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Abstract

For a fixed a ∈ Z
+ with a ≡21 5, we show that the Diophantine

equation a
x + (a+ 2)y = z

2 has no non-negative integer solution.

1 Introduction

The Diophantine equations of the type ax + by = z2, where a and b are
fixed, have been studied by many mathematicians. In 2020, Dokchann and
Pakapongpun [1] showed that the Diophantine equation ax + (a + 2)y =
z2, where a is a positive integer with a ≡42 5, has no non-negative integer
solution. In 2022, Pakapongpun and Chattae [2] proved that (1, 0,

√
a+ 1)

is the only solution (x, y, z) for the Diophantine equation ax + (a+2)y = z2,

for each fixed a such that a ≡20 3 and a + 1 is a square.

In this paper, we study the Diophantine equation ax+(a+2)y = z2 where
a is a positive integer with a ≡21 5.
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2 Preliminaries

Throughout this paper, a ≡m b always means a is congruent to b modulo m

where a, b, m are integers such that m > 1. For notational convenience, we
will write a ≡m b, c to mean that a ≡m b or a ≡m c.

Now, we shall recall the Catalan’s conjecture [3] from 1844 which was
proved by Mihailescu [4] in 2004.

Theorem 2.1 (Catalan’s conjecture). The Diophantine equation ax−by =
1 has the unique solution (a, b, x, y) = (3, 2, 2, 3), where a, b, x and y are in-

tegers with min{a, b, x, y} > 1.

Next, we give two lemmas that are consequences of the Catalan’s conjec-
ture.

Lemma 2.2. Let a be a positive integer such that a ≡21 5. The Diophantine

equation ax + 1 = z2 has no non-negative integer solution.

Proof. Assume that there exist non-negative integers x and z such that ax+
1 = z2. If x = 0, then z2 = 2 which is a contradiction. Now, we have x > 1.
Since a > 5, by Theorem 2.1, x = 1. Since a ≡21 5, a ≡7 5. Then z2 ≡7 6,
which contradicts the fact that z2 ≡7 0, 1, 2, 4.

Lemma 2.3. Let a be a positive integer such that a ≡21 5. The Diophantine

equation 1 + (a+ 2)y = z2 has no non-negative integer solution.

Proof. Assume that there exist non-negative integers y and z such that 1 +
(a+2)y = z2. If y = 0, then z2 = 2 which is impossible. Now, we have y > 1.
Since a + 2 > 7, by Theorem 2.1, y = 1. Since a ≡21 5, a + 2 ≡3 1. Then
z2 ≡3 2. This contradicts the fact that z

2 ≡3 0, 1. The proof is complete.

3 Main Results

Now, we shall discuss a lemma which will be useful in the main theorem.

Lemma 3.1. If x is a positive odd integer, then 5x ≡7 3, 5, 6.

Proof. We prove by induction that 52n−1 ≡7 3, 5, 6, for all n ∈ N. If n = 1,
then 51 ≡7 5. Thus the statement is true for n = 1. Assume that it is true
for n = k. Then 52k−1 ≡7 3, 5, 6 and so 52k+1 ≡7 5, 6, 3. Hence, the statement
is true for n = k + 1 which proves the result.
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Next, we give our main result.

Theorem 3.2. Let a be a positive integer such that a ≡21 5. The Diophan-

tine equation ax + (a + 2)y = z2 has no non-negative integer solution where

x, y, z are non-negative integers.

Proof. Assume that there exist non-negative integers x, y, z such that ax +
(a+2)y = z2. By Lemma 2.2 and Lemma 2.3, x > 1 and y > 1. If x is even,
then ax ≡3 1 because a ≡21 5. Since (a+2)y ≡3 1, z

2 ≡3 2 which contradicts
the fact that z2 ≡3 0, 1. As a result, x is odd. Since a ≡7 5, by Lemma 3.1,
we have ax ≡7 3, 5, 6. Since (a + 2)y ≡7 0, we obtain z2 ≡7 3, 5, 6, which
contradicts the fact that z2 ≡7 0, 1, 2, 4. This completes the proof.

4 Conclusion

In this paper, we proved that the Diophantine equation ax + (a + 2)y = z2,

where a is a positive integer such that a ≡21 5 has no non-negative integer
solution.
Note that the main theorem in [1] is a special case of Theorem 3.2.
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