International Journal of Mathematics and Computer Science, **17**(2022), no. 3, 1369–1373

Almost (Λ, sp) -continuous multifunctions

Jeeranunt Khampakdee, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

email: jeeranunt.k@msu.ac.th, chawalit.b@msu.ac.th

(Received December 24, 2021, Accepted April 20, 2022)

Abstract

Our purpose is to introduce the concept of almost (Λ, sp) -continuous multifunctions. In particular, we investigate some characterizations of almost (Λ, sp) -continuous multifunctions.

1 Introduction

In 1968, Singal and Singal [6] introduced and studied the notion of almost continuous functions. In 1982, Popa [5] extended the concept of almost continuous functions to multifunctions and introduced the notions of upper and lower continuous multifunctions. In 1983, Abd El-Monsef et al. [1] introduced a weak form of open sets called β -open sets. In 2004, Noiri and Hatir [4] defined Λ_{sp} -sets in terms of the concept of β -open sets and investigated the notion of Λ_{sp} -closed sets by using Λ_{sp} -sets. Boonpok [2] introduced the concepts of (Λ, sp)-closed sets and (Λ, sp)-open sets which are defined by utilizing the notions of Λ_{sp} -sets and β -closed sets. The purpose of the present paper is to introduce the notion of almost (Λ, sp)-continuous multifunctions. Moreover, we discuss several characterizations of almost (Λ, sp)-continuous multifunctions.

Key words and phrases: (Λ, sp) -open set, almost (Λ, sp) -continuous multifunction.

AMS (MOS) Subject Classifications: 54C08, 54C60. ISSN 1814-0432, 2022, http://ijmcs.future-in-tech.net

2 Preliminaries

Throughout this paper, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a topological space (X, τ) . The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is called β -open [1] if $A \subseteq Cl(Int(Cl(A)))$. The complement of a β -open set is called β -closed. The family of all β -open sets of a topological space (X, τ) is denoted by $\beta(X, \tau)$. A subset $\Lambda_{sp}(A)$ [4] is defined as follows:

$$\Lambda_{sp}(A) = \cap \{ U \mid A \subseteq U, U \in \beta(X, \tau) \}$$

A subset A of a topological space (X, τ) is called a Λ_{sp} -set [4] if $A = \Lambda_{sp}(A)$. A subset A of a topological space (X, τ) is said to be (Λ, sp) -closed [2] if $A = T \cap C$, where T is a Λ_{sp} -set and C is a β -closed set. The complement of a (Λ, sp) -closed set is called (Λ, sp) -open. Let A be a subset of a topological space (X, τ) . A point $x \in X$ is called a (Λ, sp) -cluster point [2] of A if $A \cap U \neq \emptyset$ for every (Λ, sp) -open set U of X containing x. The set of all (Λ, sp) -cluster points of A is called the (Λ, sp) -closure [2] of A and is denoted by $A^{(\Lambda, sp)}$. The union of all (Λ, sp) -open sets contained in A is called the (Λ, sp) -interior [2] of A and is denoted by $A_{(\Lambda, sp)}$.

By a multifunction $F : (X, \tau) \to (Y, \sigma)$, following [3], we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and

$$F^{-}(B) = \{ x \in X \mid F(x) \cap B \neq \emptyset \}.$$

In particular, $F^{-}(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$ and for each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$. Let $\mathcal{P}(Y)$ be the collection of all nonempty subsets of Y. For any (Λ, sp) -open set V of a topological space (Y, σ) , we denote $V^{+} = \{B \in \mathcal{P}(Y) \mid B \subseteq V\}$ and $V^{-} = \{B \in \mathcal{P}(Y) \mid B \cap V \neq \emptyset\}$.

3 Almost (Λ, sp) -continuous multifunctions

In this section, we introduce the notion of almost (Λ, sp) -continuous multifunctions. Moreover, we discuss several characterizations of almost (Λ, sp) continuous multifunctions.

Definition 3.1. A multifunction $F : (X, \tau) \to (Y, \sigma)$ is said to be almost (Λ, sp) -continuous if, for each $x \in X$ and each (Λ, sp) -open sets V_1, V_2 of Y

1370

Almost (Λ, sp) -continuous multifunctions

such that $F(x) \in V_1^+ \cap V_2^-$, there exists a (Λ, sp) -open set U of X containing x such that $F(U) \subseteq [V_1^{(\Lambda, sp)}]_{(\Lambda, sp)}$ and $F(z) \cap [V_2^{(\Lambda, sp)}]_{(\Lambda, sp)} \neq \emptyset$ for every $z \in U$.

