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Abstract

This paper focuses on finite-dimensional dual mock-Lie algebras.
Let H be a dual mock-Lie algebra and V a vector space containing H
as a subspace. All dual mock-Lie algebra structures on V containing H
as a subalgebra are explicitly described and classified by non-abelian
cohomological type objects: C2

H(U ,H) provides the classification up to
an isomorphism that stabilizes H and will classify all such structures
from the viewpoint of the extension problem. Here U is a complement
of H in V. A general product, called the unified product, is introduced
as a tool for our approach. The crossed (resp. bicrossed) products
between two dual mock-Lie algebras are introduced as special cases of
the unified product: crossed product is responsible for the extension
problem while the bicrossed product is responsible for the factorization
problem. The description and the classification of all complements of
a given extension of dual mock-Lie algebras are given as a converse of
the factorization problem.
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1 Introduction

Dual mock-Lie algebras are as noted in [20] the intersection of anti-commutative
and anti-associative algebras. They play a very significant role in the the-
ory of non-associative algebras. Their importance is motivated by the fact
that an algebraically coherent variety of anti-commutative algebras is either
a variety of Lie algebras or a variety of anti-associative algebras (c.f. [6]).

A dual mock-Lie algebra consists of a vector space H with a bilinear
map (.) : H ×H → H such that p.q = −q.p and p.(q.r) = −(p.q).r, for all
p, q, r ∈ H. The structure theory of dual mock-Lie algebras is exciting and
rich but needs further development. There are recent interesting works on the
classification of such algebras. In [18], the authors provide a classification of
all indecomposable 7-dimensional 2-step nilpotent dual mock-Lie algebras.
Next, Kaygorodov et al. [17] gave the classification of all 6-dimensional
nilpotent anti-commutative algebras. More recently, Camacho et al. [21]
used these two last results to classify algebraically and geometrically low
dimensional dual mock-Lie algebras. The reader can find more information
about this structure for instance in [19, 9, 5, ?, 1].

The outline of this paper is as follows: As a starting point, in the first
section, after defining notations and conventions that will be used through-
out the article and recalling some basic concepts related to dual mock-Lie
algebras, we examine the extending structure’s problem (E-S problem): Let
H be a dual mock-Lie algebra and V a vector space containing H as a sub-
space. Describe and classify up to an isomorphism of dual mock-Lie algebras
that stabilizes H the set of all dual mock-Lie algebra structures (.) that can
be defined on V such that H is a dual mock-Lie subalgebra of (V, .).

We propose the following strategy for the study of the E-S problem: First,
we establish in Theorem 2.1 the unified product H♮U that is associated with
a dual mock-Lie algebra H and a space U that are related by two actions
and a cocycle. Further, dual mock-Lie algebra structure (V, .V) on V con-
tains H as a subalgebra if and only if there exists an isomorphism of dual
mock-Lie algebras (V, .V) ∼= H♮U as shown in Theorem 2.2. Furthermore, a
theoretical explanation of the E-S problem can be found in Theorem 2.5: a
non-abelian cohomological type object C2

H(U ,H) is constructed; it parame-
terizes and classifies all dual mock-Lie algebras which stabilize H as a sub-
algebra with codimension equal to the dimension of U . The unified product
is a general structure that includes special cases such as crossed products,
bi-crossed products, semi-direct products, and skew-crossed products derived
from dual mock-Lie algebras. Section 3 discusses all of these special cases
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in detail, emphasizing the role of problems arising related to each one. We
define matched pairs of dual mock-Lie algebras and the related bi-crossed
product in Definition 3.3. The Galois group of the extension H ⊆ H ⊲⊳ U is
uniquely computed in Corollary 3.6 as a subgroup of the semidirect product
of groups GLF(U)⋊ HomF(U ,H) if H ⊲⊳ U is the bi-crossed product related
with a matched pair (H,U ,⊳,⊲) of dual mock-Lie algebras. In Theorem
3.10, we discuss an application of crossed products as the main characters in
theory for sorting finite dimensional supersolvable dual mock-Lie algebras.

Throughout this paper, H,U are two vector spaces on a field F of char-
acteristic, not 2 nor 3. A bilinear map h : H × H → U is said to be
skew-symmetric if h(x1, x2) = −h(x2, x1), for all x1, x2 ∈ H.

Definition 1.1. a dual mock-Lie algebra consists of vector space H with a
bilinear map (.) : H×H → H such that p.q = −q.p and p.(q.r) = −(p.q).r,
for all p, q, r ∈ H.

Example 1.2. Let H be a 7-dimentional vector space and (ui)1≤i≤7 a basis
of H. The product (·) given on H by

u1 · u2 = u4, u1 · u3 = u5, u2 · u3 = u6, u1 · u6 = −u2u5 = u3u4 = u7,

defines a dual mock-Lie structure on H. This dual mock-Lie algebra is de-
noted by FAA(3) in page 13 of [5].

