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Abstract

To represent many chemical processes, systems of higher index
differential-algebraic equations (DAEs) are the best choice. So we hy-
pothesize the implicit function theorem to reduce the DAEs of the
higher index. Then, using variational formulation theory, it is possi-
ble to obtain the solution of higher index DAEs as a critical point of
the equivalent variational formulation. We study Reactive Flash to
demonstrate the efficiency and good accuracy of the proposed proce-
dure.

1 Introduction

Environmental and Economic considerations motivate industry to utilize
technologies based on process intensification. Recently, increasing attention
has been given to new developments in chemical engineering, leading to in-
ventories of chemical materials and higher energy efficiency [1]-[4]. Reactive
Flash (RF) is one of these chemical processes that can be modeled by DAEs
of index-2 [5],[6]. In this case, the most crucial question in solving the RF
system is evaluating an easily implemented technique. A parameterization

Key words and phrases: Differential- algebraic equations,
Parameterization variational technique, Reactive flash, Variational
formulation.
AMS (MOS) Subject Classifications: 34A09, 65L80.
ISSN 1814-0432, 2022, http://ijmcs.future-in-tech.net



1252 Ghazwa F.Abd

variational technique (that is a straightforward extension of [7], [8]) can be
utilized to solve a Flash Problem. A simple reactive flash was proposed as an
excellent vehicle for introducing the DAE system and indicating the range of
this technique developed to solve higher index DAEs, especially for index-2
problems. Therefore, we evaluate the role of the parameterization variational
technique (presented previously in [7], [8]) in finding the vapor fraction for a
special model of reactive flash.

2 Solving Reactive Flash system using the

Variational Formulation

This section is dedicated to discuss reactive flashs solvability using a varia-
tional formulation approach. Making implicit equations for the vapor-liquid
equilibrium calculations present the modeling of the reactive flash as a DAE
system. Therefore, in dynamic conditions and from mass and heat balances,
the reactive flash model is calculated. As a particular case of ethylene glycol
reactive flash performed in two stages, we give:

• To produce ethylene glycol, the reaction of ethylene oxide and water is
as follows:

C2H4O +H2O
r1→ C2H6O2

• With ethylene oxide, the reaction of ethylene glycol is computed.

C2H4O + C2H6O2

r2→ C4H10O3

The references [1], [5] and [6] illustrate the reactive flash process. We consider
the vapor-liquid equilibrium problem:

τ ẋ1 = zi − xi − φ− τ(xi −
r

∑

j=1

γi,jrj) (2.1)

τCṪ (t) = H + q − h1(1 + τ) + φ (2.2)

Kn(1− x1 − x2 − x3) +K1x1 +K2x2 +K3x3 − 1 = 0 (2.3)

With i = 1, .., n−1, n being the number of components in reactive flash Table
1 demonstrate the values of the above parameters.

All these samples are known with appropriate values. For the reader who
requires a more detailed overview of the flash system, we recommend the
reference [6].
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Equations 2.1-2.3 are in index-2 DAEs with
[

x1 x2 x3 T
]

y = φ To
determine a continuous function φ of xi, T , the implicit function theorem [9],
[10] can be used for a differentiation index. Therefore, with respect to time
t, equation 2.3 can be differentiated, and one aim is as follows:

Kn(1− ẋ1 − ẋ2 − ẋ3) +K1ẋ1 +K2ẋ2 +K3ẋ3 = 0 (2.4)

Kn[(−
z1 − x1 − φ− τ(x1 −

∑r
j=1

γi,jrj)

τ
)− (

z2 − x2 − φ− τ(x2 −
∑r

j=1
γi,jrj)

τ
)

−(
z3 − x3 − φ− τ(x3 −

∑r
j=1

γi,jrj)

τ
)] +K1(

z1 − x1 − φ− τ(x1 −
∑r

j=1
γi,jrj)

τ
)

+K2(
z2 − x2 − φ− τ(x2 −

∑r
j=1

γi,jrj)

τ
)+K3(

z3 − x3 − φ− τ(x3 −
∑r

j=1
γi,jrj)

τ
)

= 0 (2.5)

Then, the explicit expression for the vapor fraction φ

φ =
τKn −

∑

3

i=1
(Kn −Ki)zi +

∑

3

i=1
(Kn −Ki)xi +

∑

3

i=1
(Kn −Ki)τ(xi −

∑r
j=1

γi,jrj)
∑

3

i=1
Ki − 3Kn

(2.6)

= ψ1 + ψ2

Table 1: Nominal parameters value in RF
Sample Represent in Reactive Flash

τ The reactive flash time constant
zi i-th feed mole fraction
xi i-th Liquid mole fraction
T The temperature
rj Rate of reaction j
γi,j In reaction j, it is the stoichiometric coefficient of component i
H Specific enthalpy of liquid exit
φ Vapor fraction
q 2.282kJ/mol
h1

∑n

i=1
△ hi + Ci(T − 298), with △ hi = −95.7,−285.83

−460,−628.5 and Ci = 0.0869, 0.0754, 0.1498, 0.2870
for C2H4O,H2O,C2H6O2, C4H10O3, respectively.
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where

