

Almost contra- (Λ, sp) -continuity and $s(\Lambda, sp)$ -closed sets

Jeeranunt Khampakdee, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit
Department of Mathematics
Faculty of Science
Mahasarakham University
Maha Sarakham, 44150, Thailand

email: jeeranunt.k@msu.ac.th, chawalit.b@msu.ac.th

(Received September 1, 2022, Accepted October 2, 2022)

Abstract

The aim of this paper is to investigate some characterizations of upper and lower almost contra- (Λ, sp) -continuous multifunctions by utilizing the concept of $s(\Lambda, sp)$ -closed sets.

1 Introduction

The concept of contra-continuity was introduced by Dontchev [6]. In 1999, Dontchev and Noiri [5] considered a slightly weaker form of contra-continuity called contra-semicontinuity and investigated the class of strongly S-closed spaces. In 2002, Jafari and Noiri [10] introduced and investigated a new generalization of contra-continuity called contra-precontinuity. In 2004, Ekici [9] introduced the concept of almost contra-precontinuity as a new generalization of regular set-connectedness, contra-precontinuity, almost s-continuity and perfectly continuity. Moreover, basic properties and preservation theorems of almost contra-precontinuity and the relationships between almost contra-precontinuity and P-regular graphs were obtained in [9]. The first initiation of the concept of contra-continuous multifunctions has been done by

Key words and phrases: lower almost contra- (Λ, sp) -continuous multifunction, upper almost contra- (Λ, sp) -continuous multifunction. AMS (MOS) Subject Classifications: 54C08, 54C60. ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net

Ekici et al. [8]. In 2009, Ekici et al. [7] introduced and studied a new generalization of contra-continuous multifunctions called almost contra-continuous multifunctions. In this paper, we investigate several characterizations of upper and lower almost contra- (Λ, sp) -continuous multifunctions.

2 Preliminaries

Let A be a subset of a topological space (X, τ) . The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is said to be β -open [1] if $A \subseteq Cl(Int(Cl(A)))$. The complement of a β -open set is called β -closed. The family of all β -open sets of a topological space (X, τ) is denoted by $\beta(X, \tau)$. A subset $\Lambda_{sp}(A)$ [11] is defined as follows:

 $\Lambda_{sp}(A) = \bigcap \{U \mid A \subseteq U, U \in \beta(X, \tau)\}.$ A subset A of a topological space (X,τ) is called a Λ_{sp} -set [11] if $A=\Lambda_{sp}(A)$. A subset A of a topological space (X,τ) is called (Λ, sp) -closed [4] if $A=T\cap C$, where T is a Λ_{sp} -set and C is a β -closed set. The complement of a (Λ, sp) -closed set is called (Λ, sp) -open. The family of all (Λ, sp) -open sets in a topological space (X, τ) is denoted by $\Lambda_{sp}O(X,\tau)$. Let A be a subset of a topological space (X,τ) . A point $x\in X$ is called a (Λ, sp) -cluster point [4] of A if $A \cap U \neq \emptyset$ for every (Λ, sp) -open set U of X containing x. The set of all (Λ, sp) -cluster points of A is called the (Λ, sp) -closure [4] of A and is denoted by $A^{(\Lambda, sp)}$. The union of all (Λ, sp) open sets contained in A is called the (Λ, sp) -interior [4] of A and is denoted by $A_{(\Lambda,sp)}$. A subset A of a topological space (X,τ) is said to be $s(\Lambda,sp)$ open (resp. $r(\Lambda, sp)$ -open) if $A \subseteq [A_{(\Lambda, sp)}]^{(\Lambda, sp)}$ (resp. $A = [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$) [4]. The complement of a $s(\Lambda, sp)$ -open (resp. $r(\Lambda, sp)$ -open) set is said to be $s(\Lambda, sp)$ -closed (resp. $r(\Lambda, sp)$ -closed). The family of all $s(\Lambda, sp)$ -open (resp. $r(\Lambda, sp)$ -open) sets in a topological space (X, τ) is denoted by $s\Lambda_{sp}O(X, \tau)$ (resp. $r\Lambda_{sp}O(X,\tau)$). Let A be a subset of a topological space (X,τ) . The intersection of all $s(\Lambda, sp)$ -closed sets containing A is called the $s(\Lambda, sp)$ closure [12] of A and is denoted by $A^{s(\Lambda,sp)}$.

