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Abstract

In this paper, we deal with the concept of almost quasi (Λ, sp)-
continuous multifunctions. In particular, we investigate some charac-
terizations of almost quasi (Λ, sp)-continuous multifunctions.

1 Introduction

The concept of quasi continuous functions was first introduced by Marcus
[5]. Popa [8] introduced and studied the notion of almost quasi continuous
functions. Bânzaru and Crivăţ [3] introduced and investigated the notion of
quasi continuous multifunctions. Popa and Noiri [7] introduced the concept
of almost quasi continuous multifunctions and investigated some characteri-
zations of such multifunctions. Noiri and Hatir [6] introduced the notions of
Λsp-closed sets and spg-closed sets and investigated some properties of Λsp-
closed sets and spg-closed sets. By considering the notion of Λsp-sets, Boon-
pok [2] introduced and investigated (Λ, sp)-closed sets, (Λ, sp)-open sets and
(Λ, sp)-closure operators. The purpose of the present paper is to introduce
the notion of almost quasi (Λ, sp)-continuous multifunctions. Moreover, we
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discuss several characterizations and some basic properties of almost quasi
(Λ, sp)-continuous multifunctions.

2 Preliminaries

Throughout this paper, unless explicitly stated, spaces (X, τ) and (Y, σ)
(or simply X and Y ) always mean topological spaces on which no sep-
aration axioms are assumed. Let A be a subset of a topological space
(X, τ). The closure of A and the interior of A are denoted by Cl(A) and
Int(A), respectively. A subset A of a topological space (X, τ) is said to
be β-open [1] if A ⊆ Cl(Int(Cl(A))). The complement of a β-open set
is called β-closed. The family of all β-open sets of a topological space
(X, τ) is denoted by β(X, τ). A subset Λsp(A) [6] is defined as follows:
Λsp(A) = ∩{U | A ⊆ U, U ∈ β(X, τ)}. If A = Λsp(A), then A is called
a Λsp-set [6]. A subset A of a topological space (X, τ) is called (Λ, sp)-closed
[2] if A = T ∩ C, where T is a Λsp-set and C is a β-closed set. The com-
plement of a (Λ, sp)-closed set is called (Λ, sp)-open. Let A be a subset of
a topological space (X, τ). A point x ∈ X is called a (Λ, sp)-cluster point
[2] of A if A ∩ U 6= ∅ for every (Λ, sp)-open set U of X containing x. The
set of all (Λ, sp)-cluster points of A is called the (Λ, sp)-closure [2] of A and
is denoted by A(Λ,sp). The union of all (Λ, sp)-open sets contained in A is
called the (Λ, sp)-interior [2] of A and is denoted by A(Λ,sp). A subset A of
a topological space (X, τ) is said to be s(Λ, sp)-open (resp. p(Λ, sp)-open,
β(Λ, sp)-open, r(Λ, sp)-open) if A ⊆ [A(Λ,sp)]

(Λ,sp) (resp. A ⊆ [A(Λ,sp)](Λ,sp),
A ⊆ [[A(Λ,sp)](Λ,sp)]

(Λ,sp), A = [A(Λ,sp)](Λ,sp)) [2]. The complement of a s(Λ, sp)-
open (resp. p(Λ, sp)-open, β(Λ, sp)-open, r(Λ, sp)-open) set is said to be
s(Λ, sp)-closed (resp. p(Λ, sp)-closed, β(Λ, sp)-closed, r(Λ, sp)-closed). The
intersection of all s(Λ, sp)-closed sets containing A is called the s(Λ, sp)-
closure of A and is denoted by As(Λ,sp). The union of all s(Λ, sp)-open sets
contained in A is called the s(Λ, sp)-interior of A and is denoted by As(Λ,sp).
By a multifunction F : (X, τ) → (Y, σ), following [4], we shall denote the up-
per and lower inverse of a set B of Y by F+(B) and F−(B), respectively, that
is, F+(B) = {x ∈ X | F (x) ⊆ B} and F−(B) = {x ∈ X | F (x) ∩ B 6= ∅}.
In particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y and for
each A ⊆ X , F (A) = ∪x∈AF (x). Let P(Y ) be the collection of all nonempty
subsets of Y . For any (Λ, sp)-open set V of a topological space (Y, σ), we
denote V + = {B ∈ P(Y ) | B ⊆ V } and V − = {B ∈ P(Y ) | B ∩ V 6= ∅}.
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3 Characterizations

We begin this section by introducing the concept of almost quasi (Λ, sp)-
continuous multifunctions.

Definition 3.1. A multifunction F : (X, τ) → (Y, σ, ) is said to be almost
quasi (Λ, sp)-continuous at a point x ∈ X if for any (Λ, sp)-open sets V1, V2

of Y such that F (x) ∈ V +
1 ∩ V −

2 and each open set U containing x, there

exists a nonempty (Λ, sp)-open set G of X such that G ⊆ U , F (G) ⊆ V
s(Λ,sp)
1

and F (z)∩V
s(Λ,sp)
2 6= ∅ for every z ∈ G. A multifunction F : (X, τ) → (Y, σ)

is said to be almost quasi (Λ, sp)-continuous if F is almost quasi (Λ, sp)-
continuous at each point of X.

