On the Diophantine equation $255^{x}+323^{y}=z^{2}$

Nongluk Viriyapong, Chokchai Viriyapong
Mathematics and Applied Mathematics Research Unit
Department of Mathematics
Mahasarakham University
Maha Sarakham, 44150, Thailand
email: nongluk.h@msu.ac.th, chokchai.v@msu.ac.th
(Received January 3, 2023, Revised February 22, 2023,
Accepted February 24, 2023, Published March 31, 2023)

Abstract

In this article, we prove that $(1,0,16)$ and $(0,1,18)$ are the only two solutions (x, y, z) for the Diophantine equation $255^{x}+323^{y}=z^{2}$, where x, y and z are non-negative integers.

1 Introduction

Many mathematicians have been studying the Diophantine equations of the type $a^{x}+b^{y}=z^{2}$, where a and b are fixed. In 2014, Sroysang [1] showed that $(1,0,18)$ is the unique non-negative integer solution (x, y, z) of the Diophantine equation $323^{x}+325^{y}=z^{2}$. In 2022, N. Viriyapong and C. Viriyapong [2] proved that the Diophantine equation $n^{x}+19^{y}=z^{2}$ has exactly one non-negative solution $(n, x, y, z)=(2,3,0,3)$, where $n \equiv_{57} 2$.

In this paper, we solve the Diophantine equation $255^{x}+323^{y}=z^{2}$, where x, y and z are non-negative integers.

2 Preliminaries

Throughout this paper, $a \equiv_{m} b$ always means a is congruent to b modulo m, where a, b, and m are integers such that $m \geqslant 1$. Moreover, we write $a \equiv_{m} b, c$

Key words and phrases: Diophantine equation, congruence.
AMS (MOS) Subject Classifications: 11D61.
The Corresponding author is Chokchai Viriyapong.
ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net
to mean that $a \equiv_{m} b$ or $a \equiv_{m} c$.
We now recall the Catalan's conjecture [3] from 1844 which was proved by Mihailescu [4] in 2004.

Theorem 2.1 (Catalan's conjecture). The Diophantine equation $a^{x}-b^{y}=$ 1 has the unique solution $(a, b, x, y)=(3,2,2,3)$, where a, b, x and y are integers with $\min \{a, b, x, y\}>1$.

Next, we give a lemma that is a consequence of the Catalan's conjecture.
Lemma 2.2. $(1,16)$ is the unique non-negative integer solution (x, z) for the Diophantine equation $255^{x}+1=z^{2}$.

Proof. Assume that there exist non-negative integers x and z such that $255^{x}+$ $1=z^{2}$. If $x=0$, then $z^{2}=2$, which is a contradiction. Now, we have $x \geqslant 1$. By Theorem 2.1, $x=1$. This implies that $z=16$. The proof is complete.

Next, we recall the following two lemmas:
Lemma 2.3. [1] The Diophantine equation $1+323^{y}=z^{2}$ has the unique non-negative integer solution $(y, z)=(1,18)$.

Lemma 2.4. [2] If z is an integer, then $z^{2} \equiv_{19} 0,1,4,5,6,7,9,11,16,17$.

3 Main Results

In this section, we begin with a lemma which will be useful in proving our main theorem.

Lemma 3.1. If x is a positive odd integer, then $8^{x} \equiv_{19} 8,12,18$.
Proof. We prove by induction that $8^{2 n-1} \equiv_{19} 8,12,18$ for all $n \in \mathbb{N}$. If $n=1$, then $8^{1} \equiv_{19} 8$ and so the statement is true for $n=1$. Assume that it is true for $n=k$. Then $8^{2 k-1} \equiv_{19} 8,12,18$ and so $8^{2 k+1} \equiv_{19} 18,8,12$. Hence, the statement is true for $n=k+1$ which proves the result.

Next, we shall give our main result.
Theorem 3.2. The Diophantine equation $255^{x}+323^{y}=z^{2}$ has exactly the two non-negative integer solutions $(x, y, z)=(1,0,16),(0,1,18)$.

Proof. Clearly $z=0$ cannot happen.
If $y=0$, then by Lemma $2.2(1,0,16)$ is the only solution in this case.
If $x=0$, then by Lemma $2.3(0,1,18)$ is the only solution in this case.
Now, we consider $x \geqslant 1$ and $y \geqslant 1$. If y is odd, then $z^{2}=255^{x}+323^{y} \equiv_{3} 2$, which contradicts the fact that $z^{2} \equiv_{3} 0,1$. Then y is even. If x is even, then $z^{2}=255^{x}+323^{y} \equiv_{4} 2$, which contradicts the fact that $z^{2} \equiv_{4} 0,1$. Then x is odd. Since $255 \equiv_{19} 8$, by Lemma 3.1, we have $255^{x} \equiv_{19} 8,12$, 18 . Since $323^{y} \equiv_{19} 0, z^{2} \equiv_{19} 8,12,18$, which contradicts Lemma 2.4. Consequently, $(1,0,16)$ and $(0,1,18)$ are the only two solutions (x, y, z) of the equation. This completes the proof.

The proof of the following corollary is immediate.
Corollary 3.3. $(x, y, z)=(1,0,4)$ is the unique non-negative integer solution of the Diophantine equation $255^{x}+323^{y}=z^{4}$.

4 Conclusion

In this paper, we proved that there are exactly two solutions $(1,0,16)$ and $(1,0,18)$ for the Diophantine equation $255^{x}+323^{y}=z^{2}$, where x, y and z are non-negative integers.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

[1] B. Sroysang, On the Diophantine Equation $323^{x}+325^{y}=z^{2}$, Int. J. Pure Appl. Math., 91, no. 3, (2014), 395-398.
[2] N. Viriyapong, C. Viriyapong, On the Diophantine equation $n^{x}+19^{y}=$ z^{2}, where $n \equiv 2(\bmod 57)$, Int. J. Math. Comput. Sci., 17, no. 4, (2022), 1639-1642.
[3] E. Catalan, Note extraite dune lettre adressee a lediteur, J. Reine Angew. Math., 27, (1844), 192.
[4] S. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572, (2004), 167-195.

