# Extending Fibonacci's Method for Computing Pythagorean Triples 

Darien DeWolf ${ }^{1}$, Balakrishnan Viswanathan ${ }^{2}$<br>${ }^{1}$ Department of Mathematics and Computer Science Brandon University Brandon, MB, Canada<br>${ }^{2}$ Quest University Canada<br>Squamish, BC, Canada

email: DeWolfD@BrandonU.ca, Balakrishnan.Viswanathan@QuestU.ca
(Received November 12, 2021, Accepted December 13, 2021)


#### Abstract

In this paper, we extend Fibonacci's method for computing Pythagorean triples of the form $(x, y, y+1)$ to compute Pythagorean triples of the form ( $x, y, y+\ell$ ) in three ways. Each of these three constructions exploits a certain relationship between $x$ and $\ell$ which must be true of any Pythagorean triple. Constructions 1 and 2 provide new proofs of already known formulae, whereas Construction 3 provides a novel method of computing Pythagorean triples.


## 1 Introduction

A Pythagorean triple is a triple $(x, y, z)$ of natural numbers satisfying

$$
x^{2}+y^{2}=z^{2} .
$$

Fibonacci's method [7] of computing Pythagorean triples is based on the series expansion of a perfect square and is briefly summarized: the square of $y$ is the sum of the first $y$ odd numbers $\left(y^{2}=\sum_{i=1}^{y}(2 i-1)\right)$. Therefore, addition

Key words and phrases: Pythagorean triples, Fibonacci's method.
AMS (MOS) Subject Classifications: 11A41, 11A51.
ISSN 1814-0432, 2022, http://ijmcs.future-in-tech.net
of the next odd number $2 y+1$ results in the next perfect square $(y+1)^{2}=$ $\sum_{i=1}^{y+1}(2 i-1)$. Hence, it is easy to generate triples of the form $(x, y, y+1)$ since $x^{2}=(y+1)^{2}-y^{2}=2 y+1$, leading to $y=\frac{x^{2}-1}{2}$. Fibonacci's method was recently studied by Amato [1] in the special case that $y$ is odd. Herein, we extend Fibonacci's method to the general triple $(x, y, z)=(x, y, y+\ell)$ (Fibonacci's method corresponds to the case $\ell=1$ ). We can rewrite the Pythagorean equation as

$$
x^{2}=z^{2}-y^{2}=(z+y)(z-y)=((y+\ell)+y)((y+\ell)-y)=(2 y+\ell) \ell .
$$

From $x^{2}=(2 y+\ell) \ell$, we immediately derive a proposition.
Proposition 1.1. If $(x, y, y+\ell)$ is a Pythagorean triple, then

1. $x>\ell$,
2. $x \equiv \ell(\bmod 2)-i . e ., x=\ell+2 p$ for some $p \in \mathbb{N}$,
3. $\frac{x^{2}}{\ell}>\ell$, and
4. $\frac{x^{2}}{\ell} \equiv \ell(\bmod 2)$.

This proposition is used to construct natural solutions to the Pythagorean equation of the form $(x, y, y+\ell)$ via three constructions:

1. The $(a, b, c)$ method depends on factoring $\ell$.
2. The $(\ell, p)$ method depends on $x$ having the same parity as $\ell$.
3. The $(\ell, q)$ method depends on $x^{2} / \ell$ having the same parity as $\ell$.

Constructions 1 and 2 are shown to provide new proofs of techniques known already to be complete, whereas Construction 3 provides a novel approach to computing Pythagorean triples.

## 2 Construction 1: The ( $a, b, c$ ) Method

Suppose that $(x, y, z)=(x, y, y+\ell)$ is a Pythagorean triple. The $(a, b, c)$ method generates $(x, y, z)$ by writing $\ell=a^{2} b$ as a product of paired and unpaired factors. Since $x^{2}$ is a perfect square and

$$
x^{2}=(2 y+\ell) \ell=(2 y+\ell) a^{2} b
$$

$2 y+\ell$ must have $b$ as a factor and $\frac{2 y+\ell}{b}=c^{2}$ is a perfect square; that is, $2 y+\ell=b c^{2}$. This factorization immediately gives

$$
x=\sqrt{(2 y+\ell) \ell}=\sqrt{\left(b c^{2}\right)\left(a^{2} b\right)}=a b c
$$

and

$$
y=\frac{b c^{2}-\ell}{2}=\frac{b c^{2}-a^{2} b}{2}=\frac{\left(c^{2}-a^{2}\right) b}{2}
$$

Finally, we complete the Pythagorean triple by computing

$$
z=y+\ell=\frac{\left(c^{2}-a^{2}\right) b}{2}+a^{2} b=\frac{\left(c^{2}+a^{2}\right) b}{2}
$$

The Pythagorean triples are expressed as

$$
(x, y, z)=\left(a b c, \frac{\left(c^{2}-a^{2}\right) b}{2}, \frac{\left(c^{2}+a^{2}\right) b}{2}\right)
$$

This argument culminates in our first construction.
Construction 1. Suppose $\ell=a^{2} b$ and $(b, c)$ satisfies $c>a$ and either

1. $b$ is even, or
2. $a \equiv c(\bmod 2)$.

