Solutions of the Diophantine Equation
 $$
p^{x}+q^{y}=z^{2}, \text { where } p, q \equiv 3(\bmod 4)
$$

Apirat Siraworakun, Suton Tadee

Department of Mathematics
Faculty of Science and Technology
Thepsatri Rajabhat University
Lopburi 15000, Thailand
email: apirat.si@lawasri.tru.ac.th
(Received September 30, 2022, Accepted October 31, 2022)

Abstract

In this article, we study the Diophantine equation $p^{x}+q^{y}=z^{2}$ with $p, q>3$ and $p, q \equiv 3(\bmod 4)$ and x, y, z are non-negative integers. We give some conditions for the non-existing of non-negative integer solutions and show all solutions for $x=1$. Moreover, we apply our results to investigate the solutions of the Diophantine equation $p^{x}+$ $11^{y}=z^{2}$.

1 Introduction

Finding non-negative integer solutions of the Diophantine equation $p^{x}+q^{y}=$ z^{2}, where p and q are prime numbers, is a famous topic in number theory. Many researchers have solved the equation when p and q are explicit prime numbers (see, for example, [4], [5] and [11]). Moreover, Cheenchan et al. [6] have investigated the Diophantine equation by giving p or q as variables with some conditions such as $p^{x}+5^{y}=z^{2}$.

Burshtein [2] studied the Diophantine equation $2^{x}+p^{y}=z^{2}$. In 2021, Tangjai and Chubthaisong [12] gave non-negative integer solutions for the Diophantine equation $3^{x}+p^{y}=z^{2}$, where $p \equiv 2(\bmod 3)$. One year later,

Key words and phrases: Diophantine equation, Catalan's conjecture.
AMS (MOS) Subject Classifications: 11D61.
Apirat Siraworakun is the corresponding author.
ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net

Pakapongpun and Chattae [9] gave the solutions of the Diophantine equation $p^{x}+7^{y}=z^{2}$ with $p \equiv 1(\bmod 6)$ or $p \equiv 3(\bmod 6)$ or $p \equiv 5(\bmod 6)$ with some conditions. Our first aim was to study the Diophantine equation $p^{x}+11^{y}=z^{2}$. However, it turned out that we could find the solution to a generalized equation. Consequently, the purpose of this work is to study the solutions of the Diophantine equation $p^{x}+q^{y}=z^{2}$ with $p, q>3$ and $p, q \equiv 3$ $(\bmod 4)$.

2 Main results

In this work, we consider the Diophantine equation $p^{x}+q^{y}=z^{2}$ with $p, q>3$, $p, q \equiv 3(\bmod 4)$, and $p \neq q$ (Burshtein [3] have studied the solutions when $p=q$). If $x=0$, then $1+q^{y}=z^{2}$ or $z^{2}-q^{y}=1$ from which it follows that $q=2$ using Catalan's conjecture, proven by Mihailescu[7]: $(3,2,2,3)$ is the unique solution (a, b, x, y) for the Diophantine equation $a^{x}-b^{y}=1$ where a, b, x and y are integers such that $\min \{a, b, x, y\}>1$ but this contradicts $q>3$. Similarly, if $y=0$, then $p=2$, a contradiction. As a result, for $x=0$ or $y=0$ the equation $p^{x}+q^{y}=z^{2}$ has no non-negative integer solution. Therefore, from now on, p and q are distinct prime numbers with $p, q>3$, $p, q \equiv 3(\bmod 4)$ and x, y are positive integers.

The following results explain the relation of x and y when the Diophantine equation has a positive integer solution.

Theorem 2.1. If the Diophantine equation $p^{x}+q^{y}=z^{2}$ has a positive integer solution, then x and y have opposite parity.

Proof. Assume that the Diophantine equation $p^{x}+q^{y}=z^{2}$ has a positive integer solution. Since $p \equiv 3(\bmod 4)$ and $q \equiv 3(\bmod 4)$, we have $p^{x}+q^{y} \equiv(-1)^{x}+(-1)^{y}(\bmod 4)$. So $z^{2} \equiv(-1)^{x}+(-1)^{y}(\bmod 4)$. Since p and q are odd numbers, we have $p^{x}+q^{y}$ is an even number. Then $z^{2} \equiv 0$ $(\bmod 4)$ and $(-1)^{x}+(-1)^{y} \equiv 0(\bmod 4)$. Therefore, x and y have opposite parity.

Solutions of the Diophantine Equation $p^{x}+q^{y}=z^{2}, p, q \equiv 3(\bmod 4)$

Theorem 2.2. If the Diophantine equation $p^{x}+q^{y}=z^{2}$ has a positive integer solution and y is an even number, then $2 q^{\frac{y}{2}}=p^{x}-1$ and $p \equiv 1(\bmod q)$.

