

Almost (Λ, p) -continuous functions

Napassanan Srisarakham, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit
Department of Mathematics
Faculty of Science
Mahasarakham University
Mahasarakham, 44150, Thailand

email: napassanan.sri@msu.ac.th, chawalit.b@msu.ac.th

(Received Nov. 9, 2022, Accepted Dec. 21, 2022, Published Jan. 23, 2023)

Abstract

We introduce and study a new class of functions, called almost (Λ, p) -continuous functions. Moreover, we investigate some characterizations and several properties concerning almost (Λ, p) -continuous functions.

1 Introduction

In 1966, Husain [3] introduced the concept of almost continuous functions and investigated some of their characterizations. In 1968, Singal and Singal [6] have also introduced the concept, similarly called almost-continuous functions, which is in fact different somehow from that of Husain. In 1982, Mashhour et al. [4] introduced and investigated the concepts of preopen sets and precontinuous functions. In 1986, Noiri [5] showed that precontinuity is equivalent to almost continuity and obtained several characterizations of almost-continuity and almost continuity. In 2002, Ganster et al. [2] introduced the notions of pre- Λ -sets and pre-V-sets in topological spaces and investigated the fundamental properties of pre- Λ -sets and pre-V-sets. In [1], the authors introduced the notions of (Λ, p) -open sets and (Λ, p) -closed sets

Key words and phrases: (Λ, p) -open set, (Λ, p) -closed set, almost (Λ, p) -continuous function.

Napassanan Srisarakham is the corresponding author.

AMS (MOS) Subject Classifications: 54C05, 54C08.

ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net

which are defined by utilizing the notions of Λ_p -sets and preclosed sets. Moreover, several characterizations of weakly (Λ, p) -continuous functions were investigated in [1]. The purpose of the present paper is to introduce the concept of almost (Λ, p) -continuous functions. In particular, we discuss several characterizations of almost (Λ, p) -continuous functions.

2 Preliminaries

Throughout this paper, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean a topological space on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a topological space (X, τ) . The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X,τ) is said to be preopen [4] if $A\subseteq$ Int(Cl(A)). The complement of a preopen set is called *preclosed*. The family of all preopen sets of a topological space (X,τ) is denoted by $PO(X,\tau)$. A subset $\Lambda_p(A)$ [2] is defined as follows: $\Lambda_p(A) = \bigcap \{U \mid A \subseteq U, U \in PO(X, \tau)\}.$ A subset A of a topological space (X, τ) is called a Λ_p -set [1] $(pre-\Lambda-set [2])$ if $A = \Lambda_p(A)$. A subset A of a topological space (X, τ) is called (Λ, p) -closed [1] if $A = T \cap C$, where T is a Λ_p -set and C is a preclosed set. The complement of a (Λ, p) -closed set is called (Λ, p) -open. The family of all (Λ, p) -open (resp. (Λ, p) -closed) sets in a topological space (X, τ) is denoted by $\Lambda_p O(X, \tau)$ (resp. $\Lambda_p C(X,\tau)$). Let A be a subset of a topological space (X,τ) . A point $x\in X$ is called a (Λ, p) -cluster point [1] of A if $A \cap U \neq \emptyset$ for every (Λ, p) -open set U of X containing x. The set of all (Λ, p) -cluster points of A is called the (Λ, p) -closure [1] of A and is denoted by $A^{(\Lambda, p)}$. The union of all (Λ, p) -open sets contained in A is called the (Λ, p) -interior [1] of A and is denoted by $A_{(\Lambda,p)}$. A subset A of a topological space (X,τ) is said to be $s(\Lambda,p)$ -open (resp. $p(\Lambda, p)$ -open, $\beta(\Lambda, p)$ -open, $r(\Lambda, p)$ -open) [1] if $A \subseteq [A_{(\Lambda, p)}]^{(\Lambda, p)}$ (resp. $A \subseteq [A^{(\Lambda, p)}]_{(\Lambda, p)}$, $A \subseteq [[A^{(\Lambda, p)}]_{(\Lambda, p)}]^{(\Lambda, p)}$, $A = [A^{(\Lambda, p)}]_{(\Lambda, p)}$). The complement of a $s(\Lambda, p)$ -open (resp. $p(\Lambda, p)$ -open, $\beta(\Lambda, p)$ -open, $r(\Lambda, p)$ -open) set is called $s(\Lambda, p)$ -closed (resp. $p(\Lambda, p)$ -closed, $\beta(\Lambda, p)$ -closed, $r(\Lambda, p)$ -closed).

