Almost ($\Lambda, s p$)-continuous multifunctions

Jeeranunt Khampakdee, Chawalit Boonpok
Mathematics and Applied Mathematics Research Unit
Department of Mathematics
Faculty of Science
Mahasarakham University
Maha Sarakham, 44150, Thailand
email: jeeranunt.k@msu.ac.th, chawalit.b@msu.ac.th

(Received December 24, 2021, Accepted April 20, 2022)

Abstract

Our purpose is to introduce the concept of almost ($\Lambda, s p$)-continuous multifunctions. In particular, we investigate some characterizations of almost ($\Lambda, s p$)-continuous multifunctions.

1 Introduction

In 1968, Singal and Singal [6] introduced and studied the notion of almost continuous functions. In 1982, Popa [5] extended the concept of almost continuous functions to multifunctions and introduced the notions of upper and lower continuous multifunctions. In 1983, Abd El-Monsef et al. [1] introduced a weak form of open sets called β-open sets. In 2004, Noiri and Hatir [4] defined $\Lambda_{s p}$-sets in terms of the concept of β-open sets and investigated the notion of $\Lambda_{s p}$-closed sets by using $\Lambda_{s p}$-sets. Boonpok [2] introduced the concepts of $(\Lambda, s p)$-closed sets and $(\Lambda, s p)$-open sets which are defined by utilizing the notions of $\Lambda_{s p}$-sets and β-closed sets. The purpose of the present paper is to introduce the notion of almost $(\Lambda, s p)$-continuous multifunctions. Moreover, we discuss several characterizations of almost ($\Lambda, s p$)-continuous multifunctions.

Key words and phrases: $(\Lambda, s p)$-open set, almost $(\Lambda, s p)$-continuous multifunction.
AMS (MOS) Subject Classifications: 54C08, 54C60.
ISSN 1814-0432, 2022, http://ijmcs.future-in-tech.net

2 Preliminaries

Throughout this paper, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a topological space (X, τ). The closure of A and the interior of A are denoted by $\mathrm{Cl}(A)$ and $\operatorname{Int}(A)$, respectively. A subset A of a topological space (X, τ) is called β-open [1] if $A \subseteq \mathrm{Cl}(\operatorname{Int}(\mathrm{Cl}(A)))$. The complement of a β-open set is called β-closed. The family of all β-open sets of a topological space (X, τ) is denoted by $\beta(X, \tau)$. A subset $\Lambda_{s p}(A)$ [4] is defined as follows:

$$
\Lambda_{s p}(A)=\cap\{U \mid A \subseteq U, U \in \beta(X, \tau)\}
$$

A subset A of a topological space (X, τ) is called a $\Lambda_{s p}-s e t[4]$ if $A=\Lambda_{s p}(A)$. A subset A of a topological space (X, τ) is said to be $(\Lambda, s p)$-closed [2] if $A=T \cap C$, where T is a $\Lambda_{s p}$-set and C is a β-closed set. The complement of a $(\Lambda, s p)$-closed set is called $(\Lambda, s p)$-open. Let A be a subset of a topological space (X, τ). A point $x \in X$ is called a $(\Lambda, s p)$-cluster point [2] of A if $A \cap U \neq \emptyset$ for every ($\Lambda, s p$)-open set U of X containing x. The set of all ($\Lambda, s p$)-cluster points of A is called the ($\Lambda, s p$)-closure [2] of A and is denoted by $A^{(\Lambda, s p)}$. The union of all $(\Lambda, s p)$-open sets contained in A is called the $(\Lambda, s p)$-interior [2] of A and is denoted by $A_{(\Lambda, s p)}$.

By a multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$, following [3], we shall denote the upper and lower inverse of a set B of Y by $F^{+}(B)$ and $F^{-}(B)$, respectively, that is, $F^{+}(B)=\{x \in X \mid F(x) \subseteq B\}$ and

$$
F^{-}(B)=\{x \in X \mid F(x) \cap B \neq \emptyset\} .
$$

In particular, $F^{-}(y)=\{x \in X \mid y \in F(x)\}$ for each point $y \in Y$ and for each $A \subseteq X, F(A)=\cup_{x \in A} F(x)$. Let $\mathcal{P}(Y)$ be the collection of all nonempty subsets of Y. For any $(\Lambda, s p)$-open set V of a topological space (Y, σ), we denote $V^{+}=\{B \in \mathcal{P}(Y) \mid B \subseteq V\}$ and $V^{-}=\{B \in \mathcal{P}(Y) \mid B \cap V \neq \emptyset\}$.