A left H-module is a space U endowed with a bilinear mapping ⊲: H ×
U → U , called action, so that

(p.q) ⊲ x = −p ⊲ (q ⊲ x1) (1.1)

for any p, q ∈ H and x1 ∈ U . Moreover, we denote the entity of all (left)
H-modules with action-preserving linear maps as morphisms by HW. A right
H-module is a space U defined with a bilinear map ⊳: U ×H → U so that

x1 ⊳ (p.q) = −(x1 ⊳ p) ⊳ q (1.2)

for any p, q ∈ H and x1 ∈ U .
Now, we discuss the ES problem for dual mock-Lie algebras. We will

begin by introducing the following:

Definition 1.3. Consider the dual mock-Lie algebra H, and the space V
containing H. Two dual mock-Lie algebra structures(.) and (.′) on V which
contain H as a subalgebra, are called equivalent, and we abbreviate this by
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(V, .) ≡ (V, .′), if there exists a dual mock-Lie algebra isomorphism ψ :
(V, .) → (V, .′) which stabilizes H; i.e., ψ(p) = p, for all p ∈ H. The
notation Extd(V,H) represents the collection of all equivalence classes of all
dual mock-Lie algebras structures on V that contain H as a subalgebra with
respect to the equivalence relation ≡.

Extd(V,H) is the sorting object of the E-S problem. In this section, we
show that the extended (V,H) is parameterized by a cohomological type object
which is denoted by C2

H(U ,H), where U is a complement of H in V, that is
V = H + U and H ∩ U = 0.

Definition 1.4. Suppose H is a dual mock-Lie algebra and U a space. An
extending datum of H through U is a system ℧(H,U) = (⊳,⊲, h, {−,−})
consisting of four bilinear maps

⊳: U ×H → U , ⊲: U ×H → H, h : U ×U → H, {−,−} : U ×U → U .

Let ℧(H,U) = (⊳,⊲, h, {−,−}) be an extending datum.
The notation H♮℧(H,U)U = H♮U is the vector space H × U together with

the bilinear mapping ⋆ : (H×U)× (H×U) → H×U defined for all p, q ∈ H
and x1, x2 ∈ U by:

(p, x1)⋆(q, x2) := (p.q+x1 ⊲ q−x2 ⊲ p+h(x1, x2), {x1, x2}+x1 ⊳ q−x2 ⊳ p)
(1.3)

With the multiplication given by above equation the object H♮U is called the
unified product of H and U if it is a dual mock-Lie algebra. In this case the
extending datum ℧(H,U) = (⊳,⊲, h, {−,−}) is known as a dual mock-Lie
E-S of H through space U . The actions of ℧(H,U) are the maps ⊳ and ⊲

and the cocycle of ℧(H,U) is h.

Suppose ℧(H,U) is an extending datum of H through space U . Then,
the very useful computations that hold in H♮U follow the given relations for
all p, q ∈ H and x1, x2 ∈ U :

(p, 0) ⋆ (q, x2) = (p.q − x2 ⊲ p,−x2 ⊳ p) (1.4)

(0, x1) ⋆ (q, x2) = (x1 ⊲ q + h(x1, x2), x1 ⊳ q + {x1, x2}) (1.5)

2 Main results: Describing extensions of dual

mock-Lie algebras and applications

Theorem 2.1. Let ℧(H,U) = (⊳,⊲, h, {−,−}) be an extending datum of a
dual mock-Lie algebra H through U . The following assertions are equivalent:



Unified products and matched pairs 543

(1) H♮U is a unified product;

(2) The following compatibilities hold for any p, q ∈ H, x1, x2, x3 ∈ U :

(V1) h : U × U → H and {−,−} : U × U → U are skew-symmetric
maps;

(V2) (U ,⊳) is a right H-module;

(V3) x1 ⊲ (p.q) = (x1 ⊲ q).p+ (x1 ⊳ q) ⊲ p;

(V4) {x1, x2} ⊳ p = −{x1, x2 ⊳ p} − x1 ⊳ (x2 ⊲ p);

(V5) {x1, x2} ⊲ p = −x1 ⊲ (x2 ⊲ p) + p.h(x1, x2)− h(x1, x2 ⊳ p);

(V6) h(x1, {x2, x3})h({x1, x2}, x3) +x1 ⊲ h(x2, x3)−x3 ⊲ h(x1, x2) =
0

(V7) {x1, {x2, x3}}+{{x1, x2}, x3}+x1 ⊳ h(x2, x3)−x3 ⊳ h(x1, x2) =
0

Proof. Despite the lengthy and laborious computation, the proof is straight-
forward. We show only the main steps. First, it is easy to show that mul-
tiplication (1.3) is anti-commutative iff both h : U × U → H and {−,−} :
U × U → U are skew-symmetric maps, that is (V1) holds. The statement
(V1) will now be considered true. Thus H♮U is a dual mock-Lie algebra
iff the anti-associativity property is satisfied; that is, for all p, q, r ∈ H and
x1, x1, x3 ∈ U :

