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Abstract

The Maximum Product of Spacing (MPS) is an alternative pa-
rameter estimation method for the Maximum Likelihood Estimator
(MLE), since the MLE may not exist in some circumstances. However,
the MPS estimator still has some weaknesses despite being an alter-
native method. This is due to the variations in distance between data
points, particularly with extreme data points, as the MPS is based on
the calculation of spacings in a data set. It is also possible that any
slight difference in the estimation of the parameters may have a sub-
stantial impact on the fitted values of the extreme value distribution.
As a consequence, it is very important to estimate the parameters of
the extreme value distribution as accurately as possible. Therefore,
the power of the mean function could be introduced and considered as
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a weight function, leading to the weighted MPS. This paper shows the
improvement of the MPS method. The Weighted Maximum Product
of Spacing (WMPS) is a method that gives weights to the maximiza-
tion of the logarithm of the spacings in the data set. This is done
to reduce the root mean square error of the models and improve the
goodness of fit of the extreme value distributions.

1 Introduction

An extreme value distribution (EVD) is a limiting model for the maximums
or minimums of a data set [1]. There are three types of EVD model: Type
I (Gumbel), Type II (Fréchet), and Type III (Weibull). The Generalized
Extreme Value distribution (GEVD) is a three-parameter distribution that
unites the thee types extreme value distributions. The CDF for the three-
parameter is as follows:

R i PR (2 R S

whereby p = location parameter, o = scale parameter, and o« = shape pa-
rameter. The o and 1+ a(x — u)/o > 0, where p and « can take any real
value. The three types of EVD can be obtained through GEVD based on
the value of alpha where o = 0 is the Type I EVD (Gumbel distribution),
a > 0 is the Type II EVD (Fréchet distribution), and o < 0 is theType 1T
EVD (Weibull distribution) [6].

Extreme value distributions are widely used models in a wide range of
applications. The Maximum likelihood estimation (MLE) is a popular es-
timation method. It has been thoroughly investigated and widely used in
various areas with extreme value distributions due to its nice asymptotic
behavior [2, 3]. Nevertheless, the MLE may not exist when the shape pa-
rameter « is less than -0.5, since the PDF of the extreme value distributions
goes to oo and is also an inconsistent method [4]. Furthermore, MLE is not
accurate if the sample size of the extreme observations is small. As a re-
sult, some alternative estimation methods have been proposed which provide
better estimation results when compared to the MLE method [3].

The Maximum Product of Spacing (MPS) is proposed by Cheng [5]. It
is now becoming one of the most widely used estimation methods [6, 7, §].
However, the MPS estimators tend to underestimate some parameters in
extreme value distributions due to the variations in distance between data
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points. Furthermore, the MPS estimators provide a much less accurate esti-
mation when the shape parameter is greater than a specific value [9]. This
is because MPS estimators are based on the calculation of spacings between
data points [3, 10].

The MPS method is considered one of the fittest methods for extreme
value distribution (EVD) and has more or less better goodness of fit compared
to the MLE method [6, 7, 8, 11, 12]. Abdulali [6] provided a comprehensive
comparison of various estimation methods for extreme value distributions
and concluded his study by highly recommending that the MPS might be
taken into consideration for future studies. Moreover, there have been many
approaches for weighted parameter estimation methods, such as modifying
from the MLE to the weighted MLE [2, 13, 14, 15], the least-squares method
to weighted least-squares [16, 17, 18], and the method of moments to the
weighted method of moments [19, 20, 21], all of which yield better results.

In this article, the weight function is well explained in Section 2. More-
over, the slopes of the CDF curve fitting in the power weight function are
considered. It also shows how to measure the slopes of the CDF curve us-
ing the right machine learning method. The Weighted Maximum Product
of Spacing (WMPS) is covered in Section 3 and then a simulation study is
carried out in Section 4, which can evaluate the performance of the WMPS.
Lastly, a summary of the proposed method’s results based on the simulation
study is given in Section 5.

