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Abstract

The objective of this study is to assess performance of goodness of
fit of Anderson-Darling test and modified Anderson-Darling tests.
Ahmad, Sinclair, and Spurr [1], Zhang [4], and Seathow & Neamvonk
[3] modified Anderson-Darling test for testing right skewed distribu-
tion, including Lognormal Gamma and Weibull distribution. Critical
values of the 4 tests are estimated through a simulation study. These
values are applied to study type I error probability and power of the
tests with sample size of 10, 20, 30, 50, 100, and 200, and significant
level of 0.01 and 0.05. The results show that all tests can control type I
error probability, close to the significant level. In testing whether data
are Lognormal distribution, the Zhang modified Anderson-Darling test
produces the highest power value in all sets of parameters, sample
sizes and significant levels. In testing Gamma distribution, the Zhang
modified Anderson-Darling test has the most powerful in all set of pa-
rameters, significant levels and sample sizes. However, the Seathow &
Neamvonk modified Anderson-Darling test provides higher power than
the Zhang one when the sample size is 10 and alternative hypothesis is
Lognormal distribution. In testing Weibull distribution, the Seathow
& Neamvonk modified Anderson-Darling test is more powerful than
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the others when the sample size is 10. The Zhang modified Anderson-
Darling test has the most power when the sample sizes are 20 30 50
100 and 200.

1 Introduction

LetX be a continuous random variable with cumulative distribution function
F (x) and let x1, x2, · · · , xn be a random sample of X with order statistics
X(1), X(2), · · · , X(n). The test hypotheses whether the data are from a defined
distribution is stated as

H0 : F (x) = F0(x), ∀x

Ha : F (x) 6= F0(x), ∃x

where F0(x) is the defined cumulative distribution function and x ∈ (−∞,∞).
Zhang [4] presented the goodness of fit test statistic as

Z =

∫

∞

−∞

Zxdw(x) (1.1)

or
Zmax = sup

x∈(−∞,∞)

{Zxw(x)} . (1.2)

The w(x) is weight function and Zx is replaced by Chi-square statistic (χ2
x)

or likelihood ratio statistic (G2
x) as shown below

χ2
x =

nFn(x)− F0(x)
2

F0(x)1− F0(x)
(1.3)

and

G2
x = 2n

[

Fn(x)log

{

Fn(x)

F0(x)

}

+ {1− Fn(x)} log

{

1− Fn(x)

1− F0(x)

}]

(1.4)

where F0(x) and Fn(x) are hypothesized and empirical distribution function
respectively.

Goodness of fit tests have been around for long time with Anderson-
Darling [1] standing out in the literature. Consequently, there are a few
modified Anderson-Darling tests including those by Ahmad et al.[1], Zhang
[4], and Saethow & Neamvonk [3]. Evolution of the four tests are shown
below:
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1. Anderson-Darling test (A2) [1] is developed by replacing Zx by χ2
x in

1.1 and dw(x) = dF0(x). We have

A2 =

∫

∞

−∞

χ2
xdw(x)

=

∫

∞

−∞

nFn(x)− F0(x)
2

F0(x)1− F0(x)
dF0(x).

Therefore,

A2 = −
2

n

n
∑

i=1

[(

i−
1

2

)

log
{

F0(x(i))
}

+

(

n− i+
1

2

)

log
{

1− F0

(

X(i)

)}

]

−n

2. Ahmad et al.[2] modified the Anderson-Darlng test through emphasis
at the upper and lower tail of distribution. If we consider a left skewed
distribution, then the test statistic is developed by replace Zx by χ2

x in
1.1 and the weight function is defined as dw(x) = {1− F0(x)} dF0(x).
Then, the Ahmad et al. test statistic (AL2) is shown as

AL2 =

∫

∞

−∞

χ2
xdw(x)

=

∫

∞

−∞

nFn(x)− F0(x)
2

F0(x)1− F0(x)
{1− F0(x)} dF0(x).