3 Almost $(\Lambda, s p)$-continuous multifunctions

In this section, we introduce the notion of almost $(\Lambda, s p)$-continuous multifunctions. Moreover, we discuss several characterizations of almost ($\Lambda, s p$)continuous multifunctions.

Definition 3.1. A multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$ is said to be almost ($\Lambda, s p$)-continuous if, for each $x \in X$ and each $(\Lambda, s p)$-open sets V_{1}, V_{2} of Y
such that $F(x) \in V_{1}^{+} \cap V_{2}^{-}$, there exists a $(\Lambda, s p)$-open set U of X containing x such that $F(U) \subseteq\left[V_{1}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}$ and $F(z) \cap\left[V_{2}^{(\Lambda, s p)}\right]_{(\Lambda, s p)} \neq \emptyset$ for every $z \in U$.

Theorem 3.2. For a multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$, the following properties are equivalent:
(1) F is almost $(\Lambda, s p)$-continuous;
$F^{+}\left(V_{1}\right) \cap F^{-}\left(V_{2}\right) \subseteq\left[F^{+}\left(\left[V_{1}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right) \cap F^{-}\left(\left[V_{2}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right)\right]_{(\Lambda, s p)}$ for every $(\Lambda, s p)$-open sets V_{1}, V_{2} of Y;
$\left[F^{-}\left(\left[\left[K_{1}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right) \cup F^{+}\left(\left[\left[K_{2}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right)\right]^{(\Lambda, s p)} \subseteq F^{-}\left(K_{1}\right) \cup F^{+}\left(K_{2}\right)$ for every $(\Lambda, s p)$-closed sets K_{1}, K_{2} of Y;
(4)

$$
\begin{aligned}
& {\left[F^{-}\left(\left[\left[B_{1}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right) \cup F^{+}\left(\left[\left[B_{2}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right)\right]^{(\Lambda, s p)}} \\
& \subseteq F^{-}\left(B_{1}^{(\Lambda, s p)}\right) \cup F^{+}\left(B_{2}^{(\Lambda, s p)}\right)
\end{aligned}
$$

for every subsets B_{1}, B_{2} of Y;

$$
\begin{align*}
& F^{+}\left(\left[B_{1}\right]_{(\Lambda, s p)}\right) \cap F^{-}\left(\left[B_{2}\right]_{(\Lambda, s p)}\right) \tag{5}\\
& \subseteq\left[F^{+}\left(\left[\left[\left[B_{1}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right) \cap F^{-}\left(\left[\left[\left[B_{2}\right]_{(\Lambda, s p)}\right)\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]_{(\Lambda, s p)}
\end{align*}
$$

for every subsets B_{1}, B_{2} of Y.
Proof. (1) $\Rightarrow(2)$: Let V_{1}, V_{2} be any $(\Lambda, s p)$-open sets of Y such that

$$
x \in F^{+}\left(V_{1}\right) \cap F^{-}\left(V_{2}\right) .
$$

Then, $F(x) \in V_{1}^{+} \cap V_{2}^{-}$and hence there exists a $(\Lambda, s p)$-open set U of X containing x such that $F(U) \subseteq\left[V_{1}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}$ and $F(z) \cap\left[V_{2}^{(\Lambda, s p)}\right]_{(\Lambda, s p)} \neq \emptyset$ for each $z \in U$. Thus, $U \subseteq F^{+}\left(\left[V_{1}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right) \cap F^{-}\left(\left[V_{2}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right)$ and hence

$$
x \in\left[F^{+}\left(\left[V_{1}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right) \cap F^{-}\left(\left[V_{2}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right)\right]_{(\Lambda, s p)} .
$$

Therefore, $F^{+}\left(V_{1}\right) \cap F^{-}\left(V_{2}\right) \subseteq\left[F^{+}\left(\left[V_{1}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right) \cap F^{-}\left(\left[V_{2}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right)\right]_{(\Lambda, s p)}$.
$(2) \Rightarrow(3)$: Let K_{1}, K_{2} be any $(\Lambda, s p)$-closed sets of Y. Then, $Y-K_{1}$ and $Y-K_{2}$ are $(\Lambda, s p)$-open sets of Y, by (2),

$$
\begin{aligned}
& X-\left[F^{-}\left(K_{1}\right) \cup F^{+}\left(K_{2}\right)\right] \\
& =F^{+}\left(Y-K_{1}\right) \cap F^{-}\left(Y-K_{2}\right) \\
& \subseteq\left[F^{+}\left(\left[\left[Y-K_{1}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right) \cap F^{-}\left(\left[\left[Y-K_{2}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right)\right]_{(\Lambda, s p)} \\
& =\left[\left(X-F^{-}\left(\left[\left[K_{1}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right) \cap\left(X-F^{+}\left(\left[\left[K_{2}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right)\right]_{(\Lambda, s p)}\right.\right. \\
& =X-\left[F^{-}\left(\left[\left[K_{1}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right) \cup F^{+}\left(\left[\left[K_{2}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right)\right]^{(\Lambda, s p)}
\end{aligned}
$$