Throughout this paper, the spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces and $F: X \to Y$ (resp. $f: X \to Y$) presents a multivalued (resp. single valued) function. For a multifunction $F: X \to Y$, following [2] we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively; that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$.

3 Almost contra- (Λ, sp) -continuity and $s(\Lambda, sp)$ closed sets

In this section, we investigate some characterizations of upper and lower almost contra- (Λ, sp) -continuous multifunctions.

Definition 3.1. [3] A multifunction $F:(X,\tau)\to (Y,\sigma)$ is said to be:

- (i) lower almost contra- (Λ, sp) -continuous at $x \in X$ if, for each $r(\Lambda, sp)$ closed set K of Y with $x \in F^-(K)$, there exists a (Λ, sp) -open set U of X containing x such that $U \subseteq F^-(K)$;
- (ii) upper almost contra- (Λ, sp) -continuous at $x \in X$ if, for each $r(\Lambda, sp)$ closed set K of Y with $x \in F^+(K)$, there exists a (Λ, sp) -open set U of X containing x such that $U \subseteq F^+(K)$;
- (iii) lower (upper) almost contra- (Λ, sp) -continuous if F has this property at each point of X.

Theorem 3.2. For a multifunction $F:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (1) F is upper almost contra- (Λ, sp) -continuous;
- (2) $[F^{-}(K_{(\Lambda,sp)})]^{(\Lambda,sp)} \subseteq F^{-}(K)$ for every $s(\Lambda,sp)$ -closed set K of Y;
- (3) $[F^-([B^{s(\Lambda,sp)}]_{(\Lambda,sp)})]^{(\Lambda,sp)} \subseteq F^-(B^{s(\Lambda,sp)})$ for every subset B of Y;
- (4) $F^+(B_{s(\Lambda,sp)}) \subseteq [F^+([B_{s(\Lambda,sp)}]^{(\Lambda,sp)})]_{(\Lambda,sp)}$ for every subset B of Y.

Proof. (1) \Rightarrow (2): Let K be any $s(\Lambda, sp)$ -closed set of Y. Then, Y - K is $s(\Lambda, sp)$ -open in Y. By Theorem 1 of [3], we have

$$X - F^{-}(K) = F^{+}(Y - K) \subseteq [F^{+}([Y - K]^{(\Lambda,sp)})]_{(\Lambda,sp)}$$

$$= [F^{+}(Y - K_{(\Lambda,sp)})]_{(\Lambda,sp)}$$

$$= [X - F^{-}(K_{(\Lambda,sp)})]_{(\Lambda,sp)}$$

$$= X - [F^{-}(K_{(\Lambda,sp)})]^{(\Lambda,sp)}$$

and hence $[F^-(K_{(\Lambda,sp)})]^{(\Lambda,sp)} \subseteq F^-(K)$.

 $(2) \Rightarrow (3)$: Let B be any subset of Y. Then, $B^{s(\Lambda,sp)}$ is $s(\Lambda,sp)$ -closed in Y, by (2), $[F^{-}([B^{s(\Lambda,sp)}]_{(\Lambda,sp)})]^{(\Lambda,sp)} \subseteq F^{-}(B^{s(\Lambda,sp)})$.

 $(3) \Rightarrow (4)$: Let B be any subset of Y. By (3), we have

$$X - F^{+}(B_{s(\Lambda,sp)}) = F^{-}([Y - B]^{s(\Lambda,sp)})$$

$$\supseteq [F^{-}([[Y - B]^{s(\Lambda,sp)}]_{(\Lambda,sp)})]^{(\Lambda,sp)}$$

$$= [F^{-}([Y - B_{s(\Lambda,sp)}]_{(\Lambda,sp)})]^{(\Lambda,sp)}$$

$$= [F^{-}(Y - [B_{s(\Lambda,sp)}]^{(\Lambda,sp)})]^{(\Lambda,sp)}$$

$$= [X - F^{+}([B_{s(\Lambda,sp)}]^{(\Lambda,sp)})]^{(\Lambda,sp)}$$

$$= X - [F^{+}([B_{s(\Lambda,sp)}]^{(\Lambda,sp)})]_{(\Lambda,sp)}$$

and hence $F^+(B_{s(\Lambda,sp)}) \subseteq [F^+([B_{s(\Lambda,sp)}]^{(\Lambda,sp)})]_{(\Lambda,sp)}$.

