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Abstract

Recently, one discretization of a continuous distribution, the so-
called discrete transmuted generalized inverse Weibull (DTGIW) dis-
tribution, has been suggested. In this article, we propose the applica-
tion of the DTGIW distribution along with using the dtgiw package
in the R language program to be analyzed the discretized data or
count data. We estimate the model parameters by using the maxi-
mum likelihood (ML), Anderson-Darling (AD), and least-square (LS)
methods. We compare the performances of the proposed estimators
based on numerical calculations for various values of the distribution
parameters, and sample sizes in terms of the root mean squared error
and estimated values. Simulation results show that the ML method
is most efficient for a large sample size. We analyze two applications
to illustrate the applicability of the DTGIW distribution with the re-
sults showing that the DTGIW distribution is an alternative flexible
in analyzing these count data.
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1 Introduction

The count data sets arise in different fields such as yearly number destruc-
tive earthquakes, monthly traffic accidents, hourly bacterial growth, among
others. These kind of data sets are modeled with discrete probability dis-
tributions. A Poisson distribution is the most popular distributions and is
widely used to model these kind data sets.

In probability distribution theory, vast numbers of discrete distributions
have specified applications. However, at times, the observable data have dis-
tinct features that these classical discrete distributions do not exhibit. So to
overcome these limitations, researchers often develop new probability distri-
butions so that these new distributions can be employed in those situations
where classical distributions are not providing any good fit. In Statistics
literature, different researchers have used different discretization methods to
propose a discrete type of distribution analogs of continuous distribution [1].

In recent years, researchers have shown great interest in introducing new
discrete distributions by discretizing a continuous failure time model. Many
researchers have introduced discrete distributions by applying the discretiza-
tion method to the continuous failure time models such as the discrete Lindley
(DL) [2], the discrete inverse Weibull [3], etc.

One of the discretization methods has been used to find discrete analogous
continuous transmuted generalized inverse Weibull distribution introduced by
Rattanalertnusorn and Aryuyuen [4], the so-called the discrete transmuted
generalized inverse Weibull (DTGIW) distribution. The distribution is an
alternative flexible model to analyze count data. In this paper, we show the
capabilities of proposing an R implementation for estimating the parameters
of the DTGIW distribution along with using the dtgiw package in the R
language program to do analysis of discretized data or count data. The
researcher will use the R language program, the most popular data science
language. There are many packages and libraries provided for doing different
tasks. It is necessary to develop statistical tools that are convenient and
quick to use and to the point. In the development process, the choice of
tools and language for development must be flexible and responsive to the
theory that has been developed. Three methods of parameter estimation of
the DTGIW distribution are compared. Simulation and application studies
are illustrated.
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2 The DTGIW Distribution

Let X be a random variable distributed as the DTGIW distribution with
parameter vector Θ where Θ = (α, β, λ, θ)T , denoted by X ∼ DTGIW
(α, β, λ, θ). Its probability density function (pdf) is

f(x; Θ) = (1 + θ)
{

exp
[

−λ(βx+ β)−α
]

− exp
[

−λ(βx)−α
]}

− θ
{

exp
[

−2λ(βx+ β)−α
]

− exp
[

−2λ(βx)−α
]}

, (2.1)

where x = 0, 1, 2, . . . , the positive parameters α, β and λ, and −1 ≤ θ ≤ 1.
Its corresponding cumulative density function (cdf) is

F (x; Θ) = exp
[

−λ(βx+ β)−α
] {

1 + θ − θ exp
[

−λ(βx+ β)−α
]}

. (2.2)

The DTGIW distribution is a flexible model that approaches different
distributions when its parameters are changed [4]. It has eight sub-models
as Table 1.

