Co-cobalancing numbers and Balancing numbers

Apisit Pakapongpun, Bunthita Chattae
Department of Mathematics
Faculty of Science
Burapha University
Chonburi 20131, Thailand
email: apisit.buu@gmail.com, bunthita@buu.ac.th

(Received November 30, 2022, Accepted January 22, 2023, Published March 31, 2023)

Abstract

A positive integer n is called a co-cobalancing number if n is a solution of the equation $1+2+3+\cdots+(n+1)=(n+1)+(n+2)+$ $\cdots+(n+r)$ for some positive integer r. Our purpose in this paper is to present a function of co-cobalancing numbers and recurrence relations for co-cobalancing numbers, some relations among balancing numbers and co-cobalancing numbers, and some interesting results on co-cobalancing numbers by using Binet's formula. Moreover, we provide an application of co-cobalancing numbers to a Diophantine equation.

1 Introduction

The definition of balancing numbers was introduced in 1999 by Behera and Panda [1]:
a positive integer n is called a balancing number if n is a solution of

$$
\begin{equation*}
1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r) \tag{1.1}
\end{equation*}
$$

Key words and phrases: Co-cobalancing number, Balancing number, Recurrence relations.
AMS (MOS) Subject Classifications: 11B37, 11B39.
Bunthita Chattae is the corresponding author.
ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net
for some positive integer r.
r is called the balancer corresponding to the balancing number n. They also established many important results on balancing numbers. For any balancing number $x, F(x)=3 x+\sqrt{8 x^{2}+1}$ is a balancing number.

Let B_{n} be the $n^{\text {th }}$ balancing numbers. Set $B_{0}=1, B_{1}=6, B_{2}=35$ and so on. The second order linear recurrence:

$$
B_{n+1}=6 B_{n}-B_{n-1} ; \quad n=1,2,3, \cdots
$$

The non-linear first order recurrence:

$$
B_{n+1}=3 B_{n}+\sqrt{8 B_{n}^{2}+1} ; \quad n=0,1,2, \cdots
$$

and

$$
B_{n-1}=3 B_{n}-\sqrt{8 B_{n}^{2}+1} ; \quad n=1,2,3, \cdots
$$

The Binet form:

$$
B_{n}=\frac{\lambda^{n+1}-\beta^{n+1}}{\lambda-\beta}, \quad n=0,1,2, \cdots
$$

where $\lambda=3+\sqrt{8}$ and $\beta=3-\sqrt{8}$.
For $n=1,2,3, \cdots, R_{n}$ is the $n^{\text {th }}$ balancer. Set $R_{1}=2, R_{2}=14, R_{3}=84$ and so on. Here are some results on balancing numbers and balancers: For $n=1,2,3, \cdots$

$$
B_{n}=\frac{\left(2 R_{n}+1\right)+\sqrt{8 R_{n}^{2}+8 R_{n}+1}}{2}
$$

and

$$
R_{n}=\frac{-\left(2 B_{n}+1\right)+\sqrt{8 B_{n}^{2}+1}}{2}
$$

Later in 2005, Panda and Ray [2] defined a cobalancing number $n \in I^{+}$ by

$$
\begin{equation*}
1+2+\cdots+n=(n+1)+(n+2)+\cdots+(n+r) \tag{1.2}
\end{equation*}
$$

for some positive integer $r . r$ is called the cobalancer corresponding to the cobalancing number n.

We examine the notion of the co-cobalancing numbers and investigate their properties. Moreovers, we derive some relation among the balancing numbers and co-cobalancing numbers. Furthermore, we obtain some interesting results on co-cobalancing numbers by using Binet's formula.