and hence
$\left[F^{-}\left(\left[\left[K_{1}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right) \cup F^{+}\left(\left[\left[K_{2}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right)\right]^{(\Lambda, s p)} \subseteq F^{-}\left(K_{1}\right) \cup F^{+}\left(K_{2}\right)$.
$(3) \Rightarrow(4)$: Let B_{1}, B_{2} be any subsets of Y. Then, $B_{1}^{(\Lambda, s p)}$ and $B_{2}^{(\Lambda, s p)}$ are $(\Lambda, s p)$-closed in Y, by (3),

$$
\begin{aligned}
& {\left[F^{-}\left(\left[\left[B_{1}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right) \cup F^{+}\left(\left[\left[B_{2}^{(\Lambda, s p)}\right]_{(\Lambda, s p)]}\right]^{(\Lambda, s p)}\right)\right]^{(\Lambda, s p)}} \\
& \subseteq F^{-}\left(B_{1}^{(\Lambda, s p)}\right) \cup F^{+}\left(B_{2}^{(\Lambda, s p)}\right) .
\end{aligned}
$$

$(4) \Rightarrow(5)$: Let B_{1}, B_{2} be any subsets of Y. Thus, by (4),
$F^{-}\left(\left[B_{1}\right]_{(\Lambda, s p)}\right) \cap F^{+}\left(\left[B_{2}\right]_{(\Lambda, s p)}\right)$
$=X-\left[F^{+}\left(\left[Y-B_{1}\right]^{(\Lambda, s p)}\right) \cup F^{-}\left(\left[Y-B_{2}\right]^{(\Lambda, s p)}\right)\right]$
$\subseteq X-\left[F^{+}\left(\left[\left[\left[Y-B_{1}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right) \cup F^{-}\left(\left[\left[\left[Y-B_{2}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right)\right]^{(\Lambda, s p)}$
$=X-\left[F^{+}\left(Y-\left[\left[\left[B_{1}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right) \cup F^{-}\left(Y-\left[\left[\left[B_{2}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right)\right]^{(\Lambda, s p)}$
$=X-\left[\left(X-F^{-}\left(\left[\left[\left[B_{1}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right) \cup\left(X-F^{+}\left(\left[\left[\left[B_{2}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right)\right]^{(\Lambda, s p)}\right.\right.$
$=\left[F^{-}\left(\left[\left[\left[B_{1}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right) \cap F^{+}\left(\left[\left[\left[B_{2}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right)\right]_{(\Lambda, s p)}$.
$(5) \Rightarrow(2)$: The proof is obvious.
$(2) \Rightarrow(1)$: Let V_{1}, V_{2} be any $(\Lambda, s p)$-open sets of Y such that

$$
x \in F^{+}\left(V_{1}\right) \cap F^{-}\left(V_{2}\right) .
$$

By (2), $x \in F^{+}\left(V_{1}\right) \cap F^{-}\left(V_{2}\right) \subseteq\left[F^{+}\left(\left[V_{1}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right) \cap F^{-}\left(\left[V_{2}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right)\right]_{(\Lambda, s p)}$. Then, there exists a $(\Lambda, s p)$-open set U of X such that

$$
x \in U \subseteq F^{+}\left(\left[V_{1}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right) \cap F^{-}\left(\left[V_{2}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right) .
$$

Thus, $F(U) \subseteq\left[V_{1}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}$ and $F(z) \cap\left[V_{2}^{(\Lambda, s p)}\right]_{(\Lambda, s p)} \neq \emptyset$ for every $z \in U$. This shows that F is almost $(\Lambda, s p)$-continuous.

Acknowledgment. This research project was partially supported by Mahasarakham University.

References

[1] M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Assiut Univ., 12, (1983), 77-90.
[2] C. Boonpok, $(\Lambda, s p)$-closed sets and related topics in topological spaces, WSEAS Tran. Math., 19, (2020), 312-322.
[3] C. Berge, Espaces topologiques fonctions multivoques, Dunod, Paris, 1959.
[4] T. Noiri, E. Hatir, $\Lambda_{s p}$-sets and some weak separation axioms, Acta Math. Hungar., 103, no. 3, (2004), 225-232.
[5] V. Popa, Almost continuous multifunctions, Mat. Vesnik, 34, (1982),5967.
[6] M. K. Singal, A. R. Singal, Almost continuous mappings, Yokohama Math. J., 16, (1968), 63-73.