3 Characterizations of almost (Λ, p) -continuous functions

We begin this section by introducing the concept of almost (Λ, p) -continuous functions.

Definition 3.1. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be almost (Λ,p) -continuous at a point $x\in X$ if, for each (Λ,p) -open set V containing f(x), there exists a (Λ,p) -open set U containing x such that $f(U)\subseteq [V^{(\Lambda,p)}]_{(\Lambda,p)}$. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be almost (Λ,p) -continuous if f has this property at each point $x\in X$.

Theorem 3.2. For a function $f:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (1) f is almost (Λ, p) -continuous at $x \in X$;
- (2) $x \in [f^{-1}([V^{(\Lambda,p)}]_{(\Lambda,p)})]_{(\Lambda,p)}$ for every (Λ,p) -open set V containing f(x);
- (3) $x \in [f^{-1}(V)]_{(\Lambda,p)}$ for every $r(\Lambda,p)$ -open set V containing f(x);
- (4) for every $r(\Lambda, p)$ -open set V containing f(x), there exists a (Λ, p) -open set U containing x such that $f(U) \subseteq V$.
- Proof. (1) \Rightarrow (2): Let V be any (Λ, p) -open set of Y containing f(x). Then, there exists a (Λ, p) -open set U of X containing x such that $f(U) \subseteq [V^{(\Lambda,p)}]_{(\Lambda,p)}$. Thus, $x \in U \subseteq f^{-1}([V^{(\Lambda,p)}]_{(\Lambda,p)})$. Since U is (Λ, p) -open, $x \in [f^{-1}([V^{(\Lambda,p)}]_{(\Lambda,p)})]_{(\Lambda,p)}$.
- (2) \Rightarrow (3): Let V be any $r(\Lambda, p)$ -open set of Y containing f(x). Since $V = [V^{(\Lambda,p)}]_{(\Lambda,p)}$, by (2), $x \in [f^{-1}(V)]_{(\Lambda,p)}$
- $(3) \Rightarrow (4)$: Let V be any $r(\Lambda, p)$ -open set of Y containing f(x). By (3), there exists a (Λ, p) -open set U containing x such that $U \subseteq f^{-1}(V)$ and hence $f(U) \subseteq V$.
- $(4) \Rightarrow (1)$: Let V be any (Λ, p) -open set of Y containing f(x). Then, $f(x) \in V \subseteq [V^{(\Lambda,p)}]_{(\Lambda,p)}$. Since $[V^{(\Lambda,p)}]_{(\Lambda,p)}$ is $r(\Lambda, p)$ -open, by (4), there exists a (Λ, p) -open set U containing x such that $f(U) \subseteq [V^{(\Lambda,p)}]_{(\Lambda,p)}$. This shows that f is almost (Λ, p) -continuous. \square

Theorem 3.3. For a function $f:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (1) f is almost (Λ, p) -continuous;
- (2) $f^{-1}(V) \subseteq [f^{-1}([V^{(\Lambda,p)}]_{(\Lambda,p)})]_{(\Lambda,p)}$ for every (Λ,p) -open set V of Y;
- (3) $[f^{-1}([F_{(\Lambda,p)}]^{(\Lambda,p)})]^{(\Lambda,p)} \subseteq f^{-1}(F)$ for every (Λ,p) -closed set F of Y;
- (4) $[f^{-1}([[B^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)})]^{(\Lambda,p)} \subseteq f^{-1}(B^{(\Lambda,p)})$ for every subset B of Y;

