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Abstract

A positive integer n is called a co-cobalancing number if n is a
solution of the equation 1+ 2+ 3+ · · ·+ (n+1) = (n+1)+ (n+2)+
· · · + (n + r) for some positive integer r. Our purpose in this paper
is to present a function of co-cobalancing numbers and recurrence re-
lations for co-cobalancing numbers, some relations among balancing
numbers and co-cobalancing numbers, and some interesting results
on co-cobalancing numbers by using Binet’s formula. Moreover, we
provide an application of co-cobalancing numbers to a Diophantine
equation.

1 Introduction

The definition of balancing numbers was introduced in 1999 by Behera and
Panda [1]:
a positive integer n is called a balancing number if n is a solution of

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n + r), (1.1)
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for some positive integer r.

r is called the balancer corresponding to the balancing number n. They
also established many important results on balancing numbers. For any bal-
ancing number x, F (x) = 3x+

√
8x2 + 1 is a balancing number.

Let Bn be the nth balancing numbers. Set B0 = 1, B1 = 6, B2 = 35 and
so on. The second order linear recurrence:

Bn+1 = 6Bn − Bn−1; n = 1, 2, 3, · · · .

The non-linear first order recurrence:

Bn+1 = 3Bn +
√

8B2
n
+ 1; n = 0, 1, 2, · · · .

and
Bn−1 = 3Bn −

√

8B2
n
+ 1; n = 1, 2, 3, · · · .

The Binet form:

Bn =
λn+1 − βn+1

λ− β
, n = 0, 1, 2, · · ·

where λ = 3 +
√
8 and β = 3−

√
8.

For n = 1, 2, 3, · · · , Rn is the nth balancer. Set R1 = 2, R2 = 14, R3 = 84
and so on. Here are some results on balancing numbers and balancers:
For n = 1, 2, 3, · · ·

Bn =
(2Rn + 1) +

√

8R2
n
+ 8Rn + 1

2
.

and

Rn =
−(2Bn + 1) +

√

8B2
n
+ 1

2
.

Later in 2005, Panda and Ray [2] defined a cobalancing number n ∈ I+

by
1 + 2 + · · ·+ n = (n+ 1) + (n + 2) + · · ·+ (n+ r), (1.2)

for some positive integer r. r is called the cobalancer corresponding to the
cobalancing number n.

We examine the notion of the co-cobalancing numbers and investigate
their properties. Moreovers, we derive some relation among the balancing
numbers and co-cobalancing numbers. Furthermore, we obtain some inter-
esting results on co-cobalancing numbers by using Binet’s formula.
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2 Main results

Let n be a positive integer such that n is a solution of the equation

1 + 2 + · · ·+ (n+ 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r), (2.3)

for some positive integer r. n is called a co-cobalancing number and r the
co-cobalancer corresponding to the co-cobalncing number n.
For example, 3, 15 and 85 are co-cobalancers corresponding to co-cobalancing
numbers 5, 34 and 203, respectively. By (2.3), n is a co-cobalancing number
with co-cobalancer r if and only if

(n+ 1)2 =
(n+ r)(n+ r + 1)

2
(2.4)

and thus,

r =
−(2n+ 1) +

√
8n2 + 16n+ 9

2
. (2.5)

By (2.4), we have n is a co-cobalancing number if and only if (n + 1)2 is a
triangular number. In addition, by (2.5), n is a co-cobalancing number if
and only if 8n2 + 16n+ 9 is a perfect square.

2.1 Some functions that generate co-cobalancing num-

bers

For any co-cobalancing number x, consider the following functions:

f(x) = (3x+ 2) +
√
8x2 + 16x+ 9. (2.6)

and
g(x) = (17x+ 16) + 6

√
8x2 + 16x+ 9. (2.7)

First, we prove that the above functions always generate co-cobalancing num-
bers.

Theorem 2.1. For any co-cobalancing number x, f(x) and g(x) are also

co-cobalancing numbers.

Proof. Let x be a co-cobalancing number. Suppose that u = f(x). It is
obvious that x < u and

x = (3u+ 2)−
√
8u2 + 16u+ 9.
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Since x and u are nonnegative integers, 8u2+16u+9 must be a perfect square.
Hence u is a co-cobalancing number. Since f(f(x)) = g(x), it follows that
g(x) is also a co-cobalancing number. This completes the proof of Theorem
2.1.