2 Weight function

Fitting nonlinear models is quite a challenging task and is often complicated
not only by heteroscedasticity but also by inconstant variability in a data set.
The weighting approach has been utilized and supported for some estimation
methods. There are many types of weight functions. Nevertheless, finding
an appropriate weight function that predominantly works well for all types
of extreme distributions is also challenging in itself. The weight function
should have all the theoretical properties that are intact for any choice of
tuning parameters. According to [15], the choice of the weight functions has
no effect on the estimator’s significant theoretical properties as an impact
function on the parameters for consistency and asymptotic efficiency when
the right model is adequately defined.

In extreme datasets, modeling the variances is very crucial. The power of
the mean function could be used as a weight function for each combination
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of predictor variable values. Taking into consideration that some conditions
are attached to the power of the mean function, which are all automatically
satisfied by the construction of this weight function in the case of being used
with the MPS scenario.

The weight function has been chosen to be the modeling variance that
will be utilized in the next section. This weight function was chosen for two
reasons. Firstly, regardless of the sample size, there is always a connection
between the weight function and the data set via the slopes of the data
points. Secondly, it also allocates more weights to data close to short or
medium-distance positions in the data set ranked in ascending order. It was
implemented into the weighted least squares model, which was addressed by
[22, 23], where they used the power function model as a weight function. The
weight function is defined as follows:

o2~ ax b (2.2)

By taking the log for both sides of the model. A simple linear regression is
obtained as the following :

log(c7) = log(a) + b log(y:) (2.3)

This power function model is convenient, especially when there is only one
predictor variable. The weight function is based only on the slope (b) from
the fit to the weight data because the weights only need to be proportional
to the replicate variances. As a result, we can ignore the estimate of (a) in
the power function since it is only a proportionality constant (in the original
units of the model). In this situation, the general model given above can be
simplified to the power function of the variances from each set of responses
in the data. Therefore, the finding weights used can be written as:

1

X" (24)

w; =

where X; is an ascending data set representing the curve of the cumulative
distribution function (CDF), and b; is the slops of the CDF curve for i =
1,2,..,n.

2.1 Properties of the weight function

The weight function has the following properties.
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1. w; is a nonnegative function on (0, 1] with the property |X(;| for i =
1,..,n.

2. The trend of the CDF curve is always upward until it reaches a proba-
bility value of 1. In other words, the CDF is a non-decreasing function.
Thus, the slopes of tangent lines are non-negative values, and the value
slopes b are always > 0.

3. The value of x;=1 indicates that the slope is — 0.

4. If w;=1 for i = 1,..,n for all calculations of spacings, then WMPS =
MPS.

To determine a possible weight function having the above-mentioned proper-
ties, we proceed with scaling the weights by dividing the max values. Then
w;, which will be mapped between 0 and 1 for i =1, .., n.

2.2 The slopes of the CDF curve

The value of slope b; for the CDF curve can be found via multiple methods.
However, one of the most crucial methods for estimating the value of the
slopes is local regression, which could be taken into consideration in this
study. One of the main advantages of the local regression method is that
it can provide a vector of estimated slopes of b; for each data point X ;) for
1=1,..,n.

2.3 Local regression

Local regression or local polynomial regression, also known as moving re-
gression, is a form of regression analysis in which it models the relationship
between outcomes and predictors by fitting different linear or quadratic func-
tions to different segments or intervals of data set. The overall curve obtained
by combining the individually fitted curves for the different data segments
shows the general shape of the CDF plot

Local regression is also considered a non-parametric method, and there
are many non-parametric regression techniques, such as:

e LOWESS (locally weighted scatterplot smoothing) proposed in 1979
by Cleveland [24].

e LOESS (locally estimated scatterplot smoothing) proposed in 1988 by
Cleveland and Susan J. Devlin [25]
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Figure 1: The fitted curve by local regression method to CDF curve of EVD.

