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Abstract

The aim of this work is to provide an algorithm returning all ma-
trices having equal corresponding principal minors of all orders to an
arbitrary matrix A an n × n real or complex skew-symmetric matrix
using the conjecture of Boussäıri and Chergui. Further results regard-
ing the conjecture are presented and discussed.

1 Introduction

Given a vector of of 2n values representing the principal minors of n× n real
or complex matrix, the generation of one matrix having the elements of the
vector as principal minors in a polynomial time was already solved in the
general form. However, the solution is not unique. In this paper, we are
interested in answering the question of generating all matrices having equal
principal minors of all order to an arbitrary skew symmetric matrix through
an algorithm.

2 Definitions and examples

Definition 2.1. Let A an n× n real or complex matrix.

We define a set of transformations T by the set
{

t, t ◦ A
pm
= A

}

, where ◦
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is the Hadamard product [1] and t is an n × n real or complex matrix such
that for all matrices t ∈ T , the matrix t ◦ A have the same principal minors
of all orders. We use the notation A

pm
= t ◦ A to specify principal minors of

all orders equality.
A transformation is said to be elementary, if A and t ◦A are both symmetric
or both skew-symmetric accordingly and t having elements in {-1,0,1}.

Remark 2.2. Some remarks about the previous definition

1. Let A = [tij ]1≤i,j≤n be a matrix with some null elements. Clearly, the
corresponding elements in all elements of T can be any numbers ∈ C.
By convention, we chose those elements to be null as well.

2. A skew-symmetric transformation element t ∈ T switches the form of
a symmetric matrix to a skew-symmetric matrix and vice-versa.

3. For an elementary transformation T , all the elements t ∈ T are sym-
metric matrices.

4. The set of transformations of an arbitrary matrix is included but not
always equal to the set of transformations of a specific matrix of the
same size (see example 3.3).

3 Examples

Below are some examples of transformations preserving principal minors.

Example 3.1. An example of a transformation not preserving the form of
the initial matrix. The resulting matrix is neither symmetric nor skew-
symmetric.





0 −i i

i 0 1
−i 1 0



 ◦





0 −x12 · i x13 · i
−x12 · i 0 x23

x13 · i −x23 0




pm
=





0 x12 x13

−x12 0 x23

−x13 −x23 0





Example 3.2. An example of an elementary transformation.







0 1 −1 1
1 0 −1 1
−1 −1 0 −1
1 1 −1 0






◦







0 x12 x13 x14

−x12 0 x23 x24

−x13 −x23 0 x34

−x14 −x24 −x34 0







pm
=







0 x12 −x13 x14

−x12 0 −x23 x24

x13 x23 0 −x34

−x14 −x24 x34 0
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Example 3.3. An example of an elementary transformation switching a sin-
gle element’s sign for a specific matrix. Such transformation is not valid for
arbitrary matrices.











0 −1 1 1 1 1
−1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0











◦











0 −1 1 1 1 −1
1 0 1 1 1 −1
−1 −1 0 1 1 −1
−1 −1 −1 0 1 −1
−1 −1 −1 −1 0 −1
1 1 1 1 1 0











pm
=











0 1 1 1 1 −1
−1 0 1 1 1 −1
−1 −1 0 1 1 −1
−1 −1 −1 0 1 −1
−1 −1 −1 −1 0 −1
1 1 1 1 1 0











4 The BC conjecture

In order to state the BC conjecture named after Boussäıri and Chergui [6]
specifying an equivalence relation between skew-symmetric matrices having
equal corresponding principal minors, we need the following definitions and
notations. Let A = [aij ] be an n× n matrix and let X; Y be two nonempty
subsets of [n] (where [n] := 1,..,n). We denote by A[X; Y ] the sub-matrix of
A having row indices in X and column indices in Y . If X = Y, then A[X;X]
is a principal sub-matrix of A and we abbreviate this as A[X].