(p, x1) ⋆
(

(q, x2) ⋆ (r, x3)
)

= −
(

(p, x1) ⋆ (q, x2)
)

⋆(r, x3) (2.6)

We have (p, x1) = (p, 0)+(0, x1) since H♮U . Consequently, (2.6) holds iff it is
true for all generators of H♮U , that is for the set {(p, 0) | p ∈ H} ∪ {(0, x1) |
x1 ∈ U}. As under anti-associativity property (2.6) is invariant, there are
only three cases to consider. By using equation (1.4), it is easy to see that
for the triple (p, 0), (q, 0), (r, 0) equation (2.6) holds. Now, we can prove that
for (p, 0), (q, 0), (0, x1) equation (2.6) holds , iff (V2) and (V3) also hold.
Furthermore, (V4) and (V5) can be proved to be true iff (p, 0), (0, x1), and
(0, x2) are true. In conclusion, (2.6) holds for (0, x1), (0, x2), (0, x3) iff (V6)
and (V7) hold. This completes the proof.

We denote the collection of all dual mock-Lie E-S of H through space U
by AA(H,U). That is all systems ℧(H,U) = (⊳,⊲, h, {−,−}) fulfilling the
compatibility conditions (V1)-(V7) of Theorem 2.1. Observe that AA(H,U)
is nonempty because it includes the E-S ℧(H,U) = (⊳,⊲, h, {−,−}) in which
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all bilinear mappings are trivial. For this case, the associated unified product
H♮U = H×U , the direct product between H and the abelian dual mock-Lie
algebra U .

Consider ℧(H,U) = (⊳,⊲, h, {−,−}) ∈ AA(H,U), a dual mock-Lie al-
gebra E-S and H♮U the associated unified product. Then the canonical
inclusion

iH : H → H♮U , iH(p) = (p, 0) (2.7)

is an injective dual mock-Lie algebra mapping. Therefore, we can see H as
a dual mock-Lie subalgebra of H♮U through the identification H ∼= iH(H) ∼=
H × {0}. On the other hand, we will demonstrate that any dual mock-Lie
algebra structure on U containingH as a subalgebra is isomorphic to a unified
product.

Theorem 2.2. Suppose H is a dual mock-Lie algebra, V a vector space that
contain H as a subspace and (.) a dual mock-Lie structure on space V so
that H is a subalgebra in (V, .). Then there exists a dual mock-Lie Extending
structure ℧(H,U) = (⊳,⊲, h, {−,−}) of H via a vector subspace U of V and
an isomorphism of dual mock-Lie algebras V ∼= H♮U that stabilizes H.

Proof. As, we are working over a field F, there exists ϕ : V → H linear map
such that for all p ∈ H, ϕ(p) = p. Then U := ker(ϕ) is a subspace of U and
also complement of H in U . Now, We can define the extending datum of H
via space U for any p ∈ H and x1, x2 ∈ U as below:

⊲ =⊲ϕ: U ×H → H, x ⊲ p := ϕ(x1.p)

⊳ =⊳ϕ: U ×H → V, x1 ⊳ ϕ := x1.p− ϕ(x1.p)

h = hϕ : U × U → H, h(x1, x2) := ϕ(x1.x2)

{, } = {, }ϕ : U × U → U , {x1, x2} := x1.x2 − ϕ(x1.x2)

First, it is obvious that the aforementioned mappings are well defined bilinear
maps: x1 ⊳ p ∈ U and {x1, x2} ∈ U , for all p ∈ H and x1, x2 ∈ U . We will
prove that ℧(H,U) = (⊳,⊲, h, {−,−}) is a dual mock-Lie E-S of H through
space U and ψ : H♮U → V, ψ(p, x1) := p+x1 is an isomorphism of dual mock-
Lie algebras that stabilizes H. On the basis of Theorem 2.1, the process we
use is the following: ψ : H× U → V defined as ψ(p, x1) := p+ x1 is a linear
isomorphism between the dual mock-Lie algebra U and the direct product
of H × U with the inverse defined by ψ−1(x2) := (ϕ(x2), x2 − ϕ(x2)), for all
x2 ∈ V. Therefore, there is a unique dual mock-Lie algebra structure, (⋆), on
vector spaces H×U such that ψ is an isomorphism of dual mock-Lie algebras
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and this exclusive multiplication on H× U for any x1, x2 ∈ U and p, q ∈ H
is given by:

(p, x1) ⋆ (q, x2) := ψ−1(ψ(p, x1).ψ(q, x2))

Now, the objective is to show that the multiplication coincides with the one
associated to (⊳ϕ,⊲ϕ, hϕ, {−,−}ϕ) as defined by (1.3). In fact, for any x1,
x2 ∈ U and p, q ∈ H we have:

(p, x1) ⋆ (q, x2) =ψ
−1(ψ(p, x1).ψ(q, x2)) = ψ−1(p.q + p.x2 + x1.q + x1.x2)

=(ϕ(p.q), p.q − ϕ(p.q)) + (ϕ(p.x2), p.x2 − ϕ(p.x2))

+ (ϕ(x1.q), x1.q − ϕ(x1.q)) + (ϕ(x1.x2), x1.x2 − ϕ(x1.x2))

=(ϕ(p.q) + ϕ(p.x2) + ϕ(x1.q) + ϕ(x1.x2), p.q + p ⋆ x2

+ x1.q + x1.x2 − ϕ(p.q)− ϕ(p.x2)− ϕ(x1.q)− ϕ(x1.x2))

=(p.q + ϕ(p.x2) + ϕ(x1.q) + ϕ(x1.x2), p.x2 − ϕ(p.x2)+

+ x1.q − ϕ(x1.q) + x1.x2 − ϕ(x1.x2))

=(p.q − x2 ⊲ p+ x1 ⊲ q + h(x1, x2), {x1, x2}+ x1 ⊳ b− x2 ⊳ p)

as required. Note that in the above computation the anti-commutativity
of ⋆ was intensively used. Furthermore, the following figure is clearly anti-
commutative which explains that ψ stabilizesH and this completes the proof.

The classification of all dual mock-Lie algebra structures on V that con-
tain H as a subalgebra can be reduced to the classification of all unified prod-
ucts H♮U , associated to all dual mock-Lie E-S ℧(H,U) = (⊳,⊲, h, {−,−}),
for a given complement U of H in V by using Theorem 2.2.

To construct a cohomological type object (c.f. [3]) C2
H(U ,H) parameter-

ized by the classifying sets Extd(V,H) defined in Definition 1.3, we would
like to introduce the following:

Lemma 2.3. Suppose that ℧(H,U) = (⊳,⊲, h, {−,−}) and ℧
′(H,U) =

(⊳′,⊲′, h′, {−,−}′) are two dual mock-Lie algebra E-S of H through space
U and H♮U , respectively H♮′U , the associated unified products. Then there
exists a bijection between the set of all morphisms of dual mock-Lie al-
gebras η : H♮U → H♮′U which stabilize H and the pairs (m,n), where
m : U → H, n : U → U are two linear mappings that satisfy the follow-
ing of conditions of compatibility for any x1, x2 ∈ U , p ∈ H :

(M1) n(x1) ⊳
′ p = n(x1 ⊳ p), that is U is a morphism of right H-modules;

(M2) n(x1) ⊲
′ p = m(x1 ⊳ p) + x1 ⊲ p+ p.m(x1);

(M3) n({x1, x2}) = {n(x1), n(x2)}
′ + n(x1) ⊳

′ m(x2)− n(x2) ⊳
′ m(x1);
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(M4) m({x1, x2}) = m(x1).m(x2) + n(x1) ⊲
′ m(x2) − n(x2) ⊲

′ m(x1) +
h′(n(x1), n(x2))− h(x1, x2).

Under the above bijection the morphism of dual mock-Lie algebras η =
η(m,n) : H♮U → H♮′U corresponding to (m,n) is given for any p ∈ H and
x1 ∈ U by:

η(p, x1) = (p+m(x1), n(x1))

Furthermore, η = η(m,n) is an isomorphism iff n : U → U is bijective.

Proof. The linear map η making the diagram below commutative

H H♮U

H H♮′U

iH

idH η

idH

is uniquely obtained by two linear maps m : U → H, n : U → U such
that η : (p, x1) = (p+m(x1), n(x1)) , for all x1 ∈ U and p ∈ H. Indeed, if we
denote η(0, x1) = (m(x1), n(x1)) ∈ H × U for all x1 ∈ U , we obtain:

η(p, x1) = η((p, 0) + η(0, x1)) = η(p, 0) + η(0, x1)

= (p, 0) + (m(x1), n(x1)) = (p+m(x1), n(x1))

Consider η = η(m,n), such a linear map; that is, η(p, x1) = (p+m(x1), n(x1)),
for some linear mappings m : U → H, n : U → U . We show that η is a
morphism of dual mock-Lie algebras iff the conditions of compatibility (M1)-
(M4) hold. For this, it is enough to show that the compatibility

