

2 = xθ1γ1θ2 = xθ1γ1(γ
−1
1 θ−1

1 α) = xθ1(γ1γ
−1
1 )θ−1α = x(θ1θ

−1
1 )α = xα;

i.e., θ1γ1θ
′

2 = α.
Case 1.1.2. [α]1 := (−∞, a] and [α]2 is an open interval for some

a ∈ X , the proof is analogous to the Case 1.1 but we use a transformation
γ2 that is defined as follows Since X is a densely ordered set and, for any
decomposition X = X1 ∪ X2 with X1 < X2, X1 has maximal element or
X2 has minimal element, we can write X1 = (−∞, m] and X2 = (m,∞) for
some m ∈ X . Let l ∈ X with l < m. Since there exist an anti-isomorphic
transformation between two open intervals, there are two transformations
δ1 : (−∞, m) → (m, l) and δ2 : (m,∞) → (∞, m) are anti-isomorphic. We
define mδ1 := l. Then we define a transformation γ2 from X to X by

xγ2 :=

{

xδ1 if x ∈ (−∞, m]
xδ2 if x ∈ (m,∞).

As the transformation γ1, we can similarly show that γ2 ∈ OR(X)which is
an injective transformation. In particular, we can show α = θ3γ2θ

′

4, where
θ3, θ

′

4 ∈ O(X).
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Let γ3 be an order-reversing bijective transformation onX . Next, we show
that γ2 ∈ 〈γ1, γ3〉. Put ker(γ2) = ker(γ3) and define (−∞, m]γ3 := (∞, m]
and (m,∞)γ3 := (m,−∞), where m ∈ X . So (−∞, m]γ3γ1 = (∞, m]γ1 =
(m,n] and (m,∞)γ3γ1 = (m,−∞)γ1 = (−∞, m). Let l ∈ X and define
nγ3 := l. Hence (−∞, m]γ3γ1γ3 = (m,n]γ3 = (m, l] and (m,∞)γ3γ1γ3 =
(−∞, m)γ3 = (∞, m); i.e., γ2 = γ3γ1γ3. From Case 1.1.2, we have α = θ3γ2θ

′

4.
We know that γ2 = γ3γ1γ3. Thus α = θ3γ2θ

′

4 = θ2γ3γ1γ3θ
′

4.
Case 1.2. α ∈ O′(X). Let dom(θ) = X := {xγ3 : x ∈ X} and define

a transformation θ by xθ = xγ−1
3 α for all x ∈ X . Let a, b ∈ X with a < b.

Since γ3 is bijective, aγ−1
3 > bγ−1

3 . Since α ∈ O′(X), aγ−1
3 α ≤ bγ−1

3 α; i.e.,
aθ ≤ bθ. Therefore, θ ∈ O(X). Let x ∈ X . Then xγ3θ = xγ3(γ

−1
3 α) =

x(γ3γ
−1
3 )α = xα; i.e., γ3θ = α.

Case 2. α ∈ OP(X) \ O(X). By Proposition 2.1, there are two transfor-
mations β1, β2 ∈ OP(X) \ O(X) such that 〈O(X), β1, β2〉 = OP(X). From
Proposition 2.1, β1 and β2 are transformations fromX toX which are defined
as follows:

xβ1 :=

{

xφ1 if x ∈ (−∞, m′)
xφ2 if x ∈ [m′,∞)

such that φ1 : (−∞, m′) → (m′,∞) and φ2 : [m′,∞) → [l′, m′), where
l′ < m′ ∈ X are order-isomorphic transformations and

xβ2 :=

{

xη1 if x ∈ (−∞, m′]
xη2 if x ∈ (m′,∞)

such that η1 : (−∞, m] → (m′, n′] and η2 : (m′,∞) → (−∞, m′), where
m′ < n′ ∈ X , are order-isomorphic transformations.

Next, we show that β1, β2 ∈ 〈O(X), γ1, γ3〉. Let l′ < m′ ∈ X and a′ <
b′ < c′ ∈ X . Since there exists an order-isomorphic transformation between
open intervals, there are two transformations ξ1 : (−∞, m′) → (a′, b′) and
ξ2 : (m′,∞) → (b′, c′) which are order-isomorphic. We define m′ξ1 := b′.
Then we define a transformation θ5 from X to X by

xθ5 :=

{

xξ1 if x ∈ (−∞, m′)
xξ2 if x ∈ [m′,∞).

It is easy to see that θ5 ∈ O(X) by the definitions of transformations ξ1
and ξ2. Let m′ < i′ < h′ < g′ ∈ X . Since there exists an anti-isomorphic
transformation between two open intervals, there are two transformations
µ1 : (a

′, b′) → (m′,−∞) and µ2 : (b
′, c′) → (g′, h′) which are anti-isomorphic.
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We define b′µ2 := g′. Then we define a transformation ρ1 from X to X by

xρ1 :=















m′ if x ∈ (−∞, a′]
xµ1 if x ∈ (a′, b′)
xµ2 if x ∈ [b′, c′)
i′ if x ∈ (c′,∞).

