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Abstract

In this article, we study the Diophantine equation px+qy = z2 with
p, q > 3 and p, q ≡ 3 (mod 4) and x, y, z are non-negative integers.
We give some conditions for the non-existing of non-negative integer
solutions and show all solutions for x = 1. Moreover, we apply our
results to investigate the solutions of the Diophantine equation px +
11y = z2.

1 Introduction

Finding non-negative integer solutions of the Diophantine equation px+qy =
z2, where p and q are prime numbers, is a famous topic in number theory.
Many researchers have solved the equation when p and q are explicit prime
numbers (see, for example, [4], [5] and [11]). Moreover, Cheenchan et al. [6]
have investigated the Diophantine equation by giving p or q as variables with
some conditions such as px + 5y = z2.

Burshtein [2] studied the Diophantine equation 2x + py = z2. In 2021,
Tangjai and Chubthaisong [12] gave non-negative integer solutions for the
Diophantine equation 3x + py = z2, where p ≡ 2 (mod 3). One year later,
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Pakapongpun and Chattae [9] gave the solutions of the Diophantine equation
px + 7y = z2 with p ≡ 1 (mod 6) or p ≡ 3 (mod 6) or p ≡ 5 (mod 6)
with some conditions. Our first aim was to study the Diophantine equation
px + 11y = z2. However, it turned out that we could find the solution to a
generalized equation. Consequently, the purpose of this work is to study the
solutions of the Diophantine equation px+ qy = z2 with p, q > 3 and p, q ≡ 3
(mod 4).

2 Main results

In this work, we consider the Diophantine equation px+qy = z2 with p, q > 3,
p, q ≡ 3 (mod 4), and p 6= q (Burshtein [3] have studied the solutions when
p = q). If x = 0, then 1 + qy = z2 or z2 − qy = 1 from which it follows that
q = 2 using Catalan’s conjecture, proven by Mihailescu[7]: (3,2,2,3) is the
unique solution (a, b, x, y) for the Diophantine equation ax − by = 1 where
a, b, x and y are integers such that min{a, b, x, y} > 1 but this contradicts
q > 3. Similarly, if y = 0, then p = 2, a contradiction. As a result, for x = 0
or y = 0 the equation px + qy = z2 has no non-negative integer solution.
Therefore, from now on, p and q are distinct prime numbers with p, q > 3,
p, q ≡ 3 (mod 4) and x, y are positive integers.

The following results explain the relation of x and y when the Diophantine
equation has a positive integer solution.

Theorem 2.1. If the Diophantine equation px+qy = z2 has a positive integer

solution, then x and y have opposite parity.

Proof. Assume that the Diophantine equation px + qy = z2 has a pos-
itive integer solution. Since p ≡ 3 (mod 4) and q ≡ 3 (mod 4), we have
px + qy ≡ (−1)x + (−1)y (mod 4). So z2 ≡ (−1)x + (−1)y (mod 4). Since p

and q are odd numbers, we have px + qy is an even number. Then z2 ≡ 0
(mod 4) and (−1)x + (−1)y ≡ 0 (mod 4). Therefore, x and y have opposite
parity.
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Theorem 2.2. If the Diophantine equation px+qy = z2 has a positive integer

solution and y is an even number, then 2q
y

2 = px − 1 and p ≡ 1 (mod q).

Proof. Assume that the Diophantine equation px + qy = z2 has a posi-
tive integer solution and y is an even number. Then there exists a positive
integer k such that y = 2k. Thus px + q2k = z2 so that px = z2 − q2k =
(z− qk)(z+ qk). Since p is a prime number, there exists a non-negative inte-
ger u with u ≤ x such that z−qk = pu and z+qk = px−u. Then x > 2u and
2qk = pu(px−2u − 1). Since p and q are distinct and p 6= 2, we have u = 0.
Thus 2qk = px − 1 = (p− 1)(px−1 + px−2 + · · ·+ 1). Therefore, q|(p− 1).

Similarly, we obtain the following result.

Theorem 2.3. If the Diophantine equation px+qy = z2 has a positive integer

solution and x is an even number, then 2p
x

2 = qy − 1 and q ≡ 1 (mod p).

Next, we consider the Diophantine equation px + qy = z2, where p 6≡ 1
(mod q) and q 6≡ 1 (mod p).