η((p, x1) ⋆ (q, x2)) = η(p, x1) ⋆
′ η(q, x2)] (2.8)

satisfy for all generators H♮U . Likewise, we will skip the lengthy calculations
and only show the important steps. First, easy to see that for all p, q ∈ H,
the pair (p, 0), (b, 0) hold for (2.8). Secondly, we can show that for the pair
(p, 0), (0, x1) (2.8) holds iff (M1) and (M2) are true. In the end, (2.8) holds
for the pair (0, x1), (0, x2) iff (M3) and (M4) are satisfied. The last assertion
follows just after noting that if n : U → V is bijective, then ψ(m,n) is an
isomorphism of dual mock-Lie algebras with an inverse given for any q ∈ H
and y ∈ U according to:

η−1
(m,n)(q, x2) =

(

q −m
(

n−1(x2)
)

, n−1(x2)
)

The proof is now complete.
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For the sake of classification we introduce the subsequent:

Definition 2.4. Suppose H is a dual mock-Lie algebra and U a vector space.
Two dual mock-Lie algebra extending systems of H through U , ℧(H,U) = (⊳
,⊲, h, {−,−}) and ℧′(H,U) = (⊳′,⊲′, h′, {−,−}′) are referred to as equiva-
lent, and we denote this by means of ℧(H,U) ≡ ℧′(H,U), if there exists a
pair of linear mappings (m,n), where m : U → H and v ∈ AutF(U) such that
(⊳′,⊲′, h′, {−,−}′) is described through (⊳,⊲, h, {−,−}) using (m,n) for all
p ∈ H, x1, x2 ∈ U as below:

x1 ⊳
′ p =n

(

n−1(x1) ⊳ p
)

x1 ⊲
′ p =−m

(

n−1(x1) ⊳ p
)

− n−1(x1) ⊲ p− x1 ⊲ p

h′(x1, x2) =h
(

n−1(x1), n
−1(x2)

)

+m
({

n−1(x1), n
−1(x2)

})

+m
(

n−1(x1)
)

.m
(

n−1(x2)
)

−m
(

n−1(x1) ⊳ m
(

n−1(x2)
))

− n−1(x1) ⊲ m
(

n−1(x2)
)

+m
(

n−1(x2) ⊳ m
(

n−1(x1)
))

+ n−1(x2) ⊲ m
(

n−1(x1)
)

{x1, x2}
′ =n

({

n−1(x1), n
−1(x2)

})

− n
(

n−1(x1) ⊳ m
(

n−1(x2)
))

− n
(

n−1(x2) ⊳ m
(

n−1(x1)
))

Based on the results of this section, we can solve the dual mock-Lie alge-
bra E-S problem as below:

Theorem 2.5. Consider H as a dual mock-Lie algebra, V as a space con-
taining H as subspace, and U as H complement in V. Then:

(I) ≡ is an equivalence relation on AA(H,U) of all dual mock-Lie algebra
E-S of H via U . We denote the quotient set by C2

H(U ,H) := AA(H,U)/ ≡.

(II) The map

C2
H(U ,H) → Extd(V,H), (⊳,⊲, h, {−,−}) → (H♮U , ⋆)

is bijective, here (⊳,⊲, h, {−,−}) is an equivalence class of (⊳,⊲, h, {−,−})
through ≡.

Proof. From Theorem 2.1, Theorem 2.2 and Lemma 2.3 we see that℧(H,U) ≡
℧′(H,U) according to the Definition 2.4 iff there exists an isomorphism of
dual mock-Lie algebras ψ : H♮U → H♮′U which stabilizes H. Hence, ≡ is an
equivalence relation on AA(H,U) of all dual mock-Lie algebra E-S ℧(H,U)
and from Theorem 2.2 and Lemma 2.3 conclusion follows.
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3 Applications of unified products

This section describes the prominent special cases of unified products, with
the names semidirect/crossed/bi-crossed/skew crossed products, as well as
their applications. We assume the following rule:

if one of ⊳,⊲, f or {−,−} mappings of ℧(H,U) = (⊳,⊲, h, {−,−}) is
trivial, it will be left out of the quadruple (⊳,⊲, h, {−,−}).

3.1 Matched pairs

Consider ℧(H,U) = (⊳,⊲, h, {−,−}) an extending datum of H via U , so
that h is the trivial map, that is h(x1, x2) = 0 for all x1, x2 ∈ U . Then, by
using Theorem 2.1, we get that ℧(H,U) = (⊳,⊲, {−,−}) is a dual mock-Lie
E-S of H via the space U iff (V, {−,−}) is a dual mock-Lie algebra and for
all p, q ∈ H, x1, x2 ∈ U , the following compatibilities are satisfied:

(1) (U ,⊳) is a right H-module.