It is clear that ρ1 ∈ OR(X) \ O′(X). Indeed, let us put A1 := (−∞, b′) and
A2 := [b′,∞) for some b′ ∈ X . So A1ρ1 = {m′} ∪ (−∞, m′) > (g′, h′) ∪ {i}
and xρ1 ≥ yρ1 whenever x < y ∈ A1 or x < y ∈ A2. By the same argument,
there are two transformations ζ1 : (−∞, m′) → (∞, m′) and ζ2 : (h′, g′) →
(m′, l′) which are anti-isomorphic. We define g′ζ2 := l′. Then we define a
transformation δ1 from X to X by

xδ1 :=















xζ1 if x ∈ (−∞, m′)
m′ if x ∈ [m′, h′]
xζ2 if x ∈ (h′, g′]
l′ if x ∈ (g′,∞).

It is easy to see that δ1 ∈ O′(X) by the definitions of transformations of ζ1 and
ζ2. Now, we show that β1 ∈ 〈O(X), γ1, γ3〉. So, we have (−∞, m′)θ1ρ1δ1 =
(a′, b′)ρ1δ1 = (−∞, m′)δ1 = (m′,∞) = (−∞, m′)β1 and we have [m′,∞)θ1ρ1δ1 =
[b′, c′)ρ1δ1 = (h, g′]δ1 = (l, m′) = [m′,∞)β1, i.e., β1 = θ5ρ1δ1. Since ρ1 ∈
OR(X) \ O′(X) ⊆ OR(X) = 〈O(X), γ1, γ3〉, there are θ6, θ7 ∈ O(X) such
that ρ1 = θ6γ1θ7. Since δ1 ∈ O

′

(X) = 〈O(X), γ3〉, there exists θ8 ∈ O(X)
such that δ1 = γ3θ8.

Therefore, β1 = θ5ρ1δ1 = θ5θ6γ1θ7γ3θ8 = θ′1γ1θ4γ3θ5, where θ′1 = θ5θ6 ∈
O(X); i.e., β1 ∈ 〈O(X), γ1, γ3〉. We can show similarly to obtain that
β2 ∈ 〈O(X), γ1, γ3〉. So, we have α ∈ OP(X) \ O(X) ∈ 〈O(X), β1, β2〉 ⊆
〈O(X), γ1, γ3〉.

Altogether, we obtain OPR(X) = 〈O(X), γ1, γ3〉; i.e., rank(OPR(X) :
O(X)) ≤ 2.

Theorem 2.8. Let X be an infinite linearly densely ordered set that has
neither a minimum element nor a maximum element, and for any decom-
position X = X1 ∪ X2 with X1 < X2 holds X1 has maximum element
or X2 has minimum element. If there exist order-isomorphic transforma-
tion and anti-isomorphic transformation between two open intervals, then
rank(OPR(X) : O(X)) ≥ 2.

Proof. Let X be an infinite linearly densely ordered set that has neither
a minimum element nor a maximum element, and for any decomposition
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X = X1 ∪X2 with X1 < X2 such that X1 has maximum element or X2 has
minimum element.

Suppose that A ⊆ OPR(X) \ O(X) with 〈O(X), A〉 = OPR(X). Let
P (X) be the power set of X . Let B be the set of all sets B′ that there is
no u ∈ X such that u > B′ and let C be the set of all sets C ′ that there is
no v ∈ X such that v < C ′. Let a′, a, b ∈ X with a < b ∈ X . Since there
exists anti-isomorphic transformation between two-open intervals, there are
θ′ : (−∞, a′) → (b, a) and θ′′ : (a′,∞) → (∞, b) which are anti-isomorphic.
We define a′θ′ := a. Then we define a transormation β from X to X by

xβ :=

{

xθ′ if x ∈ (−∞, a′]
xθ′′ if x ∈ (a′,∞).

Clearly, β is an injective transformation by the definition of transfor-
mation of θ′ and θ′′. Next, we will show that β ∈ OR(X) \ O′(X). Let
[β]1 = (−∞, a′] and [β]2 = (a′,∞). It is easy to see that [β]1β < [β]2β
and y1β ≥ y2β for all y1, y2 ∈ [β]1 and y1, y2 ∈ [β]2 because θ′ and θ′′ are
anti-isomorphic. Therefore, β ∈ OR(X) \ O

′

(X).
Since β ∈ OR(X) \ O′(X) ⊆ OPR(X) = 〈O(X), A〉, there are

α1, α2, . . . , αk ∈ O(X) ∪ A, where k ∈ N such that β = α1α2 · · ·αk. Assume
there is no j ∈ {1, 2, . . . , k} with im(αj |Y ) ∈ B for some Y ∈ P (X) \ B.
Since (a′, b′) ∈ P (X)\B, where a′ < b′, we have (a′, b′)α1α2 · · ·αk /∈ B which
contradicts (a′, b′)β ∈ B. So there is j ∈ {1, 2, . . . , k} with im(αj |Y ) ∈ B for
some Y ∈ P (X) \B. It is clear that αj /∈ O(X). Then there is αB ∈ A with
im(αB|Y ) ∈ B for some Y ∈ P (X) \B.