Proof. Assume that the Diophantine equation $p^{x}+q^{y}=z^{2}$ has a positive integer solution and y is an even number. Then there exists a positive integer k such that $y=2 k$. Thus $p^{x}+q^{2 k}=z^{2}$ so that $p^{x}=z^{2}-q^{2 k}=$ $\left(z-q^{k}\right)\left(z+q^{k}\right)$. Since p is a prime number, there exists a non-negative integer u with $u \leq x$ such that $z-q^{k}=p^{u}$ and $z+q^{k}=p^{x-u}$. Then $x>2 u$ and $2 q^{k}=p^{u}\left(p^{x-2 u}-1\right)$. Since p and q are distinct and $p \neq 2$, we have $u=0$. Thus $2 q^{k}=p^{x}-1=(p-1)\left(p^{x-1}+p^{x-2}+\cdots+1\right)$. Therefore, $q \mid(p-1)$.

Similarly, we obtain the following result.
Theorem 2.3. If the Diophantine equation $p^{x}+q^{y}=z^{2}$ has a positive integer solution and x is an even number, then $2 p^{\frac{x}{2}}=q^{y}-1$ and $q \equiv 1(\bmod p)$.

Next, we consider the Diophantine equation $p^{x}+q^{y}=z^{2}$, where $p \not \equiv 1$ $(\bmod q)$ and $q \not \equiv 1(\bmod p)$.

Theorem 2.4. The Diophantine equation $p^{x}+q^{y}=z^{2}$, where $p \not \equiv 1(\bmod q)$ and $q \not \equiv 1(\bmod p)$, has no positive integer solution.

Proof. By Theorem 2.2 and $p \not \equiv 1(\bmod q)$, we have y is an odd number or the Diophantine equation has no positive integer solution. Suppose that the Diophantine equation has positive integer solution. Then y is an odd number. So x is an even number by Theorems 2.1 and 2.3. Therefore, $q \equiv 1$ $(\bmod p)$, a contradiction.

The previous theorem shows that many Diophantine equations such as $7^{x}+11^{y}=z^{2}[5], 7^{x}+31^{y}=z^{2}[10], 7^{x}+19^{y}=z^{2}$ and $7^{x}+91^{y}=z^{2}[11]$, $p^{x}+(p+4)^{y}=z^{2}$ where $p \equiv 3(\bmod 4)[1]$ and $p^{x}+(p+8)^{y}=z^{2}$ where $p \equiv 3(\bmod 4)[8]$ have no positive integer solution.

Next, we study the conditions $p \equiv 1(\bmod q)$ or $q \equiv 1(\bmod p)$. In fact, these two conditions do not exist in the same situation. The condition $p \equiv 1$ $(\bmod q)$ will exist when $p>q$.

Theorem 2.5. The Diophantine equation $p^{x}+q^{y}=z^{2}$, where $p \equiv 1(\bmod q)$ and x is an even number, has no positive integer solution.

Proof. We have $2 p^{\frac{x}{2}}=q^{y}-1$ by Theorem 2.3. Since $p \equiv 1(\bmod q)$, we have $2 p^{\frac{x}{2}} \equiv 2(\bmod q)$ and $q^{y}-1 \equiv 2(\bmod q)$. Then $q=3$, a contradiction.

By the above result, we obtain Theorem 2.1 in [1], the Diophantine equation $11^{x}+23^{y}=z^{2}$ has no positive integer solution when y is an even number. Next, we find the solutions of the Diophantine equation where x is an odd number. First, let $x=1$.

Theorem 2.6. If the Diophantine equation $p+q^{y}=z^{2}$ has a positive integer solution, then y is an even number and $(p, q, y, z)=\left(2 q^{\frac{y}{2}}+1, q, y, q^{\frac{y}{2}}+1\right)$.

Proof. By Theorems 2.1 and 2.2 , we obtain y is an even number and $2 q^{\frac{y}{2}}=p-1$, respectively. Thus $z^{2}=p+q^{y}=2 q^{\frac{y}{2}}+1+q^{y}=\left(q^{\frac{y}{2}}+1\right)^{2}$. Then $z=q^{\frac{y}{2}}+1$. Therefore, this equation has solutions $(p, q, y, z)=$ $\left(2 q^{\frac{y}{2}}+1, q, y, q^{\frac{y}{2}}+1\right)$.

In the following theorem, we find a relation between q and x when the Diophantine equation $p^{x}+q^{y}=z^{2}$ has a positive integer solution and x is an odd number with $x>1$.

Theorem 2.7. Let x be an odd number and $x>1$. If the Diophantine equation $p^{x}+q^{y}=z^{2}$ has a positive integer solution, then $q \mid x$.