Next, we show that for any co-cobalancing number x, f(x) is the co-cobalancing
number next to x.

Theorem 2.2. If x is any co-cobalancing number, then the co-cobalancing

number next to x is f(x) = (3x+ 2) +
√
8x2 + 16x+ 9 and the previous one

is f 1(x) = (3x+ 2)−
√
8x2 + 16x+ 9.

Proof. The proof of f(x) = (3x+ 2) +
√
8x2 + 16x+ 9 is the co-cobalancing

number next to x is similar to that of Theorem 3.1 in [1] and since f(f1(x)) =
x, we have f 1(x) is the largest co-cobalancing number less than x.

2.2 Recurrence relations among co-cobalancing num-
bers and balancing numbers

For n = 1, 2, · · · , let Bn be the nth co-cobalancing number. We define B0 = 0
(the reason is that 8 · 02 + 16 · 0 + 9 = 9 is a perfect square). We know that
B1 = 5, B2 = 34, B3 = 203 and so on. In section 2.1, we proved that if Bn

is the nth co-cobalancing number, then

Bn+1 = (3Bn + 2) +

√

8B
2

n
+ 16Bn + 9 and

Bn−1 = (3Bn + 2)−
√

8B
2

n
+ 16Bn + 9.

(2.8)

It is clear that the co-cobalancing numbers obey the following recurrence
relation:

Bn+1 = 6Bn − Bn−1 + 4, n ≥ 1. (2.9)

From the recurrence relation for balancing numbers Bn+1 = 6Bn − Bn−1

for n ≥ 1 and the recurrence relation for co-cobalancing numbers Bn+1 =
6Bn −Bn−1 + 4 for n ≥ 1, we obtain some other interesting relations.

Theorem 2.3. Let Bn be the nth balancing number and Bn be the nth co-

cobalancing number for n ≥ 1. Then

(a) (Bn − 2)2 = Bn+1Bn−1 + 9,
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(b) for n > k ≥ 1,

Bn = BkBn−k − Bk−1Bn−k−1 + (Bk − Bk−1 − 1),

(c) B2n = Bn(Bn + 1)−Bn−1(Bn−1 + 1)− 1,

(d) B2n+1 = Bn+1(Bn + 1)− Bn(Bn−1 + 1)− 1,

(e) Bn = Bn − 1.

Proof. (a) From (2.8), we get

Bn+1Bn−1 =
[

(3Bn + 2) +

√

8B
2

n
+ 16Bn + 9

][

(3Bn + 2)−
√

8B
2

n
+ 16Bn + 9

]

= (3Bn + 2)2 − (8B
2

n
+ 16Bn + 9)

= (Bn − 2)2 − 9.

Hence, (Bn − 2)2 = Bn+1Bn−1 + 9.

(b) Let n and k be positive integers such that n > k ≥ 1. The proof
of (b) is based on mathematical induction on k. Clearly, (b) is true for
n > 1 and k = 1. Assume that (b) is true for k = r. That is, Bn =
BrBn−r − Br−1Bn−r−1 + (Br − Br−1 − 1). Thus

Br+1Bn−r−1 − BrBn−r−2 +Br+1 − Br − 1

= (6Br − Br−1)Bn−r−1 − Br · Bn−r−2 + 6Br −Br−1 −Br − 1

= Br(6Bn−r−1 − Bn−r−2 + 4)−Br−1 · Bn−r−1 +Br − Br−1 − 1

= BrBn−r − Br−1 · Bn−r−1 +Br − Br−1 − 1

= Bn.

Therefore, (b) is true for k = r + 1. This completes the proof of (b).

(c) The proof of (c) follows by replacing n by 2n and k by n in (b).

(d) Similarly, the proof of (d) follows by replacing n by 2n+1 and k by
n + 1 in (b).

(e) By (b),

Bn = BkBn−k −Bk−1Bn−k−1 + (Bk − Bk−1 − 1)
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for n > k ≥ 1. Thus, for k = n− 1, we have

Bn = Bn−1B1 − Bn−2B0 + (Bn−1 − Bn−2 − 1)

= 6Bn−1 − Bn−2 − 1 = Bn − 1.

This completes the proof of Theorem 2.3.

For n = 1, 2, 3, · · · , let Rn is the nth co-cobalancer, set R1 = 3, R2 = 15, R3 =
85 and so on. We know that

Bn =
(2Rn − 3) +

√

8R
2

n
− 8Rn + 1

2

and

Rn =
−(2Bn + 1) +

√

8B
2

n
+ 16Bn + 9

2
.