2 Main results

Let n be a positive integer such that n is a solution of the equation

$$
\begin{equation*}
1+2+\cdots+(n+1)=(n+1)+(n+2)+\cdots+(n+r), \tag{2.3}
\end{equation*}
$$

for some positive integer r. n is called a co-cobalancing number and r the co-cobalancer corresponding to the co-cobalncing number n.
For example, 3, 15 and 85 are co-cobalancers corresponding to co-cobalancing numbers 5,34 and 203 , respectively. By (2.3), n is a co-cobalancing number with co-cobalancer r if and only if

$$
\begin{equation*}
(n+1)^{2}=\frac{(n+r)(n+r+1)}{2} \tag{2.4}
\end{equation*}
$$

and thus,

$$
\begin{equation*}
r=\frac{-(2 n+1)+\sqrt{8 n^{2}+16 n+9}}{2} \tag{2.5}
\end{equation*}
$$

By (2.4), we have n is a co-cobalancing number if and only if $(n+1)^{2}$ is a triangular number. In addition, by (2.5), n is a co-cobalancing number if and only if $8 n^{2}+16 n+9$ is a perfect square.

2.1 Some functions that generate co-cobalancing numbers

For any co-cobalancing number x, consider the following functions:

$$
\begin{equation*}
\bar{f}(x)=(3 x+2)+\sqrt{8 x^{2}+16 x+9} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{g}(x)=(17 x+16)+6 \sqrt{8 x^{2}+16 x+9} . \tag{2.7}
\end{equation*}
$$

First, we prove that the above functions always generate co-cobalancing numbers.

Theorem 2.1. For any co-cobalancing number $x, \bar{f}(x)$ and $\bar{g}(x)$ are also co-cobalancing numbers.

Proof. Let x be a co-cobalancing number. Suppose that $u=\bar{f}(x)$. It is obvious that $x<u$ and

$$
x=(3 u+2)-\sqrt{8 u^{2}+16 u+9} .
$$

Since x and u are nonnegative integers, $8 u^{2}+16 u+9$ must be a perfect square. Hence u is a co-cobalancing number. Since $\bar{f}(\bar{f}(x))=\bar{g}(x)$, it follows that $\bar{g}(x)$ is also a co-cobalancing number. This completes the proof of Theorem 2.1.

Next, we show that for any co-cobalancing number $x, \bar{f}(x)$ is the co-cobalancing number next to x.

Theorem 2.2. If x is any co-cobalancing number, then the co-cobalancing number next to x is $\bar{f}(x)=(3 x+2)+\sqrt{8 x^{2}+16 x+9}$ and the previous one is $\bar{f}_{1}(x)=(3 x+2)-\sqrt{8 x^{2}+16 x+9}$.

Proof. The proof of $\bar{f}(x)=(3 x+2)+\sqrt{8 x^{2}+16 x+9}$ is the co-cobalancing number next to x is similar to that of Theorem 3.1 in [1] and since $\bar{f}\left(\bar{f}_{1}(x)\right)=$ x, we have $\bar{f}_{1}(x)$ is the largest co-cobalancing number less than x.

2.2 Recurrence relations among co-cobalancing numbers and balancing numbers

For $n=1,2, \cdots$, let \bar{B}_{n} be the nth co-cobalancing number. We define $\bar{B}_{0}=0$ (the reason is that $8 \cdot 0^{2}+16 \cdot 0+9=9$ is a perfect square). We know that $\bar{B}_{1}=5, \bar{B}_{2}=34, \bar{B}_{3}=203$ and so on. In section 2.1, we proved that if \bar{B}_{n} is the nth co-cobalancing number, then

$$
\begin{align*}
& \bar{B}_{n+1}=\left(3 \bar{B}_{n}+2\right)+\sqrt{8 \bar{B}_{n}^{2}+16 \bar{B}_{n}+9} \quad \text { and } \\
& \bar{B}_{n-1}=\left(3 \bar{B}_{n}+2\right)-\sqrt{8 \bar{B}_{n}^{2}+16 \bar{B}_{n}+9} \tag{2.8}
\end{align*}
$$

It is clear that the co-cobalancing numbers obey the following recurrence relation:

$$
\begin{equation*}
\bar{B}_{n+1}=6 \bar{B}_{n}-\bar{B}_{n-1}+4, n \geq 1 \tag{2.9}
\end{equation*}
$$

From the recurrence relation for balancing numbers $B_{n+1}=6 B_{n}-B_{n-1}$ for $n \geq 1$ and the recurrence relation for co-cobalancing numbers $\bar{B}_{n+1}=$ $6 \bar{B}_{n}-\bar{B}_{n-1}+4$ for $n \geq 1$, we obtain some other interesting relations.