Both methods could be implemented to find the fitted CDF curve. LOESS
is arguably one of the most flexible and powerful smoothing functions that
attempts to capture general patterns in response to relationships while re-
ducing the noise between data points. It also makes minimal assumptions
about the relationships among variables. Moreover, it has some other fea-
tures that can support not only multidimensional predictors but also multiple
dependent variables. We assume a model of the following form:

yi = f(z;) + ¢

where f(x;) is an unknown function, and ¢; is an error term, representing
random errors in the observations or variability from sources not included
in the x;. In this study, f(z;) is approximated locally by the Polynomial
function e.g. f(z;) = fo + S1x. The degree of the locally fitted polynomial
is 1. The coefficient estimates 8 = (3, 1) are chosen to minimize

B = arg miniwi<%T—x> * [Y; — (Bo + Bi(x; — z))]? (2.5)

PER 4

where s is a fixed parameter known as the span. The value of the slopes in
the By vector could be extracted from the locally fitted approximation by
locally weighted least squares.
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3 Weighted maximum product of spacing method

Let x = (x1, w9, 3, .., T, ) be a dataset with size n, and X = (X1, Xo, X3, .., X,,)
be the ascending order of x dataset. Let w = (wy, ws, w3, .., w,) be the weight
vector of the ordered dataset. We define the spacings as the gaps between
the values of the distribution function at adjacent ordered points, as follows:

Di(/L,U, Oé) = F(X(2)7 u, o, Oé) - F(X(Z—l)a u, o, Oé), 1= 1a cen+ 1. (36)

where i = location parameter, o = scale parameter, and o = shape parameter
of EVD.
F(Xonlp,o,0) =0, F(Xpp1m|p,0,a) = 1. (3.7)

It is evident that the MPS is based on maximizing the logarithm of the
sample spacings. Meanwhile, the composition of the WMPS method is the
weight function along with the MPS method. But it must be taken into ac-
count that the weight function may be equal to zero in some cases, where the
logarithm of zero will be undefined. Therefore, in order to avoid those obsta-
cles, the weight function could only be the power of the logarithm of sample
spacings, where it does not lead to malfunctions in calculating WMPS. The
flwmpss Owmps, and Gymps estimators are then regarded as values that maxi-
mize the logarithm of the sample spacings geometric:

H(fi,0,a) = argmax 5, (p, 0, ) (3.8)

w,o,0€0

where w; is set to be the weight function for each different distance movement
between data points. Thus the WMPS is as the following :

1 n+1
SyX(pu,0,a) =In" /D" Dy? .. D¥nD} | = I Zln D" (0, ).
i=1

(3.9)

1
where the weight function w; = W, and b; is the slopes of CDF curve.
@

From (3.8) and (3.9), the fiwmps: Twmps and Gymps estimators could be achieved
by solving the nonlinear equations as follows:

OH (1,0, ;1) 1 & 1
= A=0 3.10
on 12 X s Do oa) (310)

OH (u, 0, a; ) 1 1
= A= A1
Oa n+1 ; | X @))% % Di(p, 0, @) 0 (3:11)
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n+1

0H(p,0,c;2) 1 1 B
; X A=0 (3.12)

do Con+1 D;(p, 0, @)

where

A =§(Xi|p, 0,a) — 6(Xi_1|p, 0, @)

whereby 0 = the derivative of the cumulative function of the extreme distri-
bution with respect to the estimated parameter.

4 Simulation study

Simulation studies have been conducted to investigate the performance of
the WMPS approach and compare it to the MPS and MLE methods with
different sizes of datasets by using R software. The sample sizes for the
simulation studies are widely discussed by many researchers [12, 26, 27, 28|.
Nevertheless, two sample sizes have been considered, with N = 100 for the
small size of the dataset and N = 10,000 for the large size of the dataset.
Data sets were generated for the Gumbel Distribution (Type I), Frechet
Distribution (Type II), and Weibull Distribution (Type III). The EVD for
two and three parameters has different values for parameters for both sample
sizes.

The performance of three estimation methods is not only examined by
comparing the root mean square errors (RMSE) but also by Akaikes In-
formation Criterion (AIC), the Bayesian Information Criterion (BIC), the
Anderson-Darling (A) test, and the Cramr-von Mises (W) test. For this pur-
pose, we generate the datasets following the extreme value distributions for
the parameters of interest by MLE, MPS, and WMPS methods respectively.
The simulation results for all EVD of MLE, MPS, and WMPS estimation
methods are presented in the Tables 1 & 2.