 $(4) \Rightarrow (1)$: Let V be any $s(\Lambda, sp)$ -open set of Y. By (4), we have $F^+(V) = F^+(V_{s(\Lambda,sp)}) \subseteq [F^+([V_{s(\Lambda,sp)}]^{(\Lambda,sp)})]_{(\Lambda,sp)} = [F^+(V^{(\Lambda,sp)})]_{(\Lambda,sp)}$ and by Theorem 1 of [3], F is upper almost contra- (Λ, sp) -continuous.

Theorem 3.3. For a multifunction $F:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (1) F is lower almost contra- (Λ, sp) -continuous;
- (2) $[F^+(K_{(\Lambda,sp)})]^{(\Lambda,sp)} \subseteq F^+(K)$ for every $s(\Lambda,sp)$ -closed set K of Y;
- (3) $[F^+([B^{s(\Lambda,sp)}]_{(\Lambda,sp)})]^{(\Lambda,sp)} \subseteq F^+(B^{s(\Lambda,sp)})$ for every subset B of Y;
- (4) $F^-(B_{s(\Lambda,sp)}) \subseteq [F^-([B_{s(\Lambda,sp)}]^{(\Lambda,sp)})]_{(\Lambda,sp)}$ for every subset B of Y.

Proof. The proof is similar to that of Theorem 3.2.

Definition 3.4. [3] A function $f:(X,\tau)\to (Y,\sigma)$ is called almost contra-(Λ, sp)-continuous if, for each $x\in X$ and each $r(\Lambda, sp)$ -closed set K of Y containing f(x), there exists a (Λ, sp) -open set U of X containing x such that $f(U)\subset K$.

Corollary 3.5. For a function $f:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (1) f is almost contra- (Λ, sp) -continuous;
- (2) $[f^{-1}(K_{(\Lambda,sp)})]^{(\Lambda,sp)} \subseteq f^{-1}(K)$ for every $s(\Lambda,sp)$ -closed set K of Y;
- (3) $[f^{-1}([B^{s(\Lambda,sp)}]_{(\Lambda,sp)})]^{(\Lambda,sp)} \subseteq f^{-1}(B^{s(\Lambda,sp)})$ for every subset B of Y;
- (4) $f^{-1}(B_{s(\Lambda,sp)}) \subseteq [f^{-1}([B_{s(\Lambda,sp)}]^{(\Lambda,sp)})]_{(\Lambda,sp)}$ for every subset B of Y.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Assiut Univ., **12**, (1983), 77–90.
- [2] C. Berge, Espaces topologiques fonctions multivoques, Dunod, Paris, 1959.
- [3] C. Boonpok, J. Khampakdee, Upper and lower almost contra- (Λ, sp) continuity (accepted).
- [4] C. Boonpok, (Λ, sp) -closed sets and related topics in topological spaces, WSEAS Tran. Math., **19**, (2020), 312–322.
- [5] J. Dontchev, T. Noiri, Contra-semicontinuous functions, Math. Pannonica, 10, no. 2, (1999), 159–168.
- [6] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Int. J. Math. Math. Sci., 19, no. 2, (1996), 303–310.
- [7] E. Ekici, S. Jafari, V. Popa, On almost contra-continuous multifunctions, Lobachevskii J. Math., **30**, no. 2, (2009), 124–131.
- [8] E. Ekici, S. Jafari, T. Noiri, On upper and lower contra-continuous multifunctions, Analele Sti. Univ. Al I. Cuza Mat., **54**, no. 1, (2008), 75–85.
- [9] E. Ekici, Almost contra-precontinuous functions, Bull. Malays. Math. Sci. Soc., **27**, (2004), 53–65.
- [10] S. Jafari, T. Noiri, On contra-precontinuous functions, Bull. Malays. Math. Sci. Soc., 25, (2002), 115–128.
- [11] T. Noiri, E. Hatir, Λ_{sp} -sets and some weak separation axioms, Acta Math. Hungar., **103**, no. 3, (2004), 225–232.
- [12] C. Viriyapong, C. Boonpok, Weak quasi (Λ, sp) -continuity for multifunctions, Int. J. Math. Comput. Sci., **17**, no. 3, (2022), 1201–1209.