Theorem 2.3. Let B_{n} be the $n^{\text {th }}$ balancing number and \bar{B}_{n} be the $n^{\text {th }}$ cocobalancing number for $n \geq 1$. Then
(a) $\left(\bar{B}_{n}-2\right)^{2}=\bar{B}_{n+1} \bar{B}_{n-1}+9$,
(b) for $n>k \geq 1$,

$$
\bar{B}_{n}=B_{k} \bar{B}_{n-k}-B_{k-1} \bar{B}_{n-k-1}+\left(B_{k}-B_{k-1}-1\right)
$$

(c) $\bar{B}_{2 n}=B_{n}\left(\bar{B}_{n}+1\right)-B_{n-1}\left(\bar{B}_{n-1}+1\right)-1$,
(d) $\bar{B}_{2 n+1}=B_{n+1}\left(\bar{B}_{n}+1\right)-B_{n}\left(\bar{B}_{n-1}+1\right)-1$,
(e) $\bar{B}_{n}=B_{n}-1$.

Proof. (a) From (2.8), we get

$$
\begin{aligned}
\bar{B}_{n+1} \bar{B}_{n-1} & =\left[\left(3 \bar{B}_{n}+2\right)+\sqrt{8 \bar{B}_{n}^{2}+16 \bar{B}_{n}+9}\right]\left[\left(3 \bar{B}_{n}+2\right)-\sqrt{8 \bar{B}_{n}^{2}+16 \bar{B}_{n}+9}\right] \\
& =\left(3 \bar{B}_{n}+2\right)^{2}-\left(8 \bar{B}_{n}^{2}+16 \bar{B}_{n}+9\right) \\
& =\left(\bar{B}_{n}-2\right)^{2}-9
\end{aligned}
$$

Hence, $\left(\bar{B}_{n}-2\right)^{2}=\bar{B}_{n+1} \bar{B}_{n-1}+9$.
(b) Let n and k be positive integers such that $n>k \geq 1$. The proof of (b) is based on mathematical induction on k. Clearly, (b) is true for $n>1$ and $k=1$. Assume that (b) is true for $k=r$. That is, $\bar{B}_{n}=$ $B_{r} \bar{B}_{n-r}-B_{r-1} \bar{B}_{n-r-1}+\left(B_{r}-B_{r-1}-1\right)$. Thus

$$
\begin{aligned}
B_{r+1} & \bar{B}_{n-r-1}-B_{r} \bar{B}_{n-r-2}+B_{r+1}-B_{r}-1 \\
& =\left(6 B_{r}-B_{r-1}\right) \bar{B}_{n-r-1}-B_{r} \cdot \bar{B}_{n-r-2}+6 B_{r}-B_{r-1}-B_{r}-1 \\
& =B_{r}\left(6 \bar{B}_{n-r-1}-\bar{B}_{n-r-2}+4\right)-B_{r-1} \cdot \bar{B}_{n-r-1}+B_{r}-B_{r-1}-1 \\
& =B_{r} \bar{B}_{n-r}-B_{r-1} \cdot \bar{B}_{n-r-1}+B_{r}-B_{r-1}-1 \\
& =\bar{B}_{n} .
\end{aligned}
$$

Therefore, (b) is true for $k=r+1$. This completes the proof of (b).
(c) The proof of (c) follows by replacing n by $2 n$ and k by n in (b).
(d) Similarly, the proof of (d) follows by replacing n by $2 n+1$ and k by $n+1$ in (b).
(e) By (b),

$$
\bar{B}_{n}=B_{k} \bar{B}_{n-k}-B_{k-1} \bar{B}_{n-k-1}+\left(B_{k}-B_{k-1}-1\right)
$$

for $n>k \geq 1$. Thus, for $k=n-1$, we have

$$
\begin{aligned}
\bar{B}_{n} & =B_{n-1} \bar{B}_{1}-B_{n-2} \bar{B}_{0}+\left(B_{n-1}-B_{n-2}-1\right) \\
& =6 B_{n-1}-B_{n-2}-1=B_{n}-1 .
\end{aligned}
$$