Table 1: Sub-models of the DTGIW distribution

Parameters Distributions

(α, β, λ, θ) DTGIW
(α, β, λ = 1, θ) Discrete transmuted inverse Weibull (DTIW)

(α, β, λ = 1, θ = 0) Discrete inverse Weibull (DIW) [3]
(α = 1, β, λ = 1, θ) Discrete transmuted inverse exponential (DTIE)

(α = 1, β, λ = 1, θ = 0) Discrete inverse exponential (DIE)
(α = 2, β, λ = 1, θ) Discrete transmuted inverse Rayleigh (DTIR)

(α = 2, β, λ = 1, θ = 0) Discrete inverse Rayleigh (DIR)
(α, β = 1, λ, θ) Discrete transmuted Fréchet (DTFr)

(α, β = 1, λ, θ = 0) Discrete Fréchet (DFr)

In terms of the distribution function F , the quantile function Q returns
the value x such that F (x;Θ) = p for 0 < p < 1. The quantile function of
the DTGIW distribution is

Q(p;Θ) = F−1(p;Θ). (2.3)

From the quantile function in (2.3), a random variate generation of the
DTGIW distribution is obtained as

Xi = Q(ui;Θ); 0 ≤ ui ≤ 1, i = 1, 2, 3, . . . , n, (2.4)

where ui is a value of a uniform random variable on [0,1].
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3 R Package for the DTGIW Distribution

In 2022, Rattanalertnusorn and Aryuyuen [5] provided a new contributed
package for R that is the dtgiw package. The dtgiw package requires R
version 4.1.3 or higher. There is a function that allows users to install it
directly-R program. Therefore, the step to install the dtgiw package on R
[6] or RStudio [7] is as follows:

install.packages("dtgiw")

library(dtgiw)

install.packages("graphics")

library(graphics)

install.packages("stats")

library(stats)

After installing the dtgiw package, users can use ”help(dtgiw)” com-
mand for getting an R package manual. This new package includes the eight
distributions (i.e., DTIW, DIW, DTIE, DIE, DTIR, DIR, DTFr, and DFr
distributions) and the corresponding calling sequences to compute the prob-
ability density function, random numbers, and distribution function for some
distributions. The dtgiw package consists of six functions:

(1) dDTGIW(x,alpha,beta,lambda,theta) is the pdf of the DTGIW dis-
tribution as in (2.1),

(2) pDTGIW(q,alpha,beta,lambda,theta) is the cdf of the DTGIW dis-
tribution as in (2.2),

(3) qDTGIW(p,alpha,beta,lambda,theta) is the quantile function of the
DTGIW distribution as in (2.3),

(4) rDTGIW(n,alpha,beta,lambda,theta) is the n random number of
the DTGIW distribution as in (2.4).

(5) loglikeDTGIW(x,alpha,beta,lambda,theta) is the negative log-
likelihood value of the DTGIW distribution.

(6) plotDTGIW(x,alpha,beta,lambda,theta) is the graph for the pmf
of the DTGIW distribution.

In the calling sequence for using the functions x must be a vector of data
values; q must be a vector of quantiles; p must be a vector of probabilities; n
must be a number of observations; alpha must be a value of the parameter
α; beta must be a value of the parameter β; lambda must be a value of the
parameter λ; theta must be a value of the parameter θ.
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4 An R Implementation for Estimating the

Parameters of the DTGIW Distribution

In this section, three-parameter estimation methods, the maximum likelihood
(ML), Anderson-Darling (AD), and least-square (LS) estimators, are used to
estimate the parameters of the DTGIW distribution.

4.1 The ML method for the DTGIW distribution

Let X1, X2, . . . , Xn be independently and identically distributed (i.i.d.) sam-
ple of size n with pdf f(xi;Θ) as (2.1), the likelihood function can be ex-
pressed as

L(Θ; xi) =

n
∏

i=1

(1 + θ)
{

exp
[

−λ(βxi + β)−α
]

− exp
[

−λ(βxi)
−α

]}

− θ
{

exp
[

−2λ(βxi + β)−α
]

− exp
[

−2λ(βxi)
−α

]}

,

where Θ = (α, β, λ, θ)T . The components of the unit score vector are ob-
tained by taking the partial derivatives of the ℓ(Θ) = logL(Θ; xi) with re-
spect to each parameter, and the ML estimates of parameters can be obtained
by setting the score functions equal to zero, i.e.,

∂ℓ(Θ)

∂α
= 0,

∂ℓ(Θ)

∂β
= 0,

∂ℓ(Θ)

∂λ
= 0, and

∂ℓ(Θ)

∂θ
= 0.