Lemma 3.2. For a subset A of a topological space (X, τ), the following prop-
erties hold:

(1) As(Λ,sp) = A ∪ [A(Λ,sp)](Λ,sp).

(2) As(Λ,sp) = A ∩ [A(Λ,sp)]
(Λ,sp).

Theorem 3.3. For a multifunction F : (X, τ) → (Y, σ), the following prop-
erties are equivalent:

(1) F is almost quasi (Λ, sp)-continuous;

(2) for each x ∈ X and every (Λ, sp)-open sets V1, V2 of Y such that F (x) ∈
V +
1 ∩V −

2 , there exists a s(Λ, sp)-open set U of X containing x such that

F (U) ⊆ V
s(Λ,sp)
1 and F (z) ∩ V

s(Λ,sp)
2 6= ∅ for every z ∈ U ;

(3) F+(V1) ∩ F−(V2) is s(Λ, sp)-open in X for every r(Λ, sp)-open sets
V1, V2 of Y ;

(4) F+(V1)∩F−(V2) ⊆ [F+(V
s(Λ,sp)
1 )∩F−(V

s(Λ,sp)
2 )]s(Λ,sp) for every (Λ, sp)-

open sets V1, V2 of Y ;

(5)

[F−([[B
(Λ,sp)
1 ](Λ,sp)]

(Λ,sp)) ∪ F+([[B
(Λ,sp)
2 ](Λ,sp))]

(Λ,sp))]s(Λ,sp)

⊆ F−(B
(Λ,sp)
1 ) ∪ F+(B

(Λ,sp)
2 )

for every subsets B1, B2 of Y ;
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(6) F+(V1) ∩ F−(V2) ⊆ [[F+(V
s(Λ,sp)
1 ) ∩ F−(V

s(Λ,sp)
2 )](Λ,sp)]

(Λ,sp) for every
(Λ, sp)-open sets V1, V2 of Y .

Proof. (1) ⇒ (2): Let U(x) the family of all (Λ, sp)-open sets ofX containing
x. Let V1, V2 be any (Λ, sp)-open sets of Y such that F (x) ∈ V +

1 ∩ V −

2 . For
each H ∈ U(x), there exists a nonempty (Λ, sp)-open set GH such that

GH ⊆ H , F (GH) ⊆ V
s(Λ,sp)
1 and F (y) ∩ V

s(Λ,sp)
2 6= ∅ for every y ∈ GH .

Let W = ∪{GH | H ∈ U(x)}. Then, W is (Λ, sp)-open in X , x ∈ W (Λ,sp),

F (W ) ⊆ V
s(Λ,sp)
1 and F (w)∩V s(Λ,sp)

2 6= ∅ for every w ∈ W . Put U = W ∪{x},
then W ⊆ U ⊆ W (Λ,sp). Thus, U is a s(Λ, sp)-open set of X containing x

such that F (U) ⊆ V
s(Λ,sp)
1 and F (z) ∩ V

s(Λ,sp)
2 6= ∅ for every z ∈ U .

(2) ⇒ (3): Let V1, V2 be any r(Λ, sp)-open sets of Y and let

x ∈ F+(V1) ∩ F−(V2).

Then, F (x) ∈ V +
1 ∩V −

2 and there exists a s(Λ, sp)-open set U ofX containing
x such that F (U) ⊆ V1 and F (z) ∩ V2 6= ∅ for every z ∈ U . Therefore,
x ∈ U ⊆ F+(V1) ∩ F−(V2) and hence x ∈ [F+(V1) ∩ F−(V2)s(Λ,sp). Thus,
F+(V1)∩F

−(V2) ⊆ [F+(V1)∩F
−(V2)]s(Λ,sp). This shows that F

+(V1)∩F
−(V2)

is s(Λ, sp)-open in X .
(3) ⇒ (4): Let V1, V2 be any (Λ, sp)-open sets of Y such that

x ∈ F+(V1) ∩ F−(V2).

Then, F (x) ⊆ V1 ⊆ V
s(Λ,sp)
1 and ∅ 6= F (x) ∩ V2 ⊆ F (x) ∩ V

s(Λ,sp)
2 . Thus,

x ∈ F+(V
s(Λ,sp)
1 ) and x ∈ F−(V

s(Λ,sp)
2 ). By Lemma 3.2, V

s(Λ,sp)
1 and V

s(Λ,sp)
2

are r(Λ, sp)-open sets and by (3), F+(V
s(Λ,sp)
1 )∩F−(V

s(Λ,sp)
2 ) is s(Λ, sp)-open

in X and x ∈ [F+(V
s(Λ,sp)
1 ) ∩ F−(V

s(Λ,sp)
2 )]s(Λ,sp). Consequently, we obtain

F+(V1) ∩ F−(V2) ⊆ [F+(V
s(Λ,sp)
1 ) ∩ F−(V

s(Λ,sp)
2 )]s(Λ,sp).