This completes the proof of Theorem 2.3.
For $n=1,2,3, \cdots$, let \bar{R}_{n} is the $n^{\text {th }}$ co-cobalancer, set $\bar{R}_{1}=3, \bar{R}_{2}=15, \bar{R}_{3}=$ 85 and so on. We know that

$$
\bar{B}_{n}=\frac{\left(2 \bar{R}_{n}-3\right)+\sqrt{8 \bar{R}_{n}^{2}-8 \bar{R}_{n}+1}}{2}
$$

and

$$
\bar{R}_{n}=\frac{-\left(2 \bar{B}_{n}+1\right)+\sqrt{8 \bar{B}_{n}^{2}+16 \bar{B}_{n}+9}}{2} .
$$

2.3 Relations among co-cobalancing numbers and cocobalancers

Theorem 2.4. If n is a natural number, then
(a) $\bar{B}_{n}-\bar{B}_{n-1}=2 \bar{R}_{n}-1$,
(b) $2 \bar{B}_{n}=5 \bar{R}_{n}-\bar{R}_{n-1}-4$,
(c) $2 \bar{B}_{n}=\bar{R}_{n+1}-\bar{R}_{n}-2$.

Proof. (a) Since

$$
\begin{aligned}
\bar{B}_{n}-\bar{B}_{n-1} & =\bar{B}_{n}-\left[\left(3 \bar{B}_{n}+2\right)-\sqrt{8 \bar{B}_{n}^{2}+16 \bar{B}_{n}+9}\right] \\
& =-2 \bar{B}_{n}-1+\sqrt{8 \bar{B}_{n}^{2}+16 \bar{B}_{n}+9}-1 \\
& =2\left[\frac{-\left(2 \bar{B}_{n}+1\right)+\sqrt{8 \bar{B}_{n}^{2}+16 \bar{B}_{n}+9}}{2}\right]-1 \\
& =2 \bar{R}_{n}-1,
\end{aligned}
$$

hence $\bar{B}_{n}-\bar{B}_{n-1}=2 \bar{R}_{n}-1$ from which (a) follows.

The proof of (b) follows by

$$
\begin{array}{rlr}
\bar{R}_{n}-\bar{R}_{n-1} & =\bar{R}_{n}-\left[\left(3 \bar{R}_{n}-1\right)-\sqrt{8 \bar{R}_{n}^{2}-8 \bar{R}_{n}+1}\right] & \\
& =\bar{R}_{n}-3 \bar{R}_{n}+1+\sqrt{8 \bar{R}_{n}^{2}-8 \bar{R}_{n}+1} & \\
& =-2 \bar{R}_{n}+1+\sqrt{8 \bar{R}_{n}^{2}-8 \bar{R}_{n}+1} & \\
& =-4 \bar{R}_{n}+4+2 \bar{R}_{n}-3+\sqrt{8 \bar{R}_{n}^{2}-8 \bar{R}_{n}+1} & \\
& =-4 \bar{R}_{n}+4+2 \bar{B}_{n} . & =\bar{B}_{n}-3 \bar{B}_{n}-2+\sqrt{8 \bar{B}_{n}^{2}+16 \bar{B}_{n}+9} .
\end{array}
$$

Hence $2 \bar{B}_{n}=5 \bar{R}_{n}-\bar{R}_{n-1}-4$. This completes the proof of (b).
The proof of (c) follows by

$$
\begin{aligned}
\bar{R}_{n}+\bar{R}_{n+1} & =\bar{R}_{n}+\left(3 \bar{R}_{n}-1\right)+\sqrt{8 \bar{R}_{n}^{2}-8 \bar{R}_{n}+1} \\
& =4 \bar{R}_{n}-1+\sqrt{8 \bar{R}_{n}^{2}-8 \bar{R}_{n}+1} \\
& =2 \bar{R}_{n}-3+\sqrt{8 \bar{R}_{n}^{2}-8 \bar{R}_{n}+1}+2 \bar{R}_{n}+2 \\
& =2 \bar{B}_{n}+2 \bar{R}_{n}+2
\end{aligned}
$$