(2) x1 ⊲ (p.q) = (x1 ⊲ q).p+ (x1 ⊳ q) ⊲ p;

(3) {x1, x2} ⊳ p = −{x1, x2 ⊳ p} − x1 ⊳ (x2 ⊲ p);

(4) {x1, x2} ⊲ p = −x1 ⊲ (x2 ⊲ p); (i.e (H,⊲) is a left U-module).

Definition 3.1. A (δ, γ)-derivation is a linear map D : H → H which sat-
isfies

D(xy) = δD(x)y + γxD(y)),

where δ, γ are some fixed elements of the ground field. The space of (δ, γ)-
derivations is denoted by Der(δ,γ)(H).

Remark 3.2. The space containing all dual mock-Lie algebra’s (δ, γ)-derivations
does not possess canonical dual mock-Lie algebra structure like Lie algebras.

By Following the ([13], Theorem 4.1) we define the following definition:

Definition 3.3. Suppose H = (H, .) and U = (U , {−,−}) are two dual
mock-Lie algebras.

Then (H,U ,⊳,⊲) is known as matched pair of dual mock-Lie algebras if
(U ,⊳) is a right H, (H,⊲) is a left U-module, and for all p, q ∈ H, x1, x2 ∈ U
the given compatibilities satisfy:

(MP1): x1 ⊲ (p.q) = (x1 ⊲ q).p+ (x1 ⊳ q) ⊲ p;
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(MP2): {x1, x2} ⊳ p = −{x1, x2 ⊳ p} − x1 ⊳ (x2 ⊲ p);

For (H,U ,⊳,⊲) the notationH ⊲⊳ U represent the unified productH♮℧(H,U)V
and will be known as the bi-crossed product of (H,U ,⊳,⊲). Therefore,
H ⊲⊳ U = H × U as a vector space with multiplication for all p, q ∈ H
and x1, x2 ∈ U follows as:

(p, x1) ⋆ (q, x2) := (p.q + x1 ⊲ q − x2 ⊲ p, {x1, x2}+ x1 ⊳ q − x2 ⊳ p)

Example 3.4. Suppose the matched pair (H,U ,⊳,⊲) so that ⊳ is the trivial
mapping. Then H ⊲⊳ U the associated bi-crossed product was first defined like
in [12] with the name of semidirect product. The associated bi-crossed product
will be denoted by H ⊲⊳ U and uniquely, the semidirect product H ⊲⊳ U is
associated to a left U-module structure (H,⊲) so that for any H, p, q ∈ H
and x1 ∈ U :

x1 ⊲ (p.q) = −p.(x1 ⊲ q);

or equivalently for all x1 ∈ U the map x1 ⊲ − : A → H is an (0,−1)-
derivation of H.

The bi-crossed product of two dual mock-Lie algebras is the key to solving
a factorization problem: Suppose H and U are two given dual mock-Lie
algebras. Analyze and classify all dual mock-Lie algebras U that factorize
via H and U , that is U contains H and U as dual mock-Lie subalgebras such
that V = H + U and H ∩ U = {0}.

In fact, Theorem 2.2 allows us to prove the dual mock-Lie algebra version
of ([8] Theorem 3.9):

Proposition 3.5. A dual mock-Lie algebra U factorizes via two given dual
mock-Lie algebras H and U iff there exists a matched pair (H,U ,⊳,⊲) such
that V ∼= H ⊲⊳ U .

Proof. First, note that U ∼= {0} × U and H ∼= H × {0} are dual mock-Lie
subalgebras of H ⊲⊳ U and no doubt H ⊲⊳ U factorizes via {0} × V and
H× {0}. Conversely, consider that a dual mock-Lie algebra U factorizes via
two dual mock-Lie subalgebras H and U . Since U is a subalgebra of V, the
cocycle h = hϕ : U × U → H established in the proof of Theorem 2.2 is
just the trivial map that is for all x1, x2 ∈ U , hϕ(x1, x2) = 0. Therefore, the
unified product M℧(H,U)V = H ⊲⊳ U coincides with the bi-crossed product of
the dual mock-Lie algebras H and U := Ker(ϕ).
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The factorization problem can be restated based on Corollary 3.5 as below:
Suppose H and U are two given dual mock-Lie algebras. The objective is to
identify all the matched pairs (H,U ,⊳,⊲) and classify up to an isomorphism
all bi-crossed products H ⊲⊳ U .

The problem will be discussed separately in a forthcoming paper because
of its significant applications to the theory of dual mock-Lie algebras.