- (5) $f^{-1}(B_{(\Lambda,p)}) \subseteq [f^{-1}([[B_{(\Lambda,p)}]^{(\Lambda,p)}]_{(\Lambda,p)})]_{(\Lambda,p)}$ for every subset B of Y;
- (6) $f^{-1}(V)$ is (Λ, p) -open in X for every $r(\Lambda, p)$ -open set V of Y;
- (7) $f^{-1}(F)$ is (Λ, p) -closed in X for every $r(\Lambda, p)$ -closed set F of Y.

Proof. (1) \Rightarrow (2): Let V be any (Λ, p) -open set of Y and $x \in f^{-1}(V)$. There exists a (Λ, p) -open set U of X containing x such that $f(U) \subseteq [V^{(\Lambda,p)}]_{(\Lambda,p)}$. Thus, $x \in [f^{-1}([V^{(\Lambda,p)}]_{(\Lambda,p)})]_{(\Lambda,p)}$ and hence $f^{-1}(V) \subseteq [f^{-1}([V^{(\Lambda,p)}]_{(\Lambda,p)})]_{(\Lambda,p)}$.

(2) \Rightarrow (3): Let F be any (Λ, p) -closed set of Y. Then, $F_{(\Lambda, p)}$ is (Λ, p) -open in Y, by (2), we have $f^{-1}(Y - F) \subseteq [f^{-1}([[Y - F]^{(\Lambda, p)}]_{(\Lambda, p)})]_{(\Lambda, p)} = [f^{-1}(Y - [F_{(\Lambda, p)}]^{(\Lambda, p)})]_{(\Lambda, p)} = X - [f^{-1}([F_{(\Lambda, p)}]^{(\Lambda, p)})]_{(\Lambda, p)}$ and hence

$$[f^{-1}([F_{(\Lambda,p)}]^{(\Lambda,p)})]^{(\Lambda,p)} \subseteq f^{-1}(F).$$

 $(3) \Rightarrow (4)$: Let B be any subset of Y. Since $B^{(\Lambda,p)}$ is (Λ,p) -closed, by (3), $[f^{-1}([[B^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)})]^{(\Lambda,p)} \subseteq f^{-1}(B^{(\Lambda,p)})$.

 $(4) \Rightarrow (5)$: Let B be any subset of Y. By (4),

$$f^{-1}(B_{(\Lambda,p)}) = X - f^{-1}([Y - B]^{(\Lambda,p)})$$

$$\subseteq X - [f^{-1}([[Y - B]^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)})]^{(\Lambda,p)}$$

$$= [f^{-1}([[B_{(\Lambda,p)}]^{(\Lambda,p)}]_{(\Lambda,p)})]_{(\Lambda,p)}.$$

- $(5) \Rightarrow (6)$: Let V be any $r(\Lambda, p)$ -open set of Y. Since $[[V_{(\Lambda,p)}]^{(\Lambda,p)}]_{(\Lambda,p)} = V$, by (5), $f^{-1}(V) \subseteq [f^{-1}(V)]_{(\Lambda,p)}$. Thus, $f^{-1}(V)$ is (Λ, p) -open in X.
 - $(6) \Rightarrow (7)$: The proof is obvious.
- $(7) \Rightarrow (1)$: Let V be any $r(\Lambda, p)$ -open set of Y containing f(x). By (7), $X f^{-1}(V) = f^{-1}(Y V) = [f^{-1}(Y V)]^{(\Lambda, p)} = X [f^{-1}(V)]_{(\Lambda, p)}$. Since $x \in f^{-1}(V) = [f^{-1}(V)]_{(\Lambda, p)}$, there exists a (Λ, p) -open set U of X containing x such that $U \subseteq f^{-1}(V)$; hence $f(U) \subseteq V$. Thus, by Theorem 3.2, f is almost (Λ, p) -continuous.