Hence $2 \bar{B}_{n}=\bar{R}_{n+1}-\bar{R}_{n}-2$. The proof of (c) is complete.
Theorem 2.5. If n is a natural number, then $R_{n}=\bar{R}_{n}-1$.
Proof. Since

$$
\begin{aligned}
R_{n} & =\frac{-\left(2 B_{n}+1\right)+\sqrt{8 B_{n}^{2}+1}}{2} \\
& =\frac{-\left(2\left(\bar{B}_{n}+1\right)+1\right)+\sqrt{8\left(\bar{B}_{n}+1\right)^{2}+1}}{2} \\
& =\frac{-2 \bar{B}_{n}-3+\sqrt{8 \bar{B}_{n}^{2}+16 \bar{B}_{n}+9}}{2} \\
& =\frac{-2 \bar{B}_{n}-1+\sqrt{8 \bar{B}_{n}^{2}+16 \bar{B}_{n}+9}-2}{2} \\
& =\bar{R}_{n}-1 .
\end{aligned}
$$

Hence $R_{n}=\bar{R}_{n}-1$.

2.4 Binet form for co-cobalancing numbers

In the previous section, we obtained the recurrence relation

$$
\bar{B}_{n+1}-6 \bar{B}_{n}+\bar{B}_{n-1}-4=0 \text { for } n \geq 1,
$$

which is a second-order linear nonhomogeneous difference equation with constant coefficients. Let $\bar{C}_{n}=\bar{B}_{n}+1$ for $n \geq 0$. Hence $\bar{C}_{n+1}=6 \bar{C}_{n}-\bar{C}_{n-1}$, which is homogeneous. The general solution of this equation is

$$
\begin{equation*}
\bar{C}_{n}=A \lambda^{n}+B \beta^{n} \tag{2.10}
\end{equation*}
$$

where $\lambda=3+\sqrt{8}$ and $\beta=3-\sqrt{8}$ are roots of the characteristic equation

$$
x^{2}-6 x+1=0
$$

Substituting $\bar{C}_{0}=1$ and $\bar{C}_{1}=6$ into (2.10), we get

$$
\begin{gathered}
1=A+B \\
6=A \lambda+B \beta
\end{gathered}
$$

We obtain

$$
A=\frac{\lambda}{\lambda-\beta} \text { and } B=-\frac{\beta}{\lambda-\beta}
$$

Thus,

$$
\bar{C}_{n}=\frac{\lambda^{n+1}-\beta^{n+1}}{\lambda-\beta}, n=0,1,2, \cdots
$$

which implies that

$$
\bar{B}_{n}=\frac{\lambda^{n+1}-\beta^{n+1}}{\lambda-\beta}-1, n=0,1,2, \cdots
$$

The above discussion proves the following theorem:
Theorem 2.6. If \bar{B}_{n} is the nth co-cobalancing number, then its Binet form is

$$
\bar{B}_{n}=\frac{\lambda^{n+1}-\beta^{n+1}}{\lambda-\beta}-1, n=0,1,2, \cdots
$$

where $\lambda=3+\sqrt{8}$ and $\beta=3-\sqrt{8}$
Theorem 2.7. If m and n are natural numbers and $m>n$, then

$$
\left(\bar{B}_{m+n}+1\right)\left(\bar{B}_{m-n}+1\right)=\left(\bar{B}_{m}+1\right)^{2}-\left(\bar{B}_{n-1}+1\right)^{2}
$$

Proof. Using the Binet form of \bar{C}_{n} and the fact that $\lambda \beta=1$, we have