2.3 Relations among co-cobalancing numbers and co-
cobalancers

Theorem 2.4. If n is a natural number, then

(a) Bn − Bn−1 = 2Rn − 1,

(b) 2Bn = 5Rn − Rn−1 − 4,

(c) 2Bn = Rn+1 − Rn − 2.

Proof. (a) Since

Bn −Bn−1 = Bn −
[

(3Bn + 2)−
√

8B
2

n
+ 16Bn + 9

]

= −2Bn − 1 +

√

8B
2

n
+ 16Bn + 9− 1

= 2
[
−(2Bn + 1) +

√

8B
2

n
+ 16Bn + 9

2

]

− 1

= 2Rn − 1,

hence Bn − Bn−1 = 2Rn − 1 from which (a) follows.
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The proof of (b) follows by

Rn − Rn−1 = Rn −
[

(3Rn − 1)−
√

8R
2

n
− 8Rn + 1

]

= Rn − 3Rn + 1 +

√

8R
2

n
− 8Rn + 1

= −2Rn + 1 +

√

8R
2

n
− 8Rn + 1

= −4Rn + 4 + 2Rn − 3 +

√

8R
2

n
− 8Rn + 1

= −4Rn + 4 + 2Bn. = Bn − 3Bn − 2 +

√

8B
2

n
+ 16Bn + 9.

Hence 2Bn = 5Rn − Rn−1 − 4. This completes the proof of (b).

The proof of (c) follows by

Rn +Rn+1 = Rn + (3Rn − 1) +

√

8R
2

n
− 8Rn + 1

= 4Rn − 1 +

√

8R
2

n
− 8Rn + 1

= 2Rn − 3 +

√

8R
2

n
− 8Rn + 1 + 2Rn + 2

= 2Bn + 2Rn + 2.

Hence 2Bn = Rn+1 − Rn − 2. The proof of (c) is complete.

Theorem 2.5. If n is a natural number, then Rn = Rn − 1.

Proof. Since

Rn =
−(2Bn + 1) +

√

8B2
n
+ 1

2

=
−(2(Bn + 1) + 1) +

√

8(Bn + 1)2 + 1

2

=
−2Bn − 3 +

√

8B
2

n
+ 16Bn + 9

2

=
−2Bn − 1 +

√

8B
2

n
+ 16Bn + 9− 2

2
= Rn − 1.

Hence Rn = Rn − 1.
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2.4 Binet form for co-cobalancing numbers

In the previous section, we obtained the recurrence relation

Bn+1 − 6Bn +Bn−1 − 4 = 0 for n ≥ 1,

which is a second-order linear nonhomogeneous difference equation with con-
stant coefficients. Let Cn = Bn + 1 for n ≥ 0. Hence Cn+1 = 6Cn − Cn−1,
which is homogeneous. The general solution of this equation is

Cn = Aλn +Bβn (2.10)

where λ = 3 +
√
8 and β = 3−

√
8 are roots of the characteristic equation

x2 − 6x+ 1 = 0.

Substituting C0 = 1 and C1 = 6 into (2.10), we get

1 = A +B

6 = Aλ+Bβ.

We obtain

A =
λ

λ− β
and B = −

β

λ− β
.

Thus,

Cn =
λn+1 − βn+1

λ− β
, n = 0, 1, 2, · · ·

which implies that

Bn =
λn+1 − βn+1

λ− β
− 1, n = 0, 1, 2, · · · .

The above discussion proves the following theorem:

Theorem 2.6. If Bn is the nth co-cobalancing number, then its Binet form

is

Bn =
λn+1 − βn+1

λ− β
− 1, n = 0, 1, 2, · · · ,

where λ = 3 +
√
8 and β = 3−

√
8

Theorem 2.7. If m and n are natural numbers and m > n, then

(Bm+n + 1)(Bm−n + 1) = (Bm + 1)2 − (Bn−1 + 1)2.
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Proof. Using the Binet form of Cn and the fact that λβ = 1, we have

Cm+nCm−n =
(λm+n+1 − βm+n+1)(λm−n+1 − βm−n+1)

(λ− β)2

=
λ2m+2 − λm+n+1βm−n+1 − βm+n+1λm−n+1 + β2m+2

(λ− β)2

=
λ2m+2 − 2 + β2m+2

(λ− β)2
−

λm−n+1βm−n+1(λ2n + β2n)− 2

(λ− β)2

=
(λm+1 − βm+1

λ− β

)2 −
(λ2n − 2 + β2n)

(λ− β)2

=
(λm+1 − βm+1

λ− β

)2 −
(λn − βn

λ− β

)2

= C
2

m
− C

2

n−1.