In this work, we employ the optim function in R language and the dDTGIW
function in the dtgiw package [5] to obtain the ML estimates of α, β, λ and
θ as the following.

#============ML method for the DTGIW distribution=============#

logDTGIW<-function(x,par){

alpha<-par[1]; beta<-par[2]; lambda<-par[3]; theta<-par[4];

loglike<--sum(log(dDTGIW(x,alpha,beta,lambda,theta)))

return(loglike)

} optim(par=t.start,fn=logDTGIW,x=x)

4.2 The AD method for the DTGIW distribution

Let X1, X2, . . . , Xn be i.i.d. sample of size n, and X(1), X(2), . . . , X(n) is or-
dered random sample with cdf F (xi;Θ) as (2.2). The estimators of each
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parameter for the DTGIW distribution is obtained by minimizing the func-
tion as follows:

A(Θ) = −n−
1

n

n
∑

i=1

(2i− 1)
{

log
[

F
(

x(i);Θ
)]

+ log
[

1− F
(

x(n+1−i);Θ
)]}

.

The AD estimators are calculated by solving the non-linear equations as
follows:

∂A(Θ)

∂α
= 0,

∂A(Θ)

∂β
= 0,

∂A(Θ)

∂λ
= 0, and

∂A(Θ)

∂θ
= 0.

In this work, we employ the nlm function in the R language and the
pDTGIW function in the dtgiw package [5] to obtain the AD estimates of α,
β, λ and θ as the following.

#===========AD method for the DTGIW distribution============#

ADE_DTGIW<-function(x,par){

alpha<-par[1]; beta<-par[2]; lambda<-par[3]; theta<-par[4];

sx<-sort(x); r<-length(sx); L<-numeric()

for(v in 1:r){

L[v]<-((2*v)-1)*(log(pDTGIW(sx[v],alpha,beta,lambda,theta))

+log(1-pDTGIW(sx[r+1-v],alpha,beta,lambda,theta)))

} M<--r-(1/r)*sum(L)

return(M)

} optim(par=t.start,fn=ADE_DTGIW,x=x)

4.3 The LS method for the DTGIW distribution

Let X1, X2, . . . , Xn be i.i.d. sample of size n, and let X(1), X(2), . . . , X(n) be
an ordered random sample with cdf F (xi;Θ) as (2.2). The estimators of
each parameter for the DTGIW distribution is obtained by minimizing the
function as follows:
Give Ri = F (x(i)|Θ) and the corresponding expected value E(Ri) = i/(n+1)
where i = 1, . . . , n. Thus LS estimators of the parameters α, β, λ, and θ are
obtained by minimizing sum of a quadratic form in the difference between
the theoretical distribution function, and their expected, where

SSE(Θ) =

n
∑

i=1

[

(

F (x(i)|Θ)
)

−
i

n + 1

]2

.
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The LS estimators are calculated by solving the non-linear equations
which are obtained by setting the partial derivatives to zero as follows:

∂SSE(Θ)

∂α
= 0,

∂SSE(Θ)

∂β
= 0,

∂SSE(Θ)

∂λ
= 0, and

∂SSE(Θ)

∂θ
= 0.