Then

$$
(x, y, z)=\left(a b c, \frac{\left(c^{2}-a^{2}\right) b}{2}, \frac{\left(c^{2}+a^{2}\right) b}{2}\right)
$$

is a Pythagorean triple.

Construction 1 generates any multiple of the primitive triangles given by Euclid's formula [4, Book X, Lemma 1], which we would call the ( $a, c$ ) method. Euclid's ( $a, c$ ) method is known to be complete for primitives and is non-repeating (see [5, Appendix B] or [9, Theorem 2]). Our ( $a, b, c$ ) method is complete as it generates all $b$-multiples of the primitives. This provides a new proof that Euclid's formula can be extended to all triples, which is already known in the literature $[6,3]$.

## 3 Construction 2: The ( $\ell, p$ ) Method

Suppose that $(x, y, z)=(x, y, y+\ell)$ is a Pythagorean triple. The $(\ell, p)$ method generates $(x, y, z)$ by explicitly exploiting the fact that $x$ must have the same parity as $\ell$. That is, $x=\ell+2 p$ for some natural $p$ and $x^{2}=$ $\ell^{2}+4 \ell p+4 p^{2}$. Solving the equation

$$
(2 y+\ell) \ell=x^{2}=(\ell+2 p)^{2}=\ell^{2}+4 p \ell+4 p^{2}
$$

for $y$ gives

$$
y=2 p+\frac{2 p^{2}}{\ell}
$$

and

$$
z=y+\ell=\ell+2 p+\frac{2 p^{2}}{\ell} .
$$

This argument culminates in our second construction.
Construction 2. Given $\ell$, suppose that $p \in \mathbb{N}$ satisfies $\frac{2 p^{2}}{\ell} \in \mathbb{N}$. Then

$$
(x, y, z)=\left(\ell+2 p, 2 p+\frac{2 p^{2}}{\ell}, \ell+2 p+\frac{2 p^{2}}{\ell}\right)
$$

is a Pythagorean triple.
Proposition 3.1. Construction 2 is complete.
Proof. Suppose that $(x, y, z)=(x, y, y+\ell)$ is any Pythagorean triple and set $p=\frac{x-\ell}{2}$, which is positive by Proposition 1.1(1). By Proposition 1.1(2), $x$ and $\ell$ have the same parity; that is, the difference $x-\ell$ is even and $p=\frac{x-\ell}{2}$ is natural. This choice of $p$ therefore generates the Pythagorean triple $(x, y, z)$ as described in Construction 2 since $x=\ell+2 p$.

Relationship to Dickson's Solution Dickson [2] generated Pythagorean triples for any pair $(\ell, m) \in \mathbb{N}$ by the formula

$$
(x, y, z)=(l+\sqrt{2 m \ell}, m+\sqrt{2 m \ell}, l+m+\sqrt{2 m \ell})
$$

When substituting $m=\frac{2 p^{2}}{\ell}$, our natural solutions then coincide with Dickson's. Pythagorean triples using Dickson's formula are irrational except when $2 m l$ is a perfect square. Our equation provides only rational solutions; natural solutions are obtained when $\frac{2 p^{2}}{\ell}$ is a natural number (i.e., $2 p^{2}$ is a natural multiple of $\ell$ ). This provides, then, an alternative proof that Dickson's method is complete than to what is currently found in the literature [8].

## 4 Construction 3: The $(\ell, q)$ Method

Suppose that $(x, y, z)$ is a Pythagorean triple. The $(\ell, q)$ method depends on explicitly constraining $x^{2} / \ell$ to the same parity as $\ell$. By Proposition 1.1, $x$ and $\ell$ have the same parity. Therefore, $x=\ell+2 p$ for some $p \in \mathbb{N}$ and $x^{2}=(\ell+2 p)^{2}$. Further, $x^{2} / \ell$ and $\ell$ have the same parity. This means that for odd $\ell, x^{2}=(2 q-1) \ell$ for some $q$, and for even $\ell, x^{2}=2 q \ell$ for some $q$.