$$
\begin{aligned}
\bar{C}_{m+n} \bar{C}_{m-n} & =\frac{\left(\lambda^{m+n+1}-\beta^{m+n+1}\right)\left(\lambda^{m-n+1}-\beta^{m-n+1}\right)}{(\lambda-\beta)^{2}} \\
& =\frac{\lambda^{2 m+2}-\lambda^{m+n+1} \beta^{m-n+1}-\beta^{m+n+1} \lambda^{m-n+1}+\beta^{2 m+2}}{(\lambda-\beta)^{2}} \\
& =\frac{\lambda^{2 m+2}-2+\beta^{2 m+2}}{(\lambda-\beta)^{2}}-\frac{\lambda^{m-n+1} \beta^{m-n+1}\left(\lambda^{2 n}+\beta^{2 n}\right)-2}{(\lambda-\beta)^{2}} \\
& =\left(\frac{\lambda^{m+1}-\beta^{m+1}}{\lambda-\beta}\right)^{2}-\frac{\left(\lambda^{2 n}-2+\beta^{2 n}\right)}{(\lambda-\beta)^{2}} \\
& =\left(\frac{\lambda^{m+1}-\beta^{m+1}}{\lambda-\beta}\right)^{2}-\left(\frac{\lambda^{n}-\beta^{n}}{\lambda-\beta}\right)^{2} \\
& =\bar{C}_{m}^{2}-\bar{C}_{n-1}^{2} .
\end{aligned}
$$

Hence

$$
\left(\bar{B}_{m+n}+1\right)\left(\bar{B}_{m-n}+1\right)=\left(\bar{B}_{m}+1\right)^{2}-\left(\bar{B}_{n-1}+1\right)^{2} .
$$

2.5 Some interesting results on co-cobalancing numbers

From section 2.4, we set $\bar{C}_{n}=\bar{B}_{n}+1$ and in this section, let $\bar{D}_{n}=\sqrt{8 \bar{C}_{n}+1}$ where $n \in I^{+}$. The following theorem is similar to de-Moivre's formula see [3].

Theorem 2.8. If n and k are natural numbers, then

$$
\left(\bar{D}_{n}+\sqrt{8} \bar{C}_{n}\right)^{k}=\bar{D}_{n k}+\sqrt{8} \bar{C}_{n k}
$$

Proof. From (2.8),

$$
\bar{B}_{n+1}=\left(3 \bar{B}_{n}+2\right)+\sqrt{8 \bar{B}_{n}^{2}+16 \bar{B}_{n}+9} ; \quad n=0,1,2, \cdots,
$$

substituting,

$$
\bar{C}_{n}=\bar{B}_{n}+1,
$$

thus

$$
\bar{C}_{n+1}=3 \bar{C}_{n}+\sqrt{8 \bar{C}_{n}^{2}+1}
$$

using the Binet form, we obtain

$$
\begin{aligned}
\bar{D}_{n}^{2} & =8 \bar{C}_{n}^{2}+1=8\left(\frac{\lambda^{n+1}-\beta^{n+1}}{\lambda-\beta}\right)^{2}+1 \\
& =\left(\frac{\lambda^{n+1}+\beta^{n+1}}{2}\right)^{2}
\end{aligned}
$$

Hence

$$
\bar{D}_{n}=\frac{\lambda^{n+1}+\beta^{n+1}}{2}
$$

Now

$$
\bar{D}_{n}+\sqrt{8} \bar{C}_{n}=\frac{\lambda^{n+1}+\beta^{n+1}}{2}+\sqrt{8} \frac{\lambda^{n+1}-\beta^{n+1}}{2 \sqrt{8}}=\lambda^{n+1} .
$$

Thus

$$
\left(\bar{D}_{n}+\sqrt{8} \bar{C}_{n}\right)^{k}=\left(\lambda^{n+1}\right)^{k}=\bar{D}_{n k}+\sqrt{8} \bar{C}_{n k} .
$$

Corollary 2.9. If n and k are natural numbers, then

$$
\left(\bar{D}_{n}-\sqrt{8} \bar{C}_{n}\right)^{k}=\bar{D}_{n k}-\sqrt{8} \bar{C}_{n k} .
$$

Proof. Since

$$
\bar{D}_{n}-\sqrt{8} \bar{C}_{n}=\frac{\lambda^{n+1}+\beta^{n+1}}{2}-\sqrt{8} \frac{\lambda^{n+1}-\beta^{n+1}}{2 \sqrt{8}}=\beta^{n+1}
$$

the result follows.
Theorem 2.10. If m and n are natural numbers, then

$$
\bar{C}_{m+n+1}=\bar{C}_{m} \cdot \bar{D}_{n}+\bar{D}_{m} \cdot \bar{C}_{n}
$$