Therefore,

AL2 = −
3n

2
+ 2

n
∑

i=1

F0

(

X(i)

)

−
n

∑

i=1

[(

2i− 1

n

)

log
{

F0

(

X(i)

)}

]

If we consider a right skewed distribution, then the weight function is
replaced by dw(x) = F0(x)dF0(x). Then, the test statistic (AU2) is
shown as

AU2 =

∫

∞

−∞

χ2
xdw(x)

=

∫

∞

−∞

nFn(x)− F0(x)
2

F0(x)1− F0(x)
{F0(x)} dF0(x).

Therefore,

AU2 =
n

2
−2

n
∑

i=1

F0

(

X(i)

)

−

n
∑

i=1

[{

2−

(

2i− 1

n

)}

log
{

1− F0

(

X(i)

)}

]
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Note that the sum of these two statistics is the original A2 test statistic,
that is A2 = AU2 + AL2.

3. Zhang [4] developed modified Anderson-Darling test by using likelihood
ratio statistic and a new adjusted weight function. The test statis-
tics is replaced Zx by G2

x in 1.1 and weighted function is dw(x) =
1

Fn(x) {1− Fn(x)}
dFn(x). Hence, the Zhang test statistic (ZA) is de-

fined as

ZA =

∫

∞

−∞

G2
xdw(x)

=

∫

∞

−∞

G2
x

1

Fn(x) {1− Fn(x)}
dFn(x)

Then, Zhang test statistics is shown below

ZA = 2
n

∑

i=1







n

n− i+
1

2

log











i−
1

2
nF0(X(i)











+
n

i−
1

2

log











n− i+
1

2
n
{

1− F0(X(i)

}

















4. Saethow & Neamvonk [3] proposed modified Anderson-Darling test by
adapting Ahmad et al.(1998) and Zhang (2002). The test statistic is
replaced by G2

X and also consider the tail of distribution. When the
considered distribution is left skewed distribution, the weight function

is
1

Fn(x)
dFn(X). The Saethow & Neamvonk test statistic is

ZAL =

∫

∞

−∞

G2
xdw(x)

=

∫

∞

−∞

G2
x

1

Fn(x)
dFn(x)

Then, Saethow & Neamvonk test statistic for testing left skewed dis-
tribution is shown below

ZAL = 2

n
∑

i=1

[

log

{

Fn(X(i))

F0(X(i))

}

+
1− Fn(X(i)

Fn(X(i)
log

{

1− Fn(X(i))

1− F0(X(i))

}]
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and Fn(X(i)) =
i−

1

2
n

.

If we consider a right skewed distribution, then the weight function is
1

1− Fn(x)
dFn(X). The test statistic is as follows

ZAU =

∫

∞

−∞

G2
xdw(x)

=

∫

∞

−∞

G2
x

1

1− Fn(x)
dFn(x)

Then, Saethow & Neamvonk test statistics for testing right skewed
distribution is shown below

ZAU = 2

n
∑

i=1

[

Fn(X(i))

1− Fn(X(i))
log

{

Fn(X(i))

F0(X(i))

}

+ log

{

1− Fn(X(i))

1− F0(X(i))

}]

In this paper, we will assess the four goodness of fit tests for testing right
skewed, Lognormal Gamma and Weibull distributions. The critical values,
type I error Probability and the power of the test are estimated through
Monte Carlo simulation.

2 Main Results

In estimating the probability distribution of statistic tests using Monte Carlo
simulation, we generate the Lognormal, Gamma, and Weibull distributed
random numbers and calculate the A2, AU2, ZA, ZAU statistics. This pro-
cess is repeated 100,000 times. For each statistic, the 100,000 values of test
statistics are ranked in ascending order. The 99th and 95th percentile of or-
dered statistics are the 0.01 and 0.05 significant level respectively of critical
values presented in Tables 1-3 .