Assume there is no p ∈ {1, 2, . . . , k} with im(αp|Y ) ∈ B ∪ C for some
Y ∈ P (X) \ (B ∪ C). Since (a′, b′) ∈ P (X) \ B, where a′ < b′, we have
(a′, b′)α1α2 · · ·αk /∈ B ∪ C, i.e. (a′, b′)α1α2 · · ·αk /∈ B that is a contradiction
with (a′, b′)β ∈ B. So there is p ∈ {1, 2, . . . , k} with im(αp|Y ) ∈ B ∪ C for
some Y ∈ P (X) \ (B ∪ C). It is clearly that αp /∈ O(X). Then there is
αB∪C ∈ A with im(αB∪C |Y ) ∈ B ∪ C for some Y ∈ P (X) \ (B ∪ C).

Let c′, c, d ∈ X with c < d. Since there exists an anti-isomorphic
transformation between two open intervals, there are two transformations
ν ′ : (−∞, c′) → (c,−∞) and ν ′′ : (c′,∞) → (d, c) which are anti-isomorphic.
We define c′ν ′ := d. Then we define a transformation β from X to X by

xξ :=

{

xν ′ if x ∈ (−∞, c′)
xν ′′ if x ∈ [c′,∞).

Clearly, ξ is an injective transformation by the definitions of transforma-
tions ν ′ and ν ′′. Therefore, we can show similarly as a transformation β and
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we have ξ ∈ OR(X) \ O′(X). Since ξ ∈ OR(X) \ O′(X) ⊆ OPR(X) =
〈O(X), A〉, there are γ1, γ2, . . . , γl, where l ∈ N such that ξ = γ1γ2 · · · γl.
Assume there is no q ∈ {1, 2, . . . , l} with im(γq|Y ) ∈ C for some Y ∈ P \ C.
Since (k, c′) ∈ P (X) \ C, where k < c′, we have (k, c′)γ1γ2 · · · γl /∈ C which
contradicts (k, c′)ξ ∈ C. So there is q ∈ {1, 2, . . . , l} with im(γq|Y ) ∈ C for
some Y ∈ P (X) \ C. It is clear that γp /∈ O(X). Then there is γC ∈ A with
im(γC |Y ) ∈ C for some Y ∈ P (X) \ C.

Next, we assume that αB = αB∪C = γC . Then there is αB∪C ∈ A
with im(αB∪C |Y ) ∈ B ∪ C for some Y ∈ P (X) \ (B ∪ C). Since αB ∈
OPR(X) \ O(X), there is a decomposition X = [αB]1 ∪ [αB]2 with [αB]1 <
[αB]2 which satisfies the definition of orientation-preserving or orientation-
reversing transformation. We consider two cases:
Case 1. im(αB∪C |Y ) ∈ B, i.e. Y αB∪C ∈ B. Since there is M ∈ P (X) \ C
such that MγC ∈ C and αB∪C = γC , we have MαB∪C ∈ C. We consider the
following cases:

Case 1.1. Y ⊆ [αB]1. So, we consider two subcases:
Case 1.1.1. αB∪C |Y is order-preserving. We consider again two pos-

sibilities:
(a) M ⊆ [αB]1. That is Y ∪M ⊆ [αB]1 and αB∪C |Y ∪M is order-

preserving because αB∪C |Y is order-preserving. Since Y ∈ P (X) \ (B ∪ C),
there is k ∈ X such that k > Y . Therefore, k ∈ [αB]1 or k ∈ [αB]2. If
k ∈ [αB]1, then kαB∪C ≥ Y αB∪C contradicting Y αB∪C ∈ B. If k ∈ [αB]2,
then (Y ∪M)αB∪C > kαB∪C ; i.e., MαB∪C > kαB∪C contradicting MαB∪C ∈
C. Combining, αB∪C /∈ OPR(X) \ O(X) which is a contradiction since
αB∪C ∈ A ⊆ OPR(X) \ O(X).