Table 1: Estimation Parameters with Size N = 100.

N =100 Estimated Parameters By MLE
EVD location scale shape
1=5 o=7 -
Gumbel (Type I) 5.397040 6.566514 -
- =9 a=3
2-Fréchet (Type II) - 8.212115 3.430645
1=0.5 o=7 a=3

3-Fréchet (Type II) 1.8691787 5.6668813 2.3766289
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- o=1 a=>
2-Weibull (Type III) - 0.9991391 5.4236505
1=0.5 0=3 a=2
3-Weibull (Type IIT) 0.7222131 4.610721 1.6663683
n=2 =3 a=0.1
GEV-Distribution (GEVD) 2.09498253 2.82466755 0.01972448
N =100 Estimated Parameters By MPS
EVD Tocation scale shape
n=>5 o="7 -
Gumbel (Type I) 5.360579 6.875822 -
- =9 a=3
2-Fréchet (Type I1) - 8.192851 3.2865H86
1=0.5 o="7 a=3
3-Fréchet (Type IT) 1.637546 5.898064 2.364839
- o=1 a=>
2-Weibull (Type III) - 0.9999133 5.2107155
1=0.5 0=3 a=2
3-Weibull (Type IIT) 0.6393905 2.6509675 1.6868107
n=2 o=3 a=0.1
GEV-Distribution (GEVD) 2.05428524 2.93026428 0.03637715

N =100 Estimated Parameters By WMPS
EVD location scale shape
n=> o=7 -
Gumbel (Type I) 5.323002 7.076661 -
- =9 a=3
2-Fréchet (Type II) - 8.340154 2.998637
1=0.5 o=7 0=3
3-Fréchet (Type II) 0.8798338 6.9989168 2.3772184
- o=1 a=>H
2-Weibull (Type IIT) - 0.9695959 5.0571887
1=0.5 o=3 a=2
3-Weibull (Type III) 0.5657216 2.7859650 1.6994437
=2 0=3 a=0.1
GEV-Distribution (GEVD) 1.84873221 2.95518108 0.09832042

Table 2: Estimation Parameters with Size N = 10000.

187

N = 10000 Estimated Parameters By MLE
EVD Tocation scale shape
n=> 0=9 -
Gumbel (Type I) 4.879680 8.884994 -
- =2 a=>
2-Fréchet (Type II) - 2.003168 5.027983
1“=> 0=30 a=10
3-Fréchet (Type II) 7.215161 27.756319 9.379527
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- =2 a=10

2-Weibull (Type III) - 1.998252 9.921407
n=1 0=3 a=30

3-Weibull (Type IIT) 1.042261 2.956307 29.553351
n=3 c=10 a=0.01

GEV-Distribution (GEVD) 2.882597044

9.987487261 2.882597044

N = 10000 Estimated Parameters By MPS
EVD location scale shape
n=> 0=9 -
Gumbel (Type I) 4.879442 8.893716 -
- =2 a=>
2-Fréchet (Type II) - 2.003119 5.022712
1=> 0=30 a=10
3-Fréchet (Type II) 5.033644 29.949967 10.088762
- o=2 a=10
2-Weibull (Type IIT) - 1.998807 9.972420
pn=1 =3 =30
3-Weibull (Type III) 0.9421131 3.0565143 30.5340238
=3 o=10 a=0.01

GEV-Distribution (GEVD) 2.889919710 9.997768139 0.007874064

N = 10000 Estimated Parameters By WMPS
EVD Tocation scale shape
n=>5 o=9 -
Gumbel (Type I) 4.767553 8.962183 -
- o=2 a=>5
2-Fréchet (Type II) - 2.000857 4.985115
n=>5 0=30 a=10
3-Fréchet (Type II) 5.003881 30.168918 10.150674
- =2 a=10
2-Weibull (Type IIT) - 1.991324 9.972603
u=1 o=3 a=30
3-Weibull (Type III) 0.9361494 3.0627187 30.6059502
=3 o=10 a=0.01
GEV-Distribution (GEVD) 2.77371618 9.99747554 0.010625624

The Goodness of Fit tests and RMSE are presented in the Tables 3 & 4

Table 3: Test of Goodness of Fit and RMSE with N = 100.