Theorem 3.4. For a function $f:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (1) f is almost (Λ, p) -continuous;
- (2) $[f^{-1}(U)]^{(\Lambda,p)} \subseteq f^{-1}(U^{(\Lambda,p)})$ for every $\beta(\Lambda,p)$ -open set U of Y;
- (3) $[f^{-1}(U)]^{(\Lambda,p)} \subseteq f^{-1}(U^{(\Lambda,p)})$ for every $s(\Lambda,p)$ -open set U of Y;
- (4) $f^{-1}(U) \subseteq [f^{-1}([U^{(\Lambda,p)}]_{(\Lambda,p)})]_{(\Lambda,p)}$ for every $p(\Lambda,p)$ -open set U of Y.

Proof. (1) \Rightarrow (2): Let U be any $\beta(\Lambda, p)$ -open set of Y. Since $U^{(\Lambda, p)}$ is $r(\Lambda, p)$ -closed, by Theorem 3.3, $[f^{-1}(U^{(\Lambda, p)})]^{(\Lambda, p)} = f^{-1}(U^{(\Lambda, p)})$. Thus,

$$[f^{-1}(U)]^{(\Lambda,p)} \subseteq [f^{-1}(U^{(\Lambda,p)})]^{(\Lambda,p)} = f^{-1}(U^{(\Lambda,p)}).$$

- $(2) \Rightarrow (3)$: The proof is obvious.
- $(3) \Rightarrow (1)$: Let F be any $r(\Lambda, p)$ -closed set of Y. Then, since F is $s(\Lambda, p)$ -open, $[f^{-1}(F)]^{(\Lambda,p)} \subseteq f^{-1}(F^{(\Lambda,p)}) = f^{-1}(F)$. Thus, by Theorem 3.3, f is almost (Λ, p) -continuous.
- $(1) \Rightarrow (4)$: Let U be any $p(\Lambda, p)$ -open set of Y. Then, $U \subseteq [U^{(\Lambda, p)}]_{(\Lambda, p)}$ and hence $[U^{(\Lambda, p)}]_{(\Lambda, p)}$ is $r(\Lambda, p)$ -open. By Theorem 3.3, $f^{-1}([U^{(\Lambda, p)}]_{(\Lambda, p)}) = [f^{-1}([U^{(\Lambda, p)}]_{(\Lambda, p)})]_{(\Lambda, p)}$. Thus,

$$f^{-1}(U) \subseteq f^{-1}([U^{(\Lambda,p)}]_{(\Lambda,p)}) = [f^{-1}([U^{(\Lambda,p)}]_{(\Lambda,p)})]_{(\Lambda,p)}.$$

 $(4) \Rightarrow (1)$: Let U be any $r(\Lambda, p)$ -open set of Y. Then, U is $p(\Lambda, p)$ -open and $f^{-1}(U) \subseteq [f^{-1}([U^{(\Lambda,p)}]_{(\Lambda,p)})]_{(\Lambda,p)} = [f^{-1}(U)]_{(\Lambda,p)}$. Thus, by Theorem 3.3, f is almost (Λ, p) -continuous.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] C. Boonpok, C. Viriyapong, On (Λ, p) -closed sets and the related notions in topological spaces, Eur. J. Pure Appl. Math., **15**, no. 2, (2022), 415–436.
- [2] M. Ganster, S. Jafari, T. Noiri, On pre- Λ -sets and pre-V-sets, Acta Math. Hungar., **95**, (2002), 337–343.
- [3] T. Husain, Almost continuous mappings, Prace Mat., 10, (1966), 1–7.
- [4] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, **53**, (1982), 47–53.
- [5] T. Noiri, On almost continuous functions, Indian J. Pure Appl. Math., **20**, no. 6, (1989), 571–576.
- [6] M. K. Singal, A. R. Singal, Almost-continuous mappings, Yokohama Math. J., 16, (1968), 63–73.