Following [6], a subset X of [n] is an HL-clan of A if both of matrices
A[X̄ ;X ] and A[X ; X̄ ] have rank of at most 1 (where X̄ := [n]\X). By
definition, ∅, [n] and singletons are HL-clans. Considering the particular
case when A is skew-symmetric, let X be a subset of [n]. We denote by
Inv(X ;A) := [tij ] the matrix obtained from A as follows. For any i; j ∈ [n],
tij = −aij if i; j ∈ X and tij = aij, otherwise. More generally, let A and B
be two skew-symmetric matrices, assume that there exists a sequence A0 =
A, ..., Am = B of n × n skew-symmetric matrices such that for k = 0, ..., m;
Ak+1 = Inv(Xk;Ak), where Xk is an HL-clan of Ak. Two matrices A,B
obtained in this way are called HL-clan-reversal-equivalent.
The conjecture of Boussäıri and Chergui is stated as follows:

4.1 Conjecture

Two n× n skew-symmetric real matrices have equal corresponding principal
minors of all orders if and only if they are HL-clan-reversal-equivalent.
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5 Determining the principal minors of skew-

symmetric matrices

For dense symmetric matrices, Oeding [3] pointed that the principal minors of
order at most 3 define the rest of the principal minors, but since the odd prin-
cipal minors of skew-symmetric matrices are null, we need to use the fourth
principal minors. In the following, we define an equivalence relation between
pairwise different matrices having equal corresponding principal minors and
the transformation results of the program in [7.1]. The pairwise different
condition is specified to preserve the general form of matrices.

6 Main Theorem

For two dense skew-symmetric n×n matrices pairwise different, the following
statements are equivalent:

1. A and B have equal corresponding principal minors of all orders;

2. A and B have equal corresponding principal minors of order at most 4;

3. An elementary transformation t is returned by the SMPM program
[7.1] such that A

pm
= t ◦B.

6.1 Proposition

Let A = [aij ] and B = [bij ] be two 4x4 dense skew-symmetric matrices such
aij = ±bij , i, j ∈ {1, .., 4} have the same determinant if and only if one of the
above statements is true:

1. The couple’s elements {a12a34, b12b34}, {a13a24, b13, b24} and {a23a14nb23, b14}
have respectively and independently a positive or negative but the same
signs;

2. The couple’s elements {a12a34, b12b34}, {a13a24, b13, b24} and {a23a14nb23, b14}
have all respectively the opposite sign;

3. The determinant is null;

4. At least one couple from the set {a12a34, a13a24,−a23a14} are equal. In
that case, the matrices A and B are said to be pairwise equal; otherwise,
they are pairwise different.
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Definition 6.1. A skew-symmetric matrix A such

A =







0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0







is said pairwise different if the scalars af , −be and dc are pairwise different.

6.2 Proof

Let A and B be two dense skew-symmetric matrices such that

A =







0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0







, B =







0 b12 b13 b14
−b12 0 b23 b24
−b13 −b23 0 b34
−b14 −b24 −b34 0







.

Since det(A) = (a12a34 − a13a24 + a23a14)
2, det(B) = (b12b34 − b13b24 + b23b14)

2,
and aij = ±bij , i, j ∈ {1, .., 4} and since there are no zeros off the diagonal
and aij = ±bij , there exists three unknowns {x, y, z} having values in {−1, 1}
such det(B) = (xa14a23 − ya13a24 + za12a34)

2. We can easily check that solv-
ing det(A) = det(B) leads to the previous statements.

6.3 Remark

As a consequence of proposition 6.1, the elementary transformations for 4×4
pairwise different matrices are :
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1.







0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0







2.







0 −1 1 1
1 0 1 1

−1 −1 0 −1
−1 −1 1 0







3.







0 1 −1 1
−1 0 1 −1
1 −1 0 1

−1 1 −1 0







4.







0 1 1 −1
−1 0 −1 1
−1 1 0 1
1 −1 −1 0







5.







0 −1 −1 1
1 0 1 −1
1 −1 0 −1

−1 1 1 0







6.