ψ1 =

∑

3

i=1
(Kn −Ki)xi +

∑

3

i=1
(Kn −Ki)τ(xi −

∑

3

j=1
γi,jrj))

∑

3

i=1
Ki − 3Kn

and

ψ2 =
τKn −

∑

3

i=1
(Kn −Ki)zi

∑

3

i=1
Ki − 3Kn

The reduced form of DAEs 2.1-2.3 is given by:

τ ẋ1 + xi + ψ1 + τ(xi −
r

∑

j=1

γi,jrj) = zi − ψ2 (2.7)

τCṪ (t) + h1(1 + τ)− ψ1 = H + q + ψ2 (2.8)

For i = 1, .., n− 1 with the algebraic constraint

−Knx1 −Knx2 −Knx3 +K1x1 +K2x2 +K3x3 − 1 = 1−Kn (2.9)

The class of consistent initial condition by

ω0 =

{

xi(t0)| −

3
∑

i=1

knx
0

i +

3
∑

i=1

kix
0

i = 1− kn

}

Define the operator L : D(L) ⊂ H → R(L) ⊂ H , with D(L) = H , where
H is an appropriate Hilbert space (e.g., H = L2(T );T = [t0, tf ], t0 < tf ) by
Lx = F (t). The differential and algebraic operator is defined by L, which
can be formulated as follows:
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0 τ 0 0
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0 0 0 0
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(2.10)
where αi is given in table 2. By using the parameterization variational

technique in 2.7, 2.8 to obtain functional corresponding to 2.10, one can
define the following:

Fω0
=

1

2

∫ tf

t0

[[τ ẋ1+α1x1+α2x2+α3x3+α4T ]
T [τ ẋ1+α1x1+α2x2+α3x3+α4T ]
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−2[F1]
T [τ ẋ1 + α1x1 + α2x2 + α3x3 + α4T ]

+[τ ẋ2 + α5x1 + α6x2 + α3x3 + α4T ]
T [τ ẋ2 + α5x1 + α6x2 + α3x3 + α4T ]

−2[F2]
T [τ ẋ2 + α5x1 + α6x2 + α3x3 + α4T ]

+[τ ẋ3 + α5x1 + α2x2 + α7x3 + α4T ]
T [τ ẋ3 + α5x1 + α2x2 + α7x3 + α4T ]

−2[F3]
T [τ ẋ3 + α5x1 + α2x2 + α7x3 + α4T ]

+[τ ẋ4 + α5x1 + α2x2 + α3x3 + α8T ]
T [τ ẋ4 + α5x1 + α2x2 + α3x3 + α8T ]

−2[F4]
T [τ ẋ4 + α5x1 + α2x2 + α3x3 + α8T ]

+[(K1−Kn)x1+(K2−Kn)x2+(K3−Kn)x3]
T [(K1−Kn)x1+(K2−Kn)x2+(K3−Kn)x3]

−2[F5]
T [(K1 −Kn)x1 + (K2 −Kn)x2 + (K3 −Kn)x3]

+[(K1−Kn)x
0

1+(K2−Kn)x
0

2+(K3−Kn)x
0

3]
T [(K1−Kn)x

0

1+(K2−Kn)x
0

2+(K3−Kn)x
0

3]

−2[F5]
T [(K1 −Kn)x

0

1
+ (K2 −Kn)x

0

2
+ (K3 −Kn)x

0

3
]]dt, (2.11)

Where F1, F2, F3, F4, F5 are the nonhomogeneous part of equations 2.7-
2.9. By setting x1 =

∑

5

i=0
sit

i,x2 =
∑

5

i=0
bit

i,x3 =
∑

5

i=0
hit

i,T =
∑

5

i=0
fit

i,

we can approximate the solution of the linear algebraic equationA(−→s ,
−→
b ,

−→
h ,

−→
f ) =

B. The functional simulations 2.11 were numerically carried out in computer
programming by solving

(−→s ,
−→
b ,

−→
h ,

−→
f ) = A−1B to obtain the approximate solution (x1, x2, x3, T ).

Figures 1 and 2 show the vapor fraction for the reactive flash:

Table 2: αi values
αi equal to

α1 1 + (Kn −K1)(1 + τ)
α2 (Kn −K2)(1 + τ)
α3 (Kn −K3)(1 + τ)
α4 −(Kn −K2)τ

∑r

j=1
γi,jrj

α5 (Kn −K1)(1 + τ)
α6 1 + (Kn −K2)(1 + τ)
α7 1 + (Kn −K3)(1 + τ)
α8 Ci(1 + τ)
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3 Conclusions

In this article, we evaluated the role of parameterization variational technique
in finding the vapor fraction of a reactive flash. The experiments demon-
strated that the technique is efficient and applicable in finding a fraction of
a reactive flash. In the beginning, the problem of index-2 DAEs has been
transformed into a reduction system. Then, in the corresponding variational
formulation, the critical point has been found, which led to determining the
solution of DAEs of index-2. Consequently, the vapor fraction of a reactive
flash was determined.
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Figure 1: Effect of pressure on amount of vapor
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Figure 2: Vapor fraction state
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