Here, we compute the Galois group of the dual mock-Lie algebra extension
H ⊆ H ⊲⊳ U . For (H,U ,⊳,⊲), we establish the Galois group Gl(H ⊲⊳ U/H)
of the extension H ⊆ H ⊲⊳ U , which is the subgroup of Aut dualmock−Lie(H ⊲⊳
U) of all dual mock-Lie algebra automorphisms of H ⊲⊳ U that stabilize H :

Gl(H ⊲⊳ U/H) := {η ∈ Autdualmock−Lie(H ⊲⊳ U) | η(p) = p, ∀p ∈ H}

Based on the result of Lemma 2.3, we get a bijective map between the
collection of all elements η ∈ Gl(H ⊲⊳ U/H) and the collection all pairs
(n,m) ∈ GLF(U)× HomF(U ,H), with the following compatibility assertions
for any p ∈ H and x1, x2 ∈ U :

(G1) n(x1) ⊳ p = n(x1 ⊳ p);
(G2) n(x1) ⊲ p = m(x1 ⊳ p) + x1 ⊲ p− p;m(x1);
(G3) n({x1, x2}) = {n(x1), n(x2)}+ n(x1) ⊳ m(x2)− n(x2) ⊳ m(x1);
(G4) m({x1, x2}) = m(x1).m(x2) + n(x1) ⊲ m(x2)− n(x2) ⊲ m(x1).

The bijection is such that η = η(n,m) ∈ Gl(H ⊲⊳ U/H) related to (n,m) ∈
GLF(U) × HomF(U ,H) is defined by η(p, x1) := (p + m(x1), n(x1)), for all
p ∈ H and x1 ∈ U . We highlight that η(n,m) is in fact an element of Gl(H ⊲⊳
U/H) with the inverse defined by η−1

(n,m)(p, x1) = (p−m (n−1(x1)) , n
−1(x1)),

for all p ∈ H and x1 ∈ U .
The entity of all pairs (n,m) ∈ GLF(U) × HomF(U ,H) fulfilling the

compatibility conditions (G1)-(G4) is denoted by GU
H(⊳,⊲) . It is easy

to see that GU
H(⊳,⊲) is a subgroup of the semidirect product of groups

GLF(U)⋊HomF(U ,H) with the group structure defined for all n, n′ ∈ GLF(U)
and m,m′ ∈ HomF(U ,H) as

(n,m)⊙ (n′, m′) := (n ◦ n′, m ◦ n′ +m′)

Now, for (n,m) and (n′, m′) ∈ GU
H(⊳,⊲), p ∈ H and x1 ∈ U we have:

η(n,m)◦η(n′,m′)(p, x1) =
(

p+m′(x1)+m (n′(x1)) , n(n
′(x1)

)

= η(n◦n′,m◦n′+m′)(p, x1).

That is η(n,m) ◦ η(n′,m′) = η(n◦n′,m◦n′+m′). To conclude, we have proved the
following result:
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Corollary 3.6. Consider (H,U ,⊳,⊲), a matched pair of dual mock-Lie al-
gebras. Then there exists an isomorphism of groups defined for all (n,m) ∈
GU

H(⊳,⊲), p ∈ H and x1 ∈ U as

℧ : GU
H(⊳,⊲) → Gl(H ⊲⊳ U/H), ℧(n,m)((p, x1)) := (p+m(x1), n(x1))

For instance, there exists an embedding Gl(H ⊲⊳ U/H) →֒ GLF(U)⋊HomF(U ,H).

3.2 Supersolvable dual mock-Lie algebras

Definition 3.7. An n-dimensional dual mock-Lie algebra U is known as su-
persolvable if there exists a finite chain of ideals of V

0 = I0 ⊂ I1 ⊂ · · · ⊂ In = V

such that for all j = 0, . . . , n− 1, Ij has codimension 1 in Ij+1.

Consider ℧(H,U) = (⊳,⊲, h, {−,−}), such that ⊳ is trivial. That is
x1 ⊳ p = 0, for all x1 ∈ U and p ∈ H. So, ℧(H,U) = (⊲, h, {−,−}) is a
dual mock-Lie E-S of H through U iff for all p, q ∈ H and x1, x2, x3 ∈ U , the
given compatibilities are true:

(CP1) h : U × U → H is a symmetric map;

(CP2) x1 ⊲ (p.q) = −p.(x1 ⊲ q);

(CP3) {x1, x2} ⊲ p = −x1 ⊲ (x2 ⊲ p);

(CP4) h(x1, {x2, x3})−h({x1, x2}, x3)+x1 ⊲ h(x2, x3)−x3 ⊲ h(x1, x2) = 0;

(CP5) (U , {−,−}) is a dual mock-Lie algebra.

Definition 3.8. A system (H,U ,⊲, h) consisting of two dual mock-Lie alge-
bras H, U and two bilinear maps ⊲ : U ×H → H, h : U ×U → H satisfying
the above mentioned four compatibility assertions is called as crossed system
of H and U .