In the next step, we apply the critical values to the four tests in order
to examine the type I error probability of the tests; A2, AU2, ZA, ZAU . We
generate random numbers from the assumed distribution; i.e., Lognormal,
Gamma, and Weibull distribution. Without loss of generality, parameters of
each distribution are varied at least four sets according to the skewness of
the distribution. The test statistics for each set of parameters are calculated
with 10,000 replication. The numbers of rejecting the assumed distribution
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Table 1: Critical values for testing Lognormal distribution

α =0.01 α =0.05
n A2 AU2 ZA ZAU A2 AU2 ZA ZAU

10 0.9740 0.5085 8.3652 4.6421 0.7237 0.3750 5.6179 3.0248
20 1.0060 0.5299 11.3942 6.5690 0.7384 0.3840 7.8146 4.3190
30 1.0130 0.5344 13.2150 7.8211 0.7424 0.3860 9.1554 5.1592
50 1.0244 0.5402 15.5738 9.4978 0.7461 0.3887 10.9549 6.2729
100 1.0277 0.5432 19.0076 11.9964 0.7488 0.3898 13.5278 7.8431
200 1.0278 0.5454 22.5588 14.5394 0.7490 0.3900 16.1101 9.4052

Table 2: Critical values for testing Gamma distribution

α =0.01 α =0.05
n A2 AU2 ZA ZAU A2 AU2 ZA ZAU

10 1.0112 0.5236 8.2686 4.4977 0.7445 0.3831 5.5504 2.9232
20 1.0509 0.5495 11.2669 6.3735 0.7652 0.3953 7.7279 4.1727
30 1.0641 0.5577 13.0172 7.5678 0.7706 0.3987 9.0581 4.9871
50 1.0732 0.5635 15.3655 9.2200 0.7755 0.4011 10.8309 6.0736
100 1.0782 0.5667 18.7300 11.6002 0.7776 0.4025 13.3301 7.6054
200 1.0834 0.5691 22.3343 14.0995 0.7803 0.4046 15.9549 9.1881

are counted and divided by 10,000. We average the type I error probabilities
of various set parameter with the same sample size. The results are shown
in Tables 4-6 representing that the type I error probabilities of the four tests
across different sample sizes are consistently close to the related significance
level and also in the range of Cocharn criteria [5]; i.e., (0.007, 0.015) for α =
0.01 and (0.04, 0.06) for α = 0.05. This signifies that the critical values are
reliable to the tested distributions.

To investigate the power of the tests, we generate random numbers from
an alternative hypothesized distribution. The test statistics are again calcu-
lated with 10,000 replications. The number of rejecting the null distribution
are counted and divided by 10,000. The power of the tests for testing Log-
normal distribution is presented in Figure 1. We can see that the ZA test
is the most powerful for all sample sizes and significance levels. The ZAU is
the second highest one when the sample size is 50 or more. The A2 and AU2
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Table 3: Critical values for testing Weibull distribution

α =0.01 α =0.05
n A2 AU2 ZA ZAU A2 AU2 ZA ZAU

10 0.9807 0.4698 8.6625 3.7066 0.7262 0.3496 5.8030 2.4822
20 1.0107 0.4950 11.7403 5.3731 0.7416 0.3612 8.0264 3.5743
30 1.0247 0.5037 13.6234 6.4539 0.7471 0.3651 9.4029 4.2983
50 1.0283 0.5080 16.0765 7.9344 0.7501 0.3672 11.1933 5.2830
100 1.0392 0.5135 19.5367 10.1391 0.7536 0.3698 13.7321 6.7370
200 1.0394 0.5149 23.1673 12.5546 0.7538 0.3708 16.2986 8.2221

Table 4: Type I error probability of the tests for testing Lognormal distribu-
tion

α =0.01 α =0.05
n A2 AU2 ZA ZAU A2 AU2 ZA ZAU

10 0.0092 0.0097 0.0091 0.0102 0.0493 0.0498 0.0493 0.0503
20 0.0098 0.0099 0.0095 0.0092 0.0508 0.0506 0.0507 0.0515
30 0.0101 0.0106 0.0102 0.0108 0.0504 0.0505 0.0505 0.0495
50 0.0100 0.0102 0.0105 0.0099 0.0506 0.0502 0.0506 0.0505
100 0.0102 0.0101 0.0101 0.0097 0.0509 0.0503 0.0504 0.0515
200 0.0102 0.0104 0.0102 0.0101 0.0509 0.0502 0.0502 0.0505