Theorem 3.2. For a multifunction $F : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) F is almost (Λ, sp) -continuous;
- (2) $F^+(V_1) \cap F^-(V_2) \subseteq [F^+([V_1^{(\Lambda,sp)}]_{(\Lambda,sp)}) \cap F^-([V_2^{(\Lambda,sp)}]_{(\Lambda,sp)})]_{(\Lambda,sp)}$ for every (Λ, sp) -open sets V_1, V_2 of Y;
- (3) $[F^{-}([[K_{1}]_{(\Lambda,sp)}]^{(\Lambda,sp)}) \cup F^{+}([[K_{2}]_{(\Lambda,sp)}]^{(\Lambda,sp)})]^{(\Lambda,sp)} \subseteq F^{-}(K_{1}) \cup F^{+}(K_{2})$ for every (Λ, sp) -closed sets K_{1}, K_{2} of Y;

$$[F^{-}([[B_{1}^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}) \cup F^{+}([[B_{2}^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)})]^{(\Lambda,sp)}$$
$$\subseteq F^{-}(B_{1}^{(\Lambda,sp)}) \cup F^{+}(B_{2}^{(\Lambda,sp)})$$

for every subsets B_1, B_2 of Y;

$$F^{+}([B_{1}]_{(\Lambda,sp)}) \cap F^{-}([B_{2}]_{(\Lambda,sp)})$$
$$\subseteq [F^{+}([[B_{1}]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}) \cap F^{-}([[B_{2}]_{(\Lambda,sp)})]^{(\Lambda,sp)}]_{(\Lambda,sp)}]_{(\Lambda,sp)}$$

for every subsets B_1, B_2 of Y.

Proof. (1) \Rightarrow (2): Let V_1, V_2 be any (Λ, sp) -open sets of Y such that

$$x \in F^+(V_1) \cap F^-(V_2).$$

Then, $F(x) \in V_1^+ \cap V_2^-$ and hence there exists a (Λ, sp) -open set U of X containing x such that $F(U) \subseteq [V_1^{(\Lambda, sp)}]_{(\Lambda, sp)}$ and $F(z) \cap [V_2^{(\Lambda, sp)}]_{(\Lambda, sp)} \neq \emptyset$ for each $z \in U$. Thus, $U \subseteq F^+([V_1^{(\Lambda, sp)}]_{(\Lambda, sp)}) \cap F^-([V_2^{(\Lambda, sp)}]_{(\Lambda, sp)})$ and hence

$$x \in [F^+([V_1^{(\Lambda,sp)}]_{(\Lambda,sp)}) \cap F^-([V_2^{(\Lambda,sp)}]_{(\Lambda,sp)})]_{(\Lambda,sp)}.$$

Therefore, $F^+(V_1) \cap F^-(V_2) \subseteq [F^+([V_1^{(\Lambda,sp)}]_{(\Lambda,sp)}) \cap F^-([V_2^{(\Lambda,sp)}]_{(\Lambda,sp)})]_{(\Lambda,sp)}$.

 $(2) \Rightarrow (3)$: Let K_1, K_2 be any (Λ, sp) -closed sets of Y. Then, $Y - K_1$ and $Y - K_2$ are (Λ, sp) -open sets of Y, by (2),

$$\begin{aligned} X &- [F^{-}(K_{1}) \cup F^{+}(K_{2})] \\ &= F^{+}(Y - K_{1}) \cap F^{-}(Y - K_{2}) \\ &\subseteq [F^{+}([[Y - K_{1}]^{(\Lambda, sp)}]_{(\Lambda, sp)}) \cap F^{-}([[Y - K_{2}]^{(\Lambda, sp)}]_{(\Lambda, sp)})]_{(\Lambda, sp)} \\ &= [(X - F^{-}([[K_{1}]_{(\Lambda, sp)}]^{(\Lambda, sp)}) \cap (X - F^{+}([[K_{2}]_{(\Lambda, sp)}]^{(\Lambda, sp)})]_{(\Lambda, sp)} \\ &= X - [F^{-}([[K_{1}]_{(\Lambda, sp)}]^{(\Lambda, sp)}) \cup F^{+}([[K_{2}]_{(\Lambda, sp)}]^{(\Lambda, sp)})]^{(\Lambda, sp)} \end{aligned}$$

and hence

$$[F^{-}([[K_{1}]_{(\Lambda,sp)}]^{(\Lambda,sp)}) \cup F^{+}([[K_{2}]_{(\Lambda,sp)}]^{(\Lambda,sp)})]^{(\Lambda,sp)} \subseteq F^{-}(K_{1}) \cup F^{+}(K_{2}).$$