Theorem 2.4. The Diophantine equation px+qy = z2, where p 6≡ 1 (mod q)
and q 6≡ 1 (mod p), has no positive integer solution.

Proof. By Theorem 2.2 and p 6≡ 1 (mod q), we have y is an odd number
or the Diophantine equation has no positive integer solution. Suppose that
the Diophantine equation has positive integer solution. Then y is an odd
number. So x is an even number by Theorems 2.1 and 2.3. Therefore, q ≡ 1
(mod p), a contradiction.

The previous theorem shows that many Diophantine equations such as
7x + 11y = z2 [5], 7x + 31y = z2 [10], 7x + 19y = z2 and 7x + 91y = z2 [11],
px + (p + 4)y = z2 where p ≡ 3 (mod 4) [1] and px + (p + 8)y = z2 where
p ≡ 3 (mod 4) [8] have no positive integer solution.

Next, we study the conditions p ≡ 1 (mod q) or q ≡ 1 (mod p). In fact,
these two conditions do not exist in the same situation. The condition p ≡ 1
(mod q) will exist when p > q.
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Theorem 2.5. The Diophantine equation px+qy = z2, where p ≡ 1 (mod q)
and x is an even number, has no positive integer solution.

Proof. We have 2p
x

2 = qy − 1 by Theorem 2.3. Since p ≡ 1 (mod q), we
have 2p

x

2 ≡ 2 (mod q) and qy−1 ≡ 2 (mod q). Then q = 3, a contradiction.

By the above result, we obtain Theorem 2.1 in [1], the Diophantine equa-
tion 11x+23y = z2 has no positive integer solution when y is an even number.
Next, we find the solutions of the Diophantine equation where x is an odd
number. First, let x = 1.

Theorem 2.6. If the Diophantine equation p+qy = z2 has a positive integer

solution, then y is an even number and (p, q, y, z) = (2q
y

2 + 1, q, y, q
y

2 + 1).

Proof. By Theorems 2.1 and 2.2, we obtain y is an even number and
2q

y

2 = p − 1, respectively. Thus z2 = p + qy = 2q
y

2 + 1 + qy = (q
y

2 + 1)2.
Then z = q

y

2 + 1. Therefore, this equation has solutions (p, q, y, z) =
(2q

y

2 + 1, q, y, q
y

2 + 1).

In the following theorem, we find a relation between q and x when the
Diophantine equation px+ qy = z2 has a positive integer solution and x is an
odd number with x > 1.

Theorem 2.7. Let x be an odd number and x > 1. If the Diophantine

equation px + qy = z2 has a positive integer solution, then q|x.

Proof. Since x is an odd number, we have y is an even number by Theo-
rem 2.1. By Theorem 2.2, we obtain 2q

y

2 = px − 1 and p ≡ 1 (mod q). Then
2q

y

2 = (p− 1)(px−1 + px−2 + · · ·+ 1). Since x > 1, y > 0 and p ≡ 1 (mod q),
we have q|(px−1+ px−2+ · · ·+1) and px−1, px−2, px−3, . . . , p ≡ 1 (mod q). So
px−1 + px−2 + · · ·+ 1 ≡ x (mod q). Thus q|x.

By Theorems 2.1 and 2.7, we obtain the following theorem.

Theorem 2.8. Let x, y > 1. If the Diophantine equation px + qy = z2 has a

positive integer solution, then q|x or p|y.

From the last theorem, we have a condition for the non-existence of pos-
itive integer solutions of the Diophantine equation px + qy = z2.
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We conclude our paper with the following result about the Diophantine
equation px + 11y = z2, where p ≡ 3 (mod 4) and p > 3.

• The Diophantine equation px + 11y = z2 has no non-negative integer
solution, where x = 0 or y = 0 or p 6≡ 1 (mod 11) or p ≡ 1 (mod 11)
and x is an even number.

• The Diophantine equation p + 11y = z2 has positive integer solutions
(p, y, z) = (2(11

y

2 ) + 1, y, 11
y

2 + 1); for example, 23 + 112 = 122 and
2663 + 116 = 13322.

• If the Diophantine equation px + 11y = z2, where x is an odd number
and x > 1, has a positive integer solution, then 11|x.
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