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Abstract

The aim of this paper is to investigate some characterizations of
upper and lower almost contra-(Λ, sp)-continuous multifunctions by
utilizing the concept of s(Λ, sp)-closed sets.

1 Introduction

The concept of contra-continuity was introduced by Dontchev [6]. In 1999,
Dontchev and Noiri [5] considered a slightly weaker form of contra-continuity
called contra-semicontinuity and investigated the class of strongly S-closed
spaces. In 2002, Jafari and Noiri [10] introduced and investigated a new gen-
eralization of contra-continuity called contra-precontinuity. In 2004, Ekici [9]
introduced the concept of almost contra-precontinuity as a new generaliza-
tion of regular set-connectedness, contra-precontinuity, almost s-continuity
and perfectly continuity. Moreover, basic properties and preservation the-
orems of almost contra-precontinuity and the relationships between almost
contra-precontinuity and P -regular graphs were obtained in [9]. The first ini-
tiation of the concept of contra-continuous multifunctions has been done by
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Ekici et al. [8]. In 2009, Ekici et al. [7] introduced and studied a new general-
ization of contra-continuous multifunctions called almost contra-continuous
multifunctions. In this paper, we investigate several characterizations of up-
per and lower almost contra-(Λ, sp)-continuous multifunctions.

2 Preliminaries

Let A be a subset of a topological space (X, τ). The closure of A and the
interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a
topological space (X, τ) is said to be β-open [1] if A ⊆ Cl(Int(Cl(A))). The
complement of a β-open set is called β-closed. The family of all β-open sets
of a topological space (X, τ) is denoted by β(X, τ). A subset Λsp(A) [11] is
defined as follows:
Λsp(A) = ∩{U | A ⊆ U, U ∈ β(X, τ)}. A subset A of a topological space
(X, τ) is called a Λsp-set [11] if A = Λsp(A). A subset A of a topological space
(X, τ) is called (Λ, sp)-closed [4] if A = T ∩C, where T is a Λsp-set and C is
a β-closed set. The complement of a (Λ, sp)-closed set is called (Λ, sp)-open.
The family of all (Λ, sp)-open sets in a topological space (X, τ) is denoted by
ΛspO(X, τ). Let A be a subset of a topological space (X, τ). A point x ∈ X

is called a (Λ, sp)-cluster point [4] of A if A∩U 6= ∅ for every (Λ, sp)-open set
U of X containing x. The set of all (Λ, sp)-cluster points of A is called the
(Λ, sp)-closure [4] of A and is denoted by A(Λ,sp). The union of all (Λ, sp)-
open sets contained in A is called the (Λ, sp)-interior [4] of A and is denoted
by A(Λ,sp). A subset A of a topological space (X, τ) is said to be s(Λ, sp)-
open (resp. r(Λ, sp)-open) if A ⊆ [A(Λ,sp)]

(Λ,sp) (resp. A = [A(Λ,sp)](Λ,sp)) [4].
The complement of a s(Λ, sp)-open (resp. r(Λ, sp)-open) set is said to be
s(Λ, sp)-closed (resp. r(Λ, sp)-closed). The family of all s(Λ, sp)-open (resp.
r(Λ, sp)-open) sets in a topological space (X, τ) is denoted by sΛspO(X, τ)
(resp. rΛspO(X, τ)). Let A be a subset of a topological space (X, τ). The
intersection of all s(Λ, sp)-closed sets containing A is called the s(Λ, sp)-
closure [12] of A and is denoted by As(Λ,sp).

Throughout this paper, the spaces (X, τ) and (Y, σ) (or simply X and Y )
always mean topological spaces and F : X → Y (resp. f : X → Y ) presents
a multivalued (resp. single valued) function. For a multifunction F : X → Y ,
following [2] we shall denote the upper and lower inverse of a set B of Y by
F+(B) and F−(B), respectively; that is, F+(B) = {x ∈ X | F (x) ⊆ B} and
F−(B) = {x ∈ X | F (x) ∩B 6= ∅}. For each A ⊆ X , F (A) = ∪x∈AF (x).
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3 Almost contra-(Λ, sp)-continuity and s(Λ, sp)-

closed sets

In this section, we investigate some characterizations of upper and lower
almost contra-(Λ, sp)-continuous multifunctions.

Definition 3.1. [3] A multifunction F : (X, τ) → (Y, σ) is said to be:

(i) lower almost contra-(Λ, sp)-continuous at x ∈ X if, for each r(Λ, sp)-
closed set K of Y with x ∈ F−(K), there exists a (Λ, sp)-open set U of
X containing x such that U ⊆ F−(K);

(ii) upper almost contra-(Λ, sp)-continuous at x ∈ X if, for each r(Λ, sp)-
closed set K of Y with x ∈ F+(K), there exists a (Λ, sp)-open set U of
X containing x such that U ⊆ F+(K);

(iii) lower (upper) almost contra-(Λ, sp)-continuous if F has this property
at each point of X.