0 −1 1 −1
1 0 −1 1

−1 1 0 −1
1 −1 1 0







7.







0 1 −1 −1
−1 0 −1 −1
1 1 0 1
1 1 −1 0







8.







0 −1 −1 −1
1 0 −1 −1
1 1 0 −1
1 1 1 0







9.







0 −1 −1 1
1 0 −1 1
1 1 0 1

−1 −1 −1 0







10.







0 1 1 −1
−1 0 1 −1
−1 −1 0 −1
1 1 1 0







11.







0 −1 −1 −1
1 0 1 1
1 −1 0 1
1 −1 −1 0







12.







0 1 1 1
−1 0 −1 −1
−1 1 0 −1
−1 1 1 0







13.







0 −1 1 1
1 0 −1 −1

−1 1 0 1
−1 1 −1 0







14.







0 1 −1 −1
−1 0 1 1
1 −1 0 −1
1 −1 1 0







15.







0 1 −1 1
−1 0 −1 1
1 1 0 −1

−1 −1 1 0







16.







0 −1 1 −1
1 0 1 −1

−1 −1 0 1
1 1 −1 0







6.4 Lemma

Let A and B be two 6×6 dense skew-symmetric matrices equals up to a sign
pairwise different. A and B have equal corresponding principal minors of
order at most 4 if and only if they have equal corresponding principal minors
of all orders.

6.5 Proof

This result is proved under weaker conditions by Boussäıri and Chergui [6].

6.6 Definition

Let A be a skew-symmetric matrix and let v be a 2n−1 vector represent-
ing the set of its principal minors. v is said to be in combinatorial order
if it is ordered by blocks of principal minors order, then by the combinato-
rial order of chosen rows and columns for each order. In other words, for
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a specific principal minor order k, there are c =

(
n

k

)

vectors of size k rep-

resenting the selected rows/columns forming the principal sub-matrix, such
the rows/columns number of the vectors are in ascending order in the vectors
individually and for the corresponding order in the set.

6.7 Remark

As a consequence of the definition of combinatorial order, the entries of v for
a 3× 3 matrix are as follows:

v =










A[1]
︸︷︷︸
PM11

, A[2]
︸︷︷︸
PM12

, A[3]
︸︷︷︸
PM13

︸ ︷︷ ︸
PM1

, A[1, 2]
︸ ︷︷ ︸
PM21

, A[1, 3]
︸ ︷︷ ︸
PM22

, A[2, 3]
︸ ︷︷ ︸
PM23

︸ ︷︷ ︸
PM2

, A[1, 2, 3]
︸ ︷︷ ︸

PM31
︸ ︷︷ ︸

PM3










6.8 Proof of the main Theorem

The equivalence between the second and last statements holds by design, the
proof of the equivalence between the first and second statements are based
on lemma 6.4.

7 The algorithm and computational results

Throughout this section, we explain the algorithm of the program SMPM
generating the elementary transformations for an n× n arbitrary dense ma-
trix. We then present the computational results and their analysis.

7.1 The program SMPM

Using the results of the proposition 6.1, we initiate the algorithm with the
matrices obtained in 6.3. The matrices can be hard coded in the implemen-
tation because this same set is used abstraction of the size of the transforma-
tions. The algorithm uses the principle of theorem 6 by building recursively
matrices of equal corresponding principal minors of 4th order. The algorithm
proceeds as follows:
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Algorithm 1: Generate Elementary transformations of an n × n

skew-symmetric matrix

Result: Generate Elementary transformations of an n× n

skew-symmetric matrix
1 initialization of E1≤j≤16 // the set of 16 elementary

transformation matrices of order 4

2 initialization of Rj=1 // Initiate the result set with one

element formed by unknowns elements

3 initialization of PM1≤i≤2n−1 // Initiate the set of the

principal minors

4 for All principal minors combinations PMi do
5 for All Rj elements of R do
6 for All Ek elements of E do
7 if the elements of Ri are still unknown then
8 Fill the unknown elements and add the new matrix to

R ;

9 else if no element of E is equal to PMi then
10 Remove the matrix from R;

11 end

12 end

13 end
14 Return R ;

7.2 Elementary transformations for 6× 6 matrices

For the case of a 6×6 matrices, the algorithm will return 64 skew-symmetric
dense matrices. The Hadamard products of any of those elementary trans-
formations matrix by the resulting matrices share the same principal minors
of all orders.