Model Loglikelihood AIC BIC A W RMSE

Gumbel-MLE -348.2736  700.5472 705.7575 0.32889164 0.04669522 0.01364266
Gumbel-MPS -348.4592  700.9183 706.1287 0.38220000 0.06388000 0.00393335
Gumbel-WMPS -290.7687  585.5374 590.7478 0.21024976 0.00613402 0.00224123
Fréchet-MLE -260.8655  525.7310 530.9414 0.20690485 0.03225485 0.12178530
Fréchet-MPS -260.7909  525.5818 530.7921 0.22635000 0.03960200 0.10036620
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Model Loglikelihood AIC BIC A W RMSE
Fréchet-WMPS -208.6178  421.2355 426.4459 0.11046590 0.01496952 0.04495697
Fréchet-3-MLE -269.4808 544.9617 552.7772 0.46504696 0.06037190 0.04144314
Fréchet-3-MPS -269.0696 545.3930 553.2085 0.57593000 0.08572800 0.04056556
Fréchet-3-WMPS  -212.6682  431.3363 439.1519 0.22931250 0.02321757 0.01290916
Weibull- MLE 20.83141  -37.66282 -32.45248 0.35971945 0.05701530 0.56960140
Weibull- MPS 20.68785  -37.37570 -32.16536 0.35326000 0.05958800 0.28879040
Weibull-WMPS 13.42555 -22.85109 -17.64075 0.20662500 0.01513184 0.14584870
Weibull-3-MLE -169.7593 345.5185 353.334 0.24691200 0.02495165 0.66834730
Weibull-3-MPS -170.0708 346.1416 353.957 0.27475650 0.03825779 0.06877046
Weibull-3-WMPS  -132.9855 271.971 279.7865 0.16268320 0.00324056 0.01760126
GEVD-MLE -262.7859  531.5718 539.3873 0.16836210 0.02923236 5.36825800
GEVD-MPS -262.9716  531.9432 539.7587 0.19379000 0.03265700 0.03571904
GEVD-WMPS -164.6143  335.2286 343.0441 0.01001955 0.01065642 0.00453723
Table 4: Test of Goodness of Fit and RMSE with N = 10000.

Model Loglikelihood AlIC BIC A W RMSE
Gumbel-MLE -37613.06  75230.11 75244.53 0.990236425 0.18171877 0.1798249
Gumbel-MPS -37613.06  75230.11 75244.53 0.976310000 0.18025000 0.1659857
Gumbel-WMPS -29384.49  58772.98 58778.19 0.502175000 0.04156094 0.0537062
Fréchet-MLE -7738.047 15480.09 15494.51 0.457414686 0.06457617 0.1279719
Fréchet-MPS -7738.054 15480.11 15494.53 0.453240000 0.06574000 0.0958593
Fréchet-WMPS -5041.672 10087.34 10110.97 0.392828100 0.00629087 0.0125343
Fréchet-3-MLE -27239.66  54485.31 54506.95 0.218008015 0.03156076 0.0519615
Fréchet-3-MPS -27240.19  54486.38 54508.01 0.609510000 0.09497700 0.0478979
Fréchet-3-WMPS  -20334.42 40674.83 40696.46 0.052088640 0.00224780 0.0279240
Weibull- MLE 817.2641 -1630.528 -1616.107 .284359629 0.04400983 0.4289099
Weibull- MPS 817.0455 -1630.091 -1615.670 0.429460000 0.06665700 0.1314943
Weibull-WMPS 366.9993 -729.9986 -715.5779 0.189703300 0.03315033 0.0564669
Weibull-3-MLE 7446.599  -14887.20 -14865.57 0.21797140 0.02119137 0.1776381
Weibull-3-MPS 7446.574  -14887.15 -14865.52 0.217310000 0.02015000 0.1397980
Weibull-3-WMPS  6705.000 -13404.00 -13382.37 0.05942381 0.00888378 0.1019555
GEVD-MLE -38834.95  77675.91 77697.54 0.248724651 0.03924340 0.0023059
GEVD-MPS -38834.98 77675.96 77697.59 0.244730000 0.03670700 0.0011012
GEVD-WMPS -30452.88 60911.76 60933.39 0.154138340 0.01260231 0.0001908