Theorem 3.2. For a multifunction F : (X, τ) → (Y, σ), the following prop-
erties are equivalent:

(1) F is upper almost contra-(Λ, sp)-continuous;

(2) [F−(K(Λ,sp))]
(Λ,sp) ⊆ F−(K) for every s(Λ, sp)-closed set K of Y ;

(3) [F−([Bs(Λ,sp)](Λ,sp))]
(Λ,sp) ⊆ F−(Bs(Λ,sp)) for every subset B of Y ;

(4) F+(Bs(Λ,sp)) ⊆ [F+([Bs(Λ,sp)]
(Λ,sp))](Λ,sp) for every subset B of Y .

Proof. (1) ⇒ (2): Let K be any s(Λ, sp)-closed set of Y . Then, Y − K is
s(Λ, sp)-open in Y . By Theorem 1 of [3], we have

X − F−(K) = F+(Y −K) ⊆ [F+([Y −K](Λ,sp))](Λ,sp)

= [F+(Y −K(Λ,sp))](Λ,sp)

= [X − F−(K(Λ,sp))](Λ,sp)

= X − [F−(K(Λ,sp))]
(Λ,sp)

and hence [F−(K(Λ,sp))]
(Λ,sp) ⊆ F−(K).

(2) ⇒ (3): Let B be any subset of Y . Then, Bs(Λ,sp) is s(Λ, sp)-closed in
Y , by (2), [F−([Bs(Λ,sp)](Λ,sp))]

(Λ,sp) ⊆ F−(Bs(Λ,sp)).
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(3) ⇒ (4): Let B be any subset of Y . By (3), we have

X − F+(Bs(Λ,sp)) = F−([Y − B]s(Λ,sp))

⊇ [F−([[Y − B]s(Λ,sp)](Λ,sp))]
(Λ,sp)

= [F−([Y − Bs(Λ,sp)](Λ,sp))]
(Λ,sp)

= [F−(Y − [Bs(Λ,sp)]
(Λ,sp))](Λ,sp)

= [X − F+([Bs(Λ,sp)]
(Λ,sp))](Λ,sp)

= X − [F+([Bs(Λ,sp)]
(Λ,sp))](Λ,sp)

and hence F+(Bs(Λ,sp)) ⊆ [F+([Bs(Λ,sp)]
(Λ,sp))](Λ,sp).

(4) ⇒ (1): Let V be any s(Λ, sp)-open set of Y . By (4), we have F+(V ) =
F+(Vs(Λ,sp)) ⊆ [F+([Vs(Λ,sp)]

(Λ,sp))](Λ,sp) = [F+(V (Λ,sp))](Λ,sp) and by Theorem
1 of [3], F is upper almost contra-(Λ, sp)-continuous.

Theorem 3.3. For a multifunction F : (X, τ) → (Y, σ), the following prop-
erties are equivalent:

(1) F is lower almost contra-(Λ, sp)-continuous;

(2) [F+(K(Λ,sp))]
(Λ,sp) ⊆ F+(K) for every s(Λ, sp)-closed set K of Y ;

(3) [F+([Bs(Λ,sp)](Λ,sp))]
(Λ,sp) ⊆ F+(Bs(Λ,sp)) for every subset B of Y ;

(4) F−(Bs(Λ,sp)) ⊆ [F−([Bs(Λ,sp)]
(Λ,sp))](Λ,sp) for every subset B of Y .

Proof. The proof is similar to that of Theorem 3.2.

Definition 3.4. [3] A function f : (X, τ) → (Y, σ) is called almost contra-
(Λ, sp)-continuous if, for each x ∈ X and each r(Λ, sp)-closed set K of Y
containing f(x), there exists a (Λ, sp)-open set U of X containing x such
that f(U) ⊆ K.

Corollary 3.5. For a function f : (X, τ) → (Y, σ), the following properties
are equivalent:

(1) f is almost contra-(Λ, sp)-continuous;

(2) [f−1(K(Λ,sp))]
(Λ,sp) ⊆ f−1(K) for every s(Λ, sp)-closed set K of Y ;

(3) [f−1([Bs(Λ,sp)](Λ,sp))]
(Λ,sp) ⊆ f−1(Bs(Λ,sp)) for every subset B of Y ;

(4) f−1(Bs(Λ,sp)) ⊆ [f−1([Bs(Λ,sp)]
(Λ,sp))](Λ,sp) for every subset B of Y .
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