Proof. Since x is an odd number, we have y is an even number by Theorem 2.1. By Theorem 2.2, we obtain $2 q^{\frac{y}{2}}=p^{x}-1$ and $p \equiv 1(\bmod q)$. Then $2 q^{\frac{y}{2}}=(p-1)\left(p^{x-1}+p^{x-2}+\cdots+1\right)$. Since $x>1, y>0$ and $p \equiv 1(\bmod q)$, we have $q \mid\left(p^{x-1}+p^{x-2}+\cdots+1\right)$ and $p^{x-1}, p^{x-2}, p^{x-3}, \ldots, p \equiv 1(\bmod q)$. So $p^{x-1}+p^{x-2}+\cdots+1 \equiv x(\bmod q)$. Thus $q \mid x$.

By Theorems 2.1 and 2.7, we obtain the following theorem.
Theorem 2.8. Let $x, y>1$. If the Diophantine equation $p^{x}+q^{y}=z^{2}$ has a positive integer solution, then $q \mid x$ or $p \mid y$.

From the last theorem, we have a condition for the non-existence of positive integer solutions of the Diophantine equation $p^{x}+q^{y}=z^{2}$.

We conclude our paper with the following result about the Diophantine equation $p^{x}+11^{y}=z^{2}$, where $p \equiv 3(\bmod 4)$ and $p>3$.

- The Diophantine equation $p^{x}+11^{y}=z^{2}$ has no non-negative integer solution, where $x=0$ or $y=0$ or $p \not \equiv 1(\bmod 11)$ or $p \equiv 1(\bmod 11)$ and x is an even number.
- The Diophantine equation $p+11^{y}=z^{2}$ has positive integer solutions $(p, y, z)=\left(2\left(11^{\frac{y}{2}}\right)+1, y, 11^{\frac{y}{2}}+1\right)$; for example, $23+11^{2}=12^{2}$ and $2663+11^{6}=1332^{2}$.
- If the Diophantine equation $p^{x}+11^{y}=z^{2}$, where x is an odd number and $x>1$, has a positive integer solution, then $11 \mid x$.

References

[1] N. Burshtein, The Diophantine Equation $p^{x}+(p+4)^{y}=z^{2}$ when $p>3$, $p+4$ are Primes is Insolvable in Positive Integers x, y, z, Annals of Pure and Applied Mathematics, 16, no. 2, (2018), 283-286.
[2] N. Burshtein, Solutions of the Diophantine Equation $2^{x}+p^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 16, no. 2, (2018), 471-477.
[3] N. Burshtein, All the Solutions of the Diophantine Equations $p^{x}+p^{y}=z^{2}$ and $p^{x}-p^{y}=z^{2}$ when $p \geq 2$ is Prime, Annals of Pure and Applied Mathematics, 19, no. 2, (2019), 111-119.
[4] N. Burshtein, On Solutions of the Diophantine Equation $11^{x}+23^{y}=z^{2}$ with Consecutive Positive Integers x, y, Annals of Pure and Applied Mathematics, 20, no. 2, (2019), 57-61.
[5] N. Burshtein, On the Diophantine Equations $2^{x}+5^{y}=z^{2}$ and $7^{x}+11^{y}=$ z^{2}, Annals of Pure and Applied Mathematics, 21, no. 1, (2020), 63-68.
[6] I. Cheenchan, S. Phona, J. Ponggan, S. Tanakan, S.Boonthiem, On the Diophantine Equation $p^{x}+5^{y}=z^{2}$, SNRU Journal of Science and Technology, 8, no. 1, (2016), 146-148.
[7] P. Mihăilescu, Primary Cyclotomic Units and a Proof of Catalan's Conjecture, Journal für die Reine und Angewandte Mathematik, 572, (2004), 167-195.
[8] F. N. Oliveira, On the Solvability of the Diophantine Equation $p^{x}+(p+$ 8) $)^{y}=z^{2}$ when $p>3$ and $p+8$ are primes, Annals of Pure and Applied Mathematics, 18, no. 1, (2018), 9-13.
[9] A. Pakapongpun, B. Chattae, On the Diophantine Equation $p^{x}+7^{y}=$ z^{2} where p is prime and x, y, z are non-negative integers, In. J. Math. Comput. Sci., 17, no. 4, (2022), 1535-1540.
[10] B. Sroysang, On the Diophantine Equation $7^{x}+31^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 92, no. 1, (2014), 109-112.
[11] B. Sroysang, On Two Diophantine Equations $7^{x}+19^{y}=z^{2}$ and $7^{x}+$ $91^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 92, no. 1, (2014), 113-116.
[12] W. Tangjai, C. Chubthaisong, On the Diophantine Equation $3^{x}+p^{y}=$ z^{2} where $p \equiv 2(\bmod 3)$, WSEAS Transactions on Mathematics, 20, (2021), 283-287.