Proof. Since

$$
\begin{align*}
\left(\bar{D}_{m}+\sqrt{8} \bar{C}_{m}\right)\left(\bar{D}_{n}+\sqrt{8} \bar{C}_{n}\right) & =\lambda^{m+1} \cdot \lambda^{n+1}=\lambda^{m+n+2} \tag{2.11}\\
& =\bar{D}_{m+n+1}+\sqrt{8} \bar{C}_{m+n+1}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\left(\bar{D}_{m}+\sqrt{8} \bar{C}_{m}\right) & \left(\bar{D}_{n}+\sqrt{8} \bar{C}_{n}\right) \\
& =\bar{D}_{m} \bar{D}_{n}+8 \bar{C}_{m} \bar{C}_{n}+\sqrt{8}\left(\bar{C}_{m} \bar{D}_{n}+\bar{D}_{m} \bar{C}_{n}\right) . \tag{2.12}
\end{align*}
$$

Comparing equations (2.11) and (2.12), we get

$$
\begin{equation*}
\bar{D}_{m+n+1}+\sqrt{8} \bar{C}_{m+n+1}=\left(\bar{D}_{m} \bar{D}_{n}+8 \bar{C}_{m} \bar{C}_{n}\right)+\sqrt{8}\left(\bar{C}_{m} \bar{D}_{n}+\bar{D}_{m} \bar{C}_{n}\right) \tag{2.13}
\end{equation*}
$$

Equating the rational and irrational parts from both sides of equation (2.13), we obtain

$$
\bar{D}_{m+n+1}=\bar{D}_{m} \cdot \bar{D}_{n}+8 \bar{C}_{m} \cdot \bar{C}_{n}
$$

and

$$
\bar{C}_{m+n+1}=\bar{C}_{m} \cdot \bar{D}_{n}+\bar{D}_{m} \cdot \bar{C}_{n}
$$

Corollary 2.11. If n is a natural number, then

$$
\bar{C}_{2 n+1}=2 \bar{C}_{n} \cdot \bar{D}_{n} .
$$

Proof. The proof follows by replacing m by n in Theorem 2.10.

2.6 An application of co-cobalancing numbers to the Diophantine equation $x^{2}+(x+1)^{2}=y^{2}+1$

In this subsection, we derive a relation between the solutions of the Diophantine equation $x^{2}+(x+1)^{2}=y^{2}+1$ and the co-cobalancing numbers.

Let b be any co-cobalancing number with r its co-cobalancer and let $c=b+r$. By (2.3), we have

$$
1+2+\cdots+(b+1)=(b+1)+(b+2)+\cdots+c .
$$

Therefore,

$$
b=\frac{-2+\sqrt{2 c^{2}+2 c}}{2} .
$$

Thus $2 c^{2}+2 c$ is a perfect square. Since

$$
2 c^{2}+2 c=c^{2}+(c+1)^{2}-1,
$$

we get that $x^{2}+(x+1)^{2}=y^{2}+1$ has the solution $x=c=b+r$ and $y=\sqrt{2 c^{2}+2 c}$.
For example, if we take $b=5$, then $r=3$ and $x=c=b+r=8, y=$ $\sqrt{2 c^{2}+2 c}=12$ is the solution of the Diophantine equation $x^{2}+(x+1)^{2}=$ $y^{2}+1$.
Similarly, if $b=34$, then $r=15$ and we have $x=49, y=70$ is the solution of $x^{2}+(x+1)^{2}=y^{2}+1$.

Acknowledgment. This work is financially supported by Faculty of Science, Burapha University, Thailand (Grant no. SC-N03/2565). A. Pakapongpun and B. Chattae would like to extend their appreciation to the Faculty of Science at Burapha University in Thailand for the support.

References

[1] A. Behera, G. K. Panda, On the square roots of triangular numbers, Fibonacci Quarterly, 37, no. 2, (1999), 98-105.
[2] G. K. Panda, P. K. Ray, Cobalancing number and Cobalancers, International Journal of Mathematical Science, 8, (2005), 1189-1200.
[3] L. V. Alfors, Complex Analysis, McGraw Hill Publishing Company, Singapore, 1979.