Hence

(Bm+n + 1)(Bm−n + 1) = (Bm + 1)2 − (Bn−1 + 1)2.

2.5 Some interesting results on co-cobalancing num-

bers

From section 2.4, we set Cn = Bn+1 and in this section, let Dn =
√

8Cn + 1
where n ∈ I+. The following theorem is similar to de-Moivre’s formula see
[3].

Theorem 2.8. If n and k are natural numbers, then

(

Dn +
√
8Cn

)k
= Dnk +

√
8Cnk.

Proof. From (2.8),

Bn+1 = (3Bn + 2) +

√

8B
2

n
+ 16Bn + 9; n = 0, 1, 2, · · · ,

substituting,

Cn = Bn + 1,

thus

Cn+1 = 3Cn +

√

8C
2

n
+ 1,
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using the Binet form, we obtain

D
2

n
= 8C

2

n
+ 1 = 8

(

λn+1 − βn+1

λ− β

)2

+ 1

=

(

λn+1 + βn+1

2

)2

.

Hence

Dn =
λn+1 + βn+1

2
.

Now

Dn +
√
8Cn =

λn+1 + βn+1

2
+
√
8
λn+1 − βn+1

2
√
8

= λn+1.

Thus
(

Dn +
√
8Cn

)k

= (λn+1)k = Dnk +
√
8Cnk.

Corollary 2.9. If n and k are natural numbers, then

(

Dn −
√
8Cn

)k
= Dnk −

√
8Cnk.

Proof. Since

Dn −
√
8Cn =

λn+1 + βn+1

2
−

√
8
λn+1 − βn+1

2
√
8

= βn+1,

the result follows.

Theorem 2.10. If m and n are natural numbers, then

Cm+n+1 = Cm ·Dn +Dm · Cn.

Proof. Since

(Dm +
√
8Cm)(Dn +

√
8Cn) = λm+1 · λn+1 = λm+n+2

= Dm+n+1 +
√
8Cm+n+1.

(2.11)

On the other hand,

(Dm +
√
8Cm)(Dn +

√
8Cn)

= DmDn + 8CmCn +
√
8(CmDn +DmCn).

(2.12)
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Comparing equations (2.11) and (2.12), we get

Dm+n+1 +
√
8Cm+n+1 = (DmDn + 8CmCn) +

√
8(CmDn +DmCn). (2.13)

Equating the rational and irrational parts from both sides of equation (2.13),
we obtain

Dm+n+1 = Dm ·Dn + 8Cm · Cn

and
Cm+n+1 = Cm ·Dn +Dm · Cn.

Corollary 2.11. If n is a natural number, then

C2n+1 = 2Cn ·Dn.

Proof. The proof follows by replacing m by n in Theorem 2.10.

2.6 An application of co-cobalancing numbers to the
Diophantine equation x2 + (x+ 1)2 = y2 + 1

In this subsection, we derive a relation between the solutions of the Diophan-
tine equation x2 + (x+ 1)2 = y2 + 1 and the co-cobalancing numbers.

Let b be any co-cobalancing number with r its co-cobalancer and let
c = b+ r. By (2.3), we have

1 + 2 + · · ·+ (b+ 1) = (b+ 1) + (b+ 2) + · · ·+ c.

Therefore,

b =
−2 +

√
2c2 + 2c

2
.

Thus 2c2 + 2c is a perfect square. Since

2c2 + 2c = c2 + (c+ 1)2 − 1,

we get that x2 + (x + 1)2 = y2 + 1 has the solution x = c = b + r and
y =

√
2c2 + 2c.

For example, if we take b = 5, then r = 3 and x = c = b + r = 8, y =√
2c2 + 2c = 12 is the solution of the Diophantine equation x2 + (x + 1)2 =

y2 + 1.
Similarly, if b = 34, then r = 15 and we have x = 49, y = 70 is the solution
of x2 + (x+ 1)2 = y2 + 1.
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