Tables 1 and 2 show that estimates made with the MLE and MPS methods
are very different from those made with the WMPS methods. The primary
difference was observed in the evaluation of all EVD, particularly with three
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parameters. In other words, the WMPS and MPS variations for all EVD
ranged from 0.36% for the location parameter u, 1.1% for the scale param-
eter o, and 0.29% for the shape parameter « in Table 1. Meanwhile, the
WMPS and MPS variations for all EVD ranged from 0.24% for the loca-
tion parameter u, 0.37% for the scale parameter o, and 0.19% for the shape
parameter « in Table 2.

Moreover, the estimates from the MLE and MPS methods aren’t that
significantly different. The Estimates derived from the WMPS Goodness
of Fit tests were consistently significantly lower than those derived from
other methods, regardless of sample size or the parameter values. The MLE
provided lower accuracy in estimating almost all of the EVD parameters.
Nonetheless, it was still able to provide a reliable estimate for GEVD.

Meanwhile, Tables 3 and 4 show the Root Mean Square Error (RMSE) for
each parameter estimate technique for all probability distributions studied at
two sample sizes. The WMPS technique offers the lowest RMSE estimates for
all EVD in both sample sizes. However, in certain distributions, the difference
in RMSE values between MPS and MLE estimate techniques is considered
almost non-existent. The RMSE values for WMPS estimations, on the other
hand, are much lower for practically all extreme value distributions. Despite
the MPS method having a lower RMSE than the MLE approach, the MPS
and MLE methods have nearly identical goodness of fit values for almost all
extreme value distributions. WMPS, on the other hand, shows substantially
lower scores for the goodness of fit tests, indicating that it is a better fit
for the EVD simulated datasets. Again, it has been shown that the WMPS
method is the best estimation method for figuring out how well the EVD fits.
The tables above can be transformed from numerical outcomes into graphical
results for more clarity. Thus, here are the CDF plots of all the EVDs that
were calculated using MLE, MPS, and WMPS methods:
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Figure 2: The plot of CDF for Gumbel(u,0) with three methods.
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Figure 3: The plot of CDF for Frechet (o,«) with three methods.
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Figure 4: The plot of CDF for Frechet (u,0,c) with three methods.
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From Figures 2-7, which show the fitted models for all EVD at N = 100
and N = 10,000, indicating that the WMPS estimation method fitted the
data well for all EVD. In contrast, in some distributions, the MLE and MPS
fitted the data to EVD with less accuracy. As illustrated in Figure 6, the
MLE consistently provides a poor fit for the three parameters of Weibull
Distribution. This outcome is consistent with the goodness-of-fit test results
for all EVD, .... shown in Tables 3 and 4. The WMPS estimator is the more
accurate method compared to the MLE and MPS methods, with much lower
values of goodness-of-fit tests for all extreme distributions.

5 Conclusions

In this article, the WMPS approach was introduced for estimation of pa-
rameters of the extreme value distributions. The weight function played a
vital role in many estimation methods; not only for more accurate estimation
but also for more stable efficiency and consistency. Various weight functions
have been implemented in different estimation methods. Thus, the proposed
weight function is thought to improve the estimation of parameters; namely,
location, size, and shape. The weight function was also introduced to model
the variance which required finding the appropriate slopes of the CDF curve.
The local regression method was used to find the local slope for the data
points in the subsets of the data set. Finally, a simulation study was con-
ducted to provide a comprehensive view of the performance and validate the
estimation methods using various extreme value distributions. Despite the
fact that the MPS method was better than the MLE method in terms of
RMSE, the MLE method was at least better than the MPS method in terms
of the goodness of fit tests for almost all extreme value distributions. Never-
theless, the WMPS method was superior to other methods based on RMSE
and goodness of fit tests.
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