(b) M ⊆ [αB]2. Then Y < M . Since Y ∈ P (X) \ (B ∪ C) with
Y αB∪C ∈ B, M ∈ P (X) \ C with MαB∪C ∈ C and all decompositions
X = X1 ∪ X2 with X1 < X2 such that X1 has a maximum element or X2

has a minimum element, there is k′ ∈ X such that Y < k′ < M . Therefore,
k′ ∈ [αB]1 or k′ ∈ [αB]2. If k′ ∈ [αB]1, then Y αB∪C ≤ k′αB∪C contra-
dicting Y αB∪C ∈ B. If k′ ∈ [αB]2, then k′αB∪C ≤ MαB∪C contradicting
MαB∪C ∈ C. As a result, αB∪C /∈ OPR(X) \O(X) which is a contradiction
since αB∪C ∈ A ⊆ OPR(X) \ O(X).

Case 1.1.2. αB∪C |Y is order-reversing. Since Y ⊆ [αB]1, we have
Y αB∪C < A2αB∪C contradicting Y αB∪C ∈ B; that is, αB∪C /∈ OPR(X) \
O(X) which is a contradiction because αB∪C ∈ A ⊆ OPR(X) \ O(X).

Case 1.2. Y ⊆ [αB]2. We consider two subcases:
Case 1.2.1. αB∪C |Y is order-preserving. Since Y ⊆ [αB]2, [αB]1αB∪C >

Y αB∪C contradicting Y αB∪C ∈ B; that is, αB∪C /∈ OPR(X) \ O(X) which
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is a contradiction because αB∪C ∈ A ⊆ OPR(X) \ O(X).
Case 1.2.2 αB∪C |Y is order-reversing. So, we will consider again two

possibilities:
(a) M ⊆ [αB]1. Then M < Y . Since Y ∈ P (X) \ (B ∪ C)

with Y αB∪C ∈ B, M ∈ P (X) \ C with MαB∪C ∈ C and all decomposi-
tions X = X1 ∪ X2 with X1 < X2 such that X1 has a maximum element
or X2 has a minimum element, there is g ∈ X such that M < g < Y .
Therefore, g ∈ [αB]1 or g ∈ [αB]2. If g ∈ [αB]1, then MαB∪C ≥ gαB∪C

contradicting MαB∪C ∈ C. If g ∈ [αB]2, then gαB∪C ≥ Y αB∪C contradicting
Y αB∪C ∈ B. Altogether, αB∪C /∈ OPR(X) \ O(X) that is a contradiction
since αB∪C ∈ A ⊆ OPR(X) \ O(X).

(b) M ⊆ [αB]2. That is Y ∪M ⊆ [αB]2 and αB∪C |Y ∪M is order-
reversing bcause αB∪C |Y is order-reversing. Since Y ∈ P (X) \ (B ∪ C),
there is g′ ∈ X such that g′ < Y . Therefore, g′ ∈ [αB]1 or g′ ∈ [αB]2. If
g′ ∈ [αB]1, then g′αB∪C < (Y ∪ M)αB∪C ; i.e., g

′αB∪C < MαB∪C contra-
dicting MαB∪C ∈ C. If g′ ∈ [αB]2, then g′αB∪C ≥ Y αB∪C , contradicting
Y αB∪C ∈ B. Consequently, αB∪C /∈ OPR(X) \ O(X) which is a contradic-
tion since αB∪C ∈ A ⊆ OPR(X) \ O(X).

Case 1.3. Y = Y1 ∪ Y2 such that Y1 ⊆ [αB]1 and Y2 ⊆ [αB]2 with Y1 6= ∅
and Y2 6= ∅. So, we will consider the following subcases:

Case 1.3.1. αB∪C |Y is order-preserving, i.e. αB∪C |Y2
is order-preserving

and Y2αB∪C ∈ B. Therefore, [αB]1αB∪C > Y2αB∪C which contradicts Y2αB∪C ∈
B.

Case 1.3.2. αB∪C |Y is order-reversing; i.e., αB∪C |Y1
is order-reversing

and Y1αB∪C ∈ B. Therefore, [αB]2αB∪C > Y1αB∪C which contradicts Y1αB∪C ∈
B.
Case 2. im(αB∪C |Y ) ∈ C, i.e. Y αB∪C ∈ C. Since there is N ∈ P (X) \ B
such that NαB ∈ B and αB = αB∪C , we have NαB∪C ∈ B. The rest of the
proof of this case is similar to Case 1.

From both cases, we can conclude that αB 6= αB∪C or αB∪C 6= γC , i.e. A
contains at least two element. Therefore, rank(OPR(X) : O(X)) ≥ 2.

By Theorems 2.7 and 2.8, we obtain the following corollary.

Corollary 2.9. rank(OPR(X) : O(X)) = 2.

Example 2.10. Let X ∈ {Q,R}. Since Q and R are infinite linearly densely
ordered sets that have neither a minimal nor a maximal element and, for any
decomposition X = X1 ∪X2 with X1 < X2, X1 has maximal element or X2

has minimal element, we have rank(OPR(X) : O(X)) = 2.
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