The associated unified product H♮℧(H,U)U = H#h
⊲
U is the crossed product

of the dual mock-Lie algebras H and space U and is defined as: H♮℧(H,U)U =
H#h

⊲
U with the multiplication given for any p, q ∈ H and x1, x2 ∈ U by:

(p, x1) ⋆ (q, x2) := (p.q + x1 ⊲ q − x2 ⊲ p+ h(x1, x2), {x1, x2})
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For a crossed system (H,U ,⊲, h), H ∼= H× {0} is an ideal in H#h
⊲
U as

(p, 0) ⋆ (q, x2) := (p.q + x2 ⊲ p, 0).

Conversely, crossed products explain all dual mock-Lie algebra structures on
V in such a way that H becomes an ideal of U .

Proposition 3.9. Suppose H is a dual mock-Lie algebra, V a space con-
taining H as a subspace. Then any dual mock-Lie algebra structure on space
V which contains H as an ideal is isomorphic to a crossed product of dual
mock-Lie algebras H#h

⊲
U .

Proof. Assume that ⋆ is a dual mock-Lie algebra structure on V such that
H is an ideal in U . Particularly, H is a subalgebra of V and therefore we can
impose Theorem 2.2. For this case the action ⊳=⊳ϕ of the dual mock-Lie
E-S ℧(H,U) = (⊳ϕ,⊲ϕ, hϕ, {−,−}ϕ) established in the proof of Theorem 2.2
is trivial. As for x1 ∈ U and p ∈ H, x1 ⋆ p ∈ H, therefore ϕ(x1 ⋆ p) = x1 ⋆ p.
Thus, x1 ⊳ϕ p = 0, i.e. the unified product H♮℧(H,U)U = H#h

⊲
U is the

crossed product of the dual mock-Lie algebras U := Ker(ϕ) and H.

There was a detailed study of the crossed product of dual mock-Lie algebras
in [11] in relation to Hilbert’s extension problem. Our focus is on the use of
Proposition 3.9 in a new application: we prove that crossed products play a
important role in the classification of finite-dimensional supersolvable dual
mock-Lie algebras of finite dimensions.

On the basisd of Corollary 3.9 it is possible to classify all finite-dimensional
supersolvable dual mock-Lie algebras by a recursive method. One important
step is the description of all crossed products H#h

⊲
V, for a given dual mock-

Lie algebra H and a 1-dimensional vector space U .

Theorem 3.10. Suppose F is a field with characteristic not equal to 3, a
dual mock-Lie algebra H and one-dimensional vector space U with basis {x1}.
Then there exists a bijective map between the collection of all crossed systems
of H and U and the set S(H) of all (0,−1)-derivations of H satisfying D2 =
0. Via the above bijective map, the crossed system (⊲, {−,−}) related to
D ∈ S(H) can be defined for all p ∈ H as follows:

x1 ⊲ p = D(p). (3.9)

Proof. As we know that F is a field with characteristic not equal to 3, the
only dual mock-Lie algebra structure on U := Fx1 is the abelian one, that
is {x1, x1} = 0. Furthermore, as U has dimension one the collection of all
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bilinear mappings ⊲: U × H → H, is in bijection with the entity of all
D ∈ EndF(H) and the bijection is given in a way that (3.9) satisfy. Now we
will show that the (CP2)-(CP4) compatibilities are equivalent to D ∈ S(H).
In fact, (CP2) is equivalent to the fact that D is an (0,−1)−derivation of H,
(CP3) is equivalent to the fact that D2 = 0 and (CP4) is evidently true.

Suppose D ∈ S(H). We denote HD := H × Fx1 the crossed product
H#⊲Fx1 associated to the crossed system (3.9) with the multiplication for
all p, q ∈ H such that:

(p, x1) ⋆ (q, x1) = (p.q +D(q)−D(p), 0)

By applying Corollary 3.9 and Theorem 3.10 we get:

Corollary 3.11. Suppose F is a field with characteristic not equal to 3 and
H is a dual mock-Lie algebra. Then a dual mock-Lie algebra U exists that
contains H as an ideal of codimension 1 iff there exists a pair D ∈ S(H)
such that V ∼= HD.
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[7] Hani Abdelwahab, Antonio Jesús Calderón, Ivan Kaygorodov, The al-
gebraic and geometric classification of nilpotent binary Lie algebras,
International Journal of Algebra and Computation, 29, no. 6, (2019),
1113–1129.

[8] Jiang-Hua Lu, Alan Weinstein, Poisson Lie groups, dressing transfor-
mations, and Bruhat decompositions, Journal of Differential geometry,
31, no. 2, (1990), 501–526.

[9] Renato Fehlberg Júnior, Ivan Kaygorodov, Crislaine Kuster, The alge-
braic and geometric classification of antiassociative algebras, Revista de
la Real Academia de Ciencias Exactas, F́ısicas y Naturales, Serie A,
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