Table 5: Type I error probability of the tests for testing Gamma distribution
α =0.01 α =0.05

n A2 AU2 ZA ZAU A2 AU2 ZA ZAU

10 0.0080 0.0086 0.0095 0.0104 0.0445 0.0459 0.0482 0.0530
20 0.0083 0.0082 0.0101 0.0112 0.0459 0.0466 0.0520 0.0541
30 0.0087 0.0088 0.0102 0.0120 0.0457 0.0449 0.0497 0.0524
50 0.0077 0.0083 0.0095 0.0103 0.0470 0.0484 0.0536 0.0542
100 0.0088 0.0090 0.0105 0.0111 0.0456 0.0463 0.0529 0.0532
200 0.0080 0.0089 0.0097 0.0118 0.0472 0.0468 0.0515 0.0546
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Figure 1: Power of the tests for Lognormal distribution at significant level of
0.01 and 0.05
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Figure 2: Power of the tests for Gamma distribution at significant level of
0.01 and 0.05
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Figure 3: Power of the tests for Weibull distribution at significant level of
0.01 and 0.05
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Table 6: Type I error probability of the tests for testing Weibull distribution
α =0.01 α =0.05

n A2 AU2 ZA ZAU A2 AU2 ZA ZAU

10 0.0097 0.0093 0.0097 0.0101 0.0514 0.0517 0.0507 0.0525
20 0.0112 0.0100 0.0106 0.0095 0.0483 0.0508 0.0486 0.0507
30 0.0103 0.0099 0.0097 0.0100 0.0491 0.0499 0.0481 0.0507
50 0.0099 0.0094 0.0107 0.0103 0.0513 0.0527 0.0518 0.0508
100 0.0093 0.0091 0.0093 0.0102 0.0493 0.0487 0.0502 0.0512
200 0.0099 0.0090 0.0100 0.0094 0.0492 0.0510 0.0483 0.0483

have similar power when the alternative hypothesis is Weibull distribution;
however, the power of A2 is higher than AU2 when the hypothesis is Gamma
distribution.

For testing Gamma and Weibull distribution in Figures 2 and 3, the
power of the ZA tests is, generally, the most powerful than others. The ZAU

is superior than others when sample size is small as 10.

3 Conclusion

In this paper, we assessed the performance of the Anderson-Darling and their
modification tests for a right skewed distribution. The critical values for the
four tests were evaluated through simulations. The results showed that the
ZA test were generally the most powerful among the original test and other
modified one. The ZAU was superior than others only when the sample size
was 10.

In order to apply these tests more conveniently, we find equations pre-
senting the relationship between the critical values and sample sizes as shown
in Tables 7-8. The sample size well explains the critical values as the r2s are
higher than 0.99.
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Table 7: Critical value functions of ZA and ZAU tests for α = 0.01
Distribution ZA test ZAU test
Lognormal y = −2.775 + 4.742log(n) y = −3.311 + 3.328log(n)

r2 = 0.9988 r2 = 0.9967
Gamma y = −2.7672 + 4.689log(n) y = −3.2062 + 3.2243log(n)

r2 = 0.9984 r2 = 0.9966
Weibull y = −2.7277 + 4.849log(n) y = −3.4306 + 2.965log(n)

r2 = 0.9989 r2 = 0.9947

Table 8: Critical value functions of ZA and ZAU tests for α = 0.05

Distribution ZA ZAU

Lognormal y = −2.6783 + 3.5199log(n) y = −2.0565 + 2.148log(n)
r2 = 0.9987 r2 = 0.9985

Gamma y = −2.6541 + 3.4811log(n) y = −2.0766 + 2.1057log(n)
r2 = 0.9986 r2 = 0.9979

Weibull y = −2.4582 + 3.5179log(n) y = −2.1542 + 1.933log(n)
r2 = 0.9991 r2 = 0.9961
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