

On the Diophantine equation $a^x + (a+2)^y = z^2$, where $a \equiv_{21} 5$

Chokchai Viriyapong, Nongluk Viriyapong

Mathematics and Applied Mathematics Research Unit Department of Mathematics Mahasarakham University Maha Sarakham, 44150, Thailand

email: chokchai.v@msu.ac.th, nongluk.h@msu.ac.th

(Received January 3, 2023, Revised February 22, 2023, Accepted February 24, 2023, Published March 31, 2023)

Abstract

For a fixed $a \in \mathbb{Z}^+$ with $a \equiv_{21} 5$, we show that the Diophantine equation $a^x + (a+2)^y = z^2$ has no non-negative integer solution.

1 Introduction

The Diophantine equations of the type $a^x + b^y = z^2$, where a and b are fixed, have been studied by many mathematicians. In 2020, Dokchann and Pakapongpun [1] showed that the Diophantine equation $a^x + (a+2)^y = z^2$, where a is a positive integer with $a \equiv_{42} 5$, has no non-negative integer solution. In 2022, Pakapongpun and Chattae [2] proved that $(1, 0, \sqrt{a+1})$ is the only solution (x, y, z) for the Diophantine equation $a^x + (a+2)^y = z^2$, for each fixed a such that $a \equiv_{20} 3$ and a+1 is a square.

In this paper, we study the Diophantine equation $a^x + (a+2)^y = z^2$ where a is a positive integer with $a \equiv_{21} 5$.

Key words and phrases: Diophantine equation, congruence. AMS (MOS) Subject Classifications: 11D61.

The corresponding author is Nongluk Viriyapong.

ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net

2 Preliminaries

Throughout this paper, $a \equiv_m b$ always means a is congruent to b modulo m where a, b, m are integers such that $m \ge 1$. For notational convenience, we will write $a \equiv_m b, c$ to mean that $a \equiv_m b$ or $a \equiv_m c$.

Now, we shall recall the Catalan's conjecture [3] from 1844 which was proved by Mihailescu [4] in 2004.

Theorem 2.1 (Catalan's conjecture). The Diophantine equation $a^x - b^y = 1$ has the unique solution (a, b, x, y) = (3, 2, 2, 3), where a, b, x and y are integers with $\min\{a, b, x, y\} > 1$.

Next, we give two lemmas that are consequences of the Catalan's conjecture.

Lemma 2.2. Let a be a positive integer such that $a \equiv_{21} 5$. The Diophantine equation $a^x + 1 = z^2$ has no non-negative integer solution.

Proof. Assume that there exist non-negative integers x and z such that $a^x + 1 = z^2$. If x = 0, then $z^2 = 2$ which is a contradiction. Now, we have $x \ge 1$. Since $a \ge 5$, by Theorem 2.1, x = 1. Since $a \equiv_{21} 5$, $a \equiv_{7} 5$. Then $z^2 \equiv_{7} 6$, which contradicts the fact that $z^2 \equiv_{7} 0, 1, 2, 4$.

Lemma 2.3. Let a be a positive integer such that $a \equiv_{21} 5$. The Diophantine equation $1 + (a+2)^y = z^2$ has no non-negative integer solution.

Proof. Assume that there exist non-negative integers y and z such that $1 + (a+2)^y = z^2$. If y = 0, then $z^2 = 2$ which is impossible. Now, we have $y \ge 1$. Since $a + 2 \ge 7$, by Theorem 2.1, y = 1. Since $a \equiv_{21} 5$, $a + 2 \equiv_{3} 1$. Then $z^2 \equiv_{3} 2$. This contradicts the fact that $z^2 \equiv_{3} 0$, 1. The proof is complete. \square

3 Main Results

Now, we shall discuss a lemma which will be useful in the main theorem.

Lemma 3.1. If x is a positive odd integer, then $5^x \equiv_7 3, 5, 6$.

Proof. We prove by induction that $5^{2n-1} \equiv_7 3, 5, 6$, for all $n \in \mathbb{N}$. If n = 1, then $5^1 \equiv_7 5$. Thus the statement is true for n = 1. Assume that it is true for n = k. Then $5^{2k-1} \equiv_7 3, 5, 6$ and so $5^{2k+1} \equiv_7 5, 6, 3$. Hence, the statement is true for n = k + 1 which proves the result.

Next, we give our main result.

Theorem 3.2. Let a be a positive integer such that $a \equiv_{21} 5$. The Diophantine equation $a^x + (a+2)^y = z^2$ has no non-negative integer solution where x, y, z are non-negative integers.

Proof. Assume that there exist non-negative integers x, y, z such that $a^x + (a+2)^y = z^2$. By Lemma 2.2 and Lemma 2.3, $x \ge 1$ and $y \ge 1$. If x is even, then $a^x \equiv_3 1$ because $a \equiv_{21} 5$. Since $(a+2)^y \equiv_3 1$, $z^2 \equiv_3 2$ which contradicts the fact that $z^2 \equiv_3 0$, 1. As a result, x is odd. Since $a \equiv_7 5$, by Lemma 3.1, we have $a^x \equiv_7 3, 5, 6$. Since $(a+2)^y \equiv_7 0$, we obtain $z^2 \equiv_7 3, 5, 6$, which contradicts the fact that $z^2 \equiv_7 0, 1, 2, 4$. This completes the proof.

4 Conclusion

In this paper, we proved that the Diophantine equation $a^x + (a+2)^y = z^2$, where a is a positive integer such that $a \equiv_{21} 5$ has no non-negative integer solution.

Note that the main theorem in [1] is a special case of Theorem 3.2.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] R. Dokchann, A. Pakapongpun, On the Diophantine Equation $a^x + (a + 2)^y = z^2$, where $a \equiv 5 \pmod{42}$. Tatra Mt. Math. Publ., **77**, no. 1, (2020), 39–42.
- [2] A. Pakapongpun, B. Chattae, On the Diophantine Equation $a^x + (a + 2)^y = z^2$, where $a \equiv 3 \pmod{20}$. Int. J. Math. Comput. Sci., 17, no. 2, (2022), 711–716.
- [3] E. Catalan, Note extraite dune lettre adressee a lediteur, J. Reine Angew. Math., 27, (1844), 192.
- [4] S. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., **572**, (2004), 167–195.