We illustrate all HL-clans relations by the following figure where every
point represents a matrix and a line between two matrices represents an
HL-Clan relation:
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Figure 1: The HL-Clans relations

Therefore, to validate the conjecture, we must find a path between every
couple of matrices. More simply, find a path from every matrix to the first
one which we present in the following figures for the 6th, 8th and the 10th

matrix orders:

Figure 2: The HL-Clans relations paths from all matrices to the first one for
the 6th order matrices
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Figure 3: The HL-Clans relations paths from all matrices to the first one for
the 8th order matrices

Figure 4: The HL-Clans relations paths from all matrices to the first one for
the 10th order matrices
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7.3 Computational results

We illustrate the results obtained from the recursive execution of the program
for different matrix orders:

Table 1: Execution results

Matrix order
Number of elementary
transformations

Number of HL-Clans
relations

Maximum path length

6 64 448 4
8 256 2304 5
10 1024 11264 6
12 4096 53248 7
14 16384 245760 8

We can generalize the following results to a skew-symmetric matrix of
order n:

1. The number of elementary matrices is 2n;

2. The number of HL-Clans relations is (n+ 1)2n;

3. Te Maximum path length is n
2
+ 1.

7.4 Practicals examples

Let A and B be two skew-symmetric matrices formed as follows:

A =











0 2 3 5 7 11
−2 0 13 17 19 23
−3 −13 0 29 31 37
−5 −17 −29 0 41 43
−7 −19 −31 −41 0 47
−11 −23 −37 −43 47 0











, B =











0 −2 −3 5 7 −11
2 0 13 −17 −19 23
3 −13 0 −29 −31 37
−5 17 −29 0 41 −43
−7 19 −31 −41 0 −47
11 −23 −37 43 47 0











A and B are formed to be pairwise different. We can identify the correspond-
ing elementary transformations from the result of the SMPM program in [7.2]
to the first and eighteenth matrices. Therefore, from the matrices path figure
2 in 7.2, we can deduce a valid path going trough the matrices obtained by
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the elementary transformations numbered by 29, 2, 55, 18 explained in the
following steps.

Table 2: HL-Clan relation steps.

Step Matrix HL-Clan

1











0 2 3 5 7 11
−2 0 13 17 19 23
−3 −13 0 29 31 37
−5 −17 −29 0 41 43
−7 −19 −31 −41 0 47

−11 −23 −37 −43 −47 0











[1,2,3,4,5,6]

2











0 −2 −3 −5 −7 −11
2 0 −13 −17 −19 −23
3 13 0 −29 −31 −37
5 17 29 0 −41 −43
7 19 31 41 0 −47
11 23 37 43 47 0











[1,2,3,4,5]

3











0 2 3 5 7 −11
−2 0 13 17 19 −23
−3 −13 0 29 31 −37
−5 −17 −29 0 41 −43
−7 −19 −31 −41 0 −47
11 23 37 43 47 0











[1,3,4,5,6]

4











0 2 −3 −5 −7 11
−2 0 13 17 19 −23
3 −13 0 −29 −31 37
5 −17 29 0 −41 43
7 −19 31 41 0 47

−11 23 −37 −43 −47 0











[1,2,4,5,6]

5











0 −2 −3 5 7 −11
2 0 13 −17 −19 23
3 −13 0 −29 −31 37

−5 17 29 0 41 −43
−7 19 31 −41 0 −47
11 −23 −37 43 47 0
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