We employ the optim function in the R language and the pDTGIW function
in the dtgiw package [5] to obtain the LS estimates of α, β, λ and θ as follow:

#============LS method for the DTGIW distribution===========#

LS_DTGIW<-function(x,par){

alpha<-par[1]; beta<-par[2]; lambda<-par[3]; theta<-par[4];

sx<-sort(x); r<-length(sx); L<-numeric()

for(v in 1:r){

L[v]<-pDTGIW(sx[v],alpha,beta,lambda,theta)-(v/(r+1))

} return(sum(L^2))

} optim(par=t.start,fn=LS_DTGIW,x=x)

5 Simulation Study for Estimating the Pa-

rameters of the DTGIW Distribution

Simulation studies are computer experiments that involve creating data by
pseudo-random sampling from known probability distributions. They are in-
valuable for statistical research, particularly for comparing alternative meth-
ods [8]. In this section, we compare the performances of the proposed esti-
mators (i.e., ML, AD, and LS methods) of parameters α, β, λ and θ. This
comparison is carried out by taking random samples of different sizes (n = 30,
60, 100, and 200) with various parameters values as in Figure 1. Experiments
consider each case with 1,000 replications. The estimators are compared in
terms of the estimated values’ root mean square errors (RMSE). The results
are summarized in tables 2-3.

Based on tables 2-3, note that:
(i) The RMSE values are decreasing as the sample sizes values are increasing
for all cases considered in this section.
(ii) The estimated values of the suggested estimators are close to the true
parameter as the sample sizes increase for large n.
(iii) Observe that the ML method gives the RMSE values less than the AD
and LS methods.
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(a)  α = 2.5, β = 1.5, λ =1.5, θ = −0.5
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(b)  α = 1.5, β = 0.5, λ =1.5, θ = 0.5

Figure 1: The pmf plots for the DTGIW distribution with the specified values
of α, β, λ and θ.

Table 2: Estimates (Est) and RMSE values of parameters of the DTGIW
distribution for α = 2.5, β = 1.5, λ = 1.5, and θ = −0.5

ML AD LS
n Est RMSE Est RMSE Est RMSE

30 α 2.5815 0.5813 2.1046 0.1839 1.9752 0.3039
β 1.4485 0.0833 1.3083 0.0477 1.3462 0.0363
λ 1.5376 0.1964 1.9692 0.3285 1.9430 0.2283
θ -0.3541 0.0899 -0.3916 0.0673 -0.4586 0.0240

60 α 2.5515 0.2158 2.1073 0.1634 2.0078 0.2512
β 1.4724 0.0173 1.2037 0.0898 1.2207 0.0804
λ 1.5131 0.0035 1.6357 0.0189 1.6201 0.0148
θ -0.4641 0.0050 -0.4581 0.0088 -0.4592 0.0080

100 α 2.5595 0.1305 2.1087 0.1595 2.0178 0.2387
β 1.4642 0.0130 1.1969 0.0933 1.2082 0.0869
λ 1.5140 0.0023 1.6319 0.0177 1.6097 0.0122
θ -0.4745 0.0008 -0.4366 0.0110 -0.4638 0.0052

200 α 2.5053 0.0482 2.1011 0.1620 2.0336 0.2212
β 1.4706 0.0069 1.1898 0.0969 1.2091 0.0854
λ 1.5111 0.0012 1.6121 0.0127 1.6216 0.0149
θ -0.4912 0.0002 -0.4498 0.0098 -0.4381 0.0115
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Table 3: Estimates (Est) and RMSE values of parameters of the DTGIW
distribution for α = 1.5, β = 0.5, λ = 1.5, and θ = 0.5

ML AD LS
n Est RMSE Est RMSE Est RMSE

30 α 1.6682 0.1182 1.6088 0.0788 1.6364 0.0856
β 0.5473 0.0110 0.4116 0.0194 0.4274 0.0146
λ 1.5775 0.0737 1.5736 0.0507 1.5593 0.0597
θ 0.3295 0.0811 0.5404 0.0964 0.4747 0.0928

60 α 1.5961 0.0469 1.6044 0.0644 1.6524 0.0630
β 0.5243 0.0090 0.3990 0.0167 0.4156 0.0122
λ 1.5594 0.0324 1.5530 0.0473 1.5381 0.0429
θ 0.3837 0.0801 0.5340 0.0857 0.5175 0.0828