(4) ⇒ (5): Let B1, B2 be any subsets of Y . Then, Y − B
(Λ,sp)
1 and

Y − B
(Λ,sp)
2 are (Λ, sp)-open sets of Y . By (4) and Lemma 3.2,

X − (F−(B
(Λ,sp)
1 ) ∪ F+(B

(Λ,sp)
2 ))

= F+(Y − B
(Λ,sp)
1 ) ∩ F−(Y − B

(Λ,sp)
2 )

⊆ [F+([Y − B
(Λ,sp)
1 ]s(Λ,sp)) ∩ F−([Y −B

(Λ,sp)
2 ]s(Λ,sp))]s(Λ,sp)

= X − [F−([[B
(Λ,sp)
1 ](Λ,sp)]

(Λ,sp)) ∪ F+([[B
(Λ,sp)
2 ](Λ,sp)]

(Λ,sp))]s(Λ,sp)

and hence

[F−([[B
(Λ,sp)
1 ](Λ,sp)]

(Λ,sp)) ∪ F+([[B
(Λ,sp)
2 ](Λ,sp)]

(Λ,sp))]s(Λ,sp)

⊆ F−(B
(Λ,sp)
1 ) ∪ F+(B

(Λ,sp)
2 ).
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(5) ⇒ (6): Let V1, V2 be any (Λ, sp)-open sets of Y . Then, Y −V1 and Y −V2

are (Λ, sp)-closed sets of Y . By (5) and Lemma 3.2, we have

[[F−([[Y − V1](Λ,sp)]
(Λ,sp)) ∪ F+([[Y − V2](Λ,sp)]

(Λ,sp))](Λ,sp)](Λ,sp)

⊆ F−(Y − V1) ∪ F+(Y − V2) = X − (F+(V1) ∩ F−(V2)).

Moreover, we have

[[F−([[Y − V1](Λ,sp)]
(Λ,sp)) ∪ F+([[Y − V2](Λ,sp)]

(Λ,sp))](Λ,sp)](Λ,sp)

= [[F−(Y − [V
(Λ,sp)
1 ](Λ,sp)) ∪ F+(Y − [V

(Λ,sp)
2 ](Λ,sp))]

(Λ,sp)](Λ,sp)

= [[(X − F+(V
s(Λ,sp)
1 )) ∪ (X − F−(V

s(Λ,sp)
2 ))](Λ,sp)](Λ,sp)

= X − [[F+(V
s(Λ,sp)
1 ) ∩ F−(V

s(Λ,sp)
2 )](Λ,sp)]

(Λ,sp).

Thus, F+(V1) ∩ F−(V2) ⊆ [[F+(V
s(Λ,sp)
1 ) ∩ F−(V

s(Λ,sp)
2 )](Λ,sp)]

(Λ,sp).
(6) ⇒ (1): Let x ∈ X and let V1, V2 be any (Λ, sp)-open sets of Y such

that F (x) ∈ V +
1 ∩ V −

2 . By (6), we have

x ∈ F+(V1) ∩ F−(V2) ⊆ [[F+(V
s(Λ,sp)
1 ) ∩ F−(V

s(Λ,sp)
2 )](Λ,sp)]

(Λ,sp),

by Lemma 3.2, x ∈ F+(V1) ∩ F−(V2) ⊆ [F+(V
s(Λ,sp)
1 ) ∩ F−(V

s(Λ,sp)
2 )]s(Λ,sp).

Put U = [F+(V
s(Λ,sp)
1 )∩F−(V

s(Λ,sp)
2 )]s(Λ,sp), then U is an s(Λ, sp)-open set of

X containing x such that F (U) ⊆ V
s(Λ,sp)
1 and F (z) ∩ V

s(Λ,sp)
2 6= ∅ for every

z ∈ U . This shows that F is almost quasi (Λ, sp)-continuous.

Theorem 3.4. For a multifunction F : (X, τ) → (Y, σ), the following prop-
erties are equivalent:

(1) F is almost quasi (Λ, sp)-continuous;

(2) [F−(V1)∪F+(V2)]
s(Λ,sp) ⊆ F−(V

(Λ,sp)
1 )∪F+(V

(Λ,sp)
2 ) for every β(Λ, sp)-

open sets V1, V2 of Y ;

(3) [F−(V1)∪F+(V2)]
s(Λ,sp) ⊆ F−(V

(Λ,sp)
1 )∪F+(V

(Λ,sp)
2 ) for every s(Λ, sp)-

open sets V1, V2 of Y ;

(4) F+(V1) ∩ F−(V2) ⊆ [F+([V
(Λ,sp)
1 ](Λ,sp)) ∩ F−([V

(Λ,sp)
2 ](Λ,sp))]s(Λ,sp) for

every p(Λ, sp)-open sets V1, V2 of Y .

Proof. The proof follows from Theorem 3.3.

Acknowledgment. This research project was partially supported by
Mahasarakham University.



1398 J. Khampakdee, C. Boonpok

References

[1] M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, β-open sets and
β-continuous mappings, Bull. Fac. Assiut Univ., 12, (1983), 77–90.

[2] C. Boonpok, (Λ, sp)-closed sets and related topics in topological spaces,
WSEAS Tran. Math., 19, (2020), 312–322.
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