(3) \Rightarrow (4): Let B_1, B_2 be any subsets of Y. Then, $B_1^{(\Lambda, sp)}$ and $B_2^{(\Lambda, sp)}$ are (Λ, sp) -closed in Y, by (3),

$$[F^{-}([[B_{1}^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}) \cup F^{+}([[B_{2}^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)})]^{(\Lambda,sp)}$$
$$\subseteq F^{-}(B_{1}^{(\Lambda,sp)}) \cup F^{+}(B_{2}^{(\Lambda,sp)}).$$

$$(4) \Rightarrow (5)$$
: Let B_1, B_2 be any subsets of Y. Thus, by (4),
- $([B_1]_{(A, cr)}) \cap F^+([B_2]_{(A, cr)})$

$$\begin{aligned} F^{-}([B_{1}]_{(\Lambda,sp)}) \cap F^{+}([B_{2}]_{(\Lambda,sp)}) \\ &= X - [F^{+}([Y - B_{1}]^{(\Lambda,sp)}) \cup F^{-}([Y - B_{2}]^{(\Lambda,sp)})] \\ &\subseteq X - [F^{+}([[[Y - B_{1}]^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}) \cup F^{-}([[[Y - B_{2}]^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)})]^{(\Lambda,sp)} \\ &= X - [F^{+}(Y - [[[B_{1}]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}) \cup F^{-}(Y - [[[B_{2}]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)})]^{(\Lambda,sp)} \\ &= X - [(X - F^{-}([[[B_{1}]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}) \cup (X - F^{+}([[[B_{2}]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)})]^{(\Lambda,sp)} \\ &= [F^{-}([[[B_{1}]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}) \cap F^{+}([[[B_{2}]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)})]_{(\Lambda,sp)}. \\ &(5) \Rightarrow (2): \text{ The proof is obvious.} \end{aligned}$$

 $(2) \Rightarrow (1)$: Let V_1, V_2 be any (Λ, sp) -open sets of Y such that

$$x \in F^+(V_1) \cap F^-(V_2).$$

By (2), $x \in F^+(V_1) \cap F^-(V_2) \subseteq [F^+([V_1^{(\Lambda,sp)}]_{(\Lambda,sp)}) \cap F^-([V_2^{(\Lambda,sp)}]_{(\Lambda,sp)})]_{(\Lambda,sp)}$. Then, there exists a (Λ, sp) -open set U of X such that

$$x \in U \subseteq F^+([V_1^{(\Lambda,sp)}]_{(\Lambda,sp)}) \cap F^-([V_2^{(\Lambda,sp)}]_{(\Lambda,sp)}).$$

Thus, $F(U) \subseteq [V_1^{(\Lambda, sp)}]_{(\Lambda, sp)}$ and $F(z) \cap [V_2^{(\Lambda, sp)}]_{(\Lambda, sp)} \neq \emptyset$ for every $z \in U$. This shows that F is almost (Λ, sp) -continuous.

Acknowledgment. This research project was partially supported by Mahasarakham University.

References

- [1] M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Assiut Univ., **12**, (1983), 77–90.
- [2] C. Boonpok, (Λ, sp) -closed sets and related topics in topological spaces, WSEAS Tran. Math., **19**, (2020), 312–322.
- [3] C. Berge, Espaces topologiques fonctions multivoques, Dunod, Paris, 1959.
- [4] T. Noiri, E. Hatir, Λ_{sp} -sets and some weak separation axioms, Acta Math. Hungar., 103, no. 3, (2004), 225–232.
- [5] V. Popa, Almost continuous multifunctions, Mat. Vesnik, 34, (1982),59– 67.
- [6] M. K. Singal, A. R. Singal, Almost continuous mappings, Yokohama Math. J., 16, (1968), 63–73.