Therefore, for odd $\ell$, the equation $x^{2}-x^{2}=0$ becomes

$$
(\ell+2 p)^{2}-(2 q-1) \ell=4 p^{2}+4 p \ell+\ell^{2}-(2 q-1) \ell=0
$$

and has solutions

$$
\begin{aligned}
p & =\frac{-4 \ell+\sqrt{16 \ell^{2}-16\left(\ell^{2}-(2 q-1) \ell\right)}}{8} \\
& =\frac{-\ell+\sqrt{\ell^{2}-\left(\ell^{2}-(2 q-1) \ell\right)}}{2} \\
& =\frac{-\ell+\sqrt{(2 q-1) \ell}}{2}
\end{aligned}
$$

All $q>\frac{\ell+1}{2}$ such that $(2 q-1) \ell$ is a perfect square yield triples

$$
(x, y, z)=\left(\sqrt{(2 q-1) \ell}, q-\frac{\ell+1}{2}, q+\frac{\ell-1}{2}\right)
$$

Analogously, for even $\ell$, the equation

$$
(\ell+2 p)^{2}-2 q \ell=4 p^{2}+4 p \ell+\ell^{2}-2 q \ell=0
$$

has solutions

$$
p=\frac{-4 \ell+\sqrt{16 \ell^{2}-16\left(\ell^{2}-2 q \ell\right)}}{8}=\frac{-\ell+\sqrt{\ell^{2}-\left(\ell^{2}-2 q \ell\right)}}{2}=\frac{-\ell+\sqrt{2 q \ell}}{2}
$$

All $q>\frac{\ell}{2}$ such that $2 q \ell$ is a perfect square yield triples

$$
(x, y, z)=\left(\sqrt{2 q \ell}, q-\frac{\ell}{2}, q+\frac{\ell}{2}\right)
$$

This argument culminates in our third construction.
Construction 3. Given $\ell$, suppose that $q \in \mathbb{N}$ satisfies $q>\frac{\ell+1}{2}$ and either

1. $x^{2}=(2 q-1) \ell$ if $\ell$ is odd, or
2. $x^{2}=2 q \ell$ if $\ell$ is even.

Then

$$
(x, y, z)=\left(\sqrt{(2 q-1) \ell}, q-\frac{\ell+1}{2}, q+\frac{\ell-1}{2}\right)
$$

is a Pythagorean triple if $\ell$ is odd and

$$
(x, y, z)=\left(\sqrt{2 q \ell}, q-\frac{\ell}{2}, q+\frac{\ell}{2}\right)
$$

is a Pythagorean triple if $\ell$ is even.
Corollary 4.1. Given $\ell$, there is a family of Pythagorean triples $(x, y, z)$ indexed by $m>\ell$ satisfying $m \equiv \ell(\bmod 2)$.

Proof. Let

$$
m=\left\{\begin{array}{lll}
2 q & \ell \equiv 0 & (\bmod 2) \\
2 q-1 & \ell \equiv 1 & (\bmod 2)
\end{array}\right.
$$

Then, since $m=\ell+2 y$ and by Construction 3, there is a Pythagorean triple

$$
(x, y, z)=\left(\sqrt{m \ell}, \frac{m-\ell}{2}, \frac{m+\ell}{2}\right)
$$

Note When $m$ and $\ell$ are both perfect squares, the technique outlined in the argument of Construction 3 yields Euclid's solution [4].

Proposition 4.2. Construction 3 is complete.
Proof. Suppose that $(x, y, z)=(x, y, y+\ell)$ is any Pythagorean triple. If $\ell$ is even, set

$$
q=\frac{x^{2}}{2 \ell}=\frac{(2 y+\ell) \ell}{2 \ell}=\frac{2 y+\ell}{2}
$$

which is natural since $2 y+\ell$ is even. If $\ell$ is odd, set

$$
q=\frac{x^{2}+\ell}{2 \ell}=\frac{(2 y+\ell) \ell+\ell}{2 \ell}=\frac{2 y+\ell+1}{2}
$$

In both cases, $q>\frac{\ell+1}{2}, q$ satisfies the parity-appropriate condition (1) or (2) in Construction 3. Therefore, the Pythagorean triple ( $x, y, z$ ) can be constructed from $q$.

Extending Fibonacci's Method...

Acknowledgment. The first author is supported by the Brandon University Research Council.

## References

[1] R. Amato, "A note on Pythagorean Triples", International Journal of Mathematics and Computer Science, 15, no. 2, (2020), 485-490.
[2] L. E. Dickson, "Lowest Integers Representing Sides of a Right Triangle", The American Mathematical Monthly 1, (1894), no. 1, 6-11.
[3] -, "History of the Theory of Numbers, Volume II: Diophantine Analysis", Chelsea Publishing Company, 1920, 165.
[4] Euclid, Elements.
[5] E. Maor, The Pythagorean Theorem: A 4,000-Year History, Princeton University Press, 2007.
[6] A. Overmars, L. Ntogramatzidis, S. Venkatraman, "A new approach to generate all Pythagorean triples", AIMS Mathematics, 4, (2019), 242253.
[7] L. Pisano, Liber quadratorum, 1225.
[8] J. Rukavicka, "Dickson's Method for Generating Pythagorean Triples Revisited", European Journal of Pure and Applied Mathematics, 6, no. 3, (2017), 363-364.
[9] W. Sierpiński, Pythagorean Triples, Reprint, Dover, 2003.