100 α 1.5307 0.0382 1.5960 0.0495 1.6407 0.0538
β 0.5311 0.0052 0.3879 0.0136 0.4047 0.0119
λ 1.5645 0.0276 1.5338 0.0370 1.5350 0.0362
θ 0.4542 0.0641 0.5874 0.0694 0.5445 0.0953

200 α 1.5121 0.0288 1.5891 0.0363 1.6264 0.0449
β 0.5249 0.0040 0.4154 0.0115 0.4027 0.0114
λ 1.5168 0.0223 1.5630 0.0316 1.5316 0.0340
θ 0.4962 0.0032 0.6285 0.0607 0.5173 0.0871

6 Application on Real Data

In this section, we discuss the goodness of fit of the DTGIW with two count
data sets. The first data set is the number of insects from Kemp [9] as in
Table 4 (see [1]). The second data set is the number of sperm in eggs in
the UK coal mining industry in successive four-week periods in the years
1948-1959 from Kendall [10] as in Table 5.

We compare the proposed distribution with the DL distribution with a
positive parameter γ [2], the DIW distribution [3] with positive parameters
α and β, and the Poisson distribution with a positive parameter µ. The
Kolmogorov-Smirnov (KS) and Cramer-von Mises (CVM) tests compare fit-
ting distributions, where the smaller values of test statistics give the best
fit for the data. From the results in Tables 4-5, the DTGIW distribution
gives the lowest statistic values of KS and CVM tests. Hence, the DTGIW
distribution could be a good alternative to explaining two data sets.
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Table 4: Observed and expected frequencies for distribution of the number
of insects (X) from Kemp [9]

Observed Expected frequency
X frequency Poisson DL DIW DTGIW

0 33 26.45 29.62 32.62 32.58
1 12 19.84 16.16 14.66 14.64
2 6 7.44 6.61 4.11 4.16
3 3 1.86 2.40 1.71 1.73
4 1 0.35 0.82 0.89 0.89
5 1 0.05 0.27 0.52 0.52
ML estimates µ̂ = 0.7500 γ̂ = 1.2994 α̂ = 1.6745 α̂ =1.7014

β̂ = 1.4441 β̂ = 1.1726

λ̂ = 0.5308

θ̂ = −0.3839
KS test 0.1169 0.0603 0.0407 0.0397
(p-value) (0.4282) (0.9870) (0.9999) (0.9999)
CVM test 0.3357 0.0887 0.0290 0.0282
(p-value) (0.1016) (0.4760) (0.8060) (0.8124)

7 Conclusions

In this article, we proposed the R implementation for the DTGIW distri-
bution [4] along with using the dtgiw package [5] in the R program to do
an analysis of the count data. The dtgiw package includes the probability
density function, distribution function, quantile function, and random gener-
ation procedure for the DTGIW distribution. We compared three methods
of parameter estimation of the DTGIW distribution, including the ML, AD,
and LS methods. Simulation results showed that the ML method was better
than the LS and AD methods. Finally, the results of the count data analysis
for two data sets showed that the DTGIW distribution was better than the
DIW, DL, and Poisson distributions.
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Table 5: Observed and expected frequencies for distribution of the nnumber
of sperm in eggs (X) [10]

Observed Expected frequency
X frequency Poisson DL DIW DTGIW

0 28 37.23 41.94 27.76 27.74
1 44 28.48 23.15 45.16 45.13
2 7 10.89 9.58 5.31 5.40
3 1 2.78 3.53 1.12 1.11
ML estimates µ̂ = 0.7650 γ̂ = 1.2875 α̂ = 3.5146 α̂ =3.5925

β̂ = 0.9840 β̂ = 1.3323

λ̂ = 2.2492

θ̂ = −0.4103
KS test 0.1153 0.1742 0.0116 0.0109
(p-value) (0.2377) (0.0155) (0.9999) (0.9999)
CVM test 0.5663 1.1410 0.0049 0.0045
(p-value) (0.0295) (0.0017) (0.9689) (0.9720)
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