On the Diophantine equation $a^{x}+(a+2)^{y}=z^{2}$, where $a \equiv_{21} 5$

Chokchai Viriyapong, Nongluk Viriyapong
Mathematics and Applied Mathematics Research Unit
Department of Mathematics
Mahasarakham University
Maha Sarakham, 44150, Thailand
email: chokchai.v@msu.ac.th, nongluk.h@msu.ac.th

(Received January 3, 2023, Revised February 22, 2023,
Accepted February 24, 2023, Published March 31, 2023)

Abstract

For a fixed $a \in \mathbb{Z}^{+}$with $a \equiv_{21} 5$, we show that the Diophantine equation $a^{x}+(a+2)^{y}=z^{2}$ has no non-negative integer solution.

1 Introduction

The Diophantine equations of the type $a^{x}+b^{y}=z^{2}$, where a and b are fixed, have been studied by many mathematicians. In 2020, Dokchann and Pakapongpun [1] showed that the Diophantine equation $a^{x}+(a+2)^{y}=$ z^{2}, where a is a positive integer with $a \equiv_{42} 5$, has no non-negative integer solution. In 2022, Pakapongpun and Chattae [2] proved that ($1,0, \sqrt{a+1}$) is the only solution (x, y, z) for the Diophantine equation $a^{x}+(a+2)^{y}=z^{2}$, for each fixed a such that $a \equiv_{20} 3$ and $a+1$ is a square.

In this paper, we study the Diophantine equation $a^{x}+(a+2)^{y}=z^{2}$ where a is a positive integer with $a \equiv_{21} 5$.

Key words and phrases: Diophantine equation, congruence.
AMS (MOS) Subject Classifications: 11D61.
The corresponding author is Nongluk Viriyapong.
ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net

2 Preliminaries

Throughout this paper, $a \equiv_{m} b$ always means a is congruent to b modulo m where a, b, m are integers such that $m \geqslant 1$. For notational convenience, we will write $a \equiv_{m} b, c$ to mean that $a \equiv_{m} b$ or $a \equiv_{m} c$.

Now, we shall recall the Catalan's conjecture [3] from 1844 which was proved by Mihailescu [4] in 2004.

Theorem 2.1 (Catalan's conjecture). The Diophantine equation $a^{x}-b^{y}=$ 1 has the unique solution $(a, b, x, y)=(3,2,2,3)$, where a, b, x and y are integers with $\min \{a, b, x, y\}>1$.

Next, we give two lemmas that are consequences of the Catalan's conjecture.

Lemma 2.2. Let a be a positive integer such that $a \equiv_{21} 5$. The Diophantine equation $a^{x}+1=z^{2}$ has no non-negative integer solution.

Proof. Assume that there exist non-negative integers x and z such that $a^{x}+$ $1=z^{2}$. If $x=0$, then $z^{2}=2$ which is a contradiction. Now, we have $x \geqslant 1$. Since $a \geqslant 5$, by Theorem 2.1, $x=1$. Since $a \equiv_{21} 5, a \equiv_{7} 5$. Then $z^{2} \equiv_{7} 6$, which contradicts the fact that $z^{2} \equiv_{7} 0,1,2,4$.

Lemma 2.3. Let a be a positive integer such that $a \equiv_{21} 5$. The Diophantine equation $1+(a+2)^{y}=z^{2}$ has no non-negative integer solution.

Proof. Assume that there exist non-negative integers y and z such that $1+$ $(a+2)^{y}=z^{2}$. If $y=0$, then $z^{2}=2$ which is impossible. Now, we have $y \geqslant 1$. Since $a+2 \geqslant 7$, by Theorem 2.1, $y=1$. Since $a \equiv_{21} 5, a+2 \equiv_{3} 1$. Then $z^{2} \equiv_{3} 2$. This contradicts the fact that $z^{2} \equiv_{3} 0,1$. The proof is complete.

3 Main Results

Now, we shall discuss a lemma which will be useful in the main theorem.
Lemma 3.1. If x is a positive odd integer, then $5^{x} \equiv_{7} 3,5,6$.
Proof. We prove by induction that $5^{2 n-1} \equiv_{7} 3,5,6$, for all $n \in \mathbb{N}$. If $n=1$, then $5^{1} \equiv_{7} 5$. Thus the statement is true for $n=1$. Assume that it is true for $n=k$. Then $5^{2 k-1} \equiv_{7} 3,5,6$ and so $5^{2 k+1} \equiv_{7} 5,6,3$. Hence, the statement is true for $n=k+1$ which proves the result.

On the Diophantine equation $a^{x}+(a+2)^{y}=z^{2}$, where $a \equiv_{21} 5$

Next, we give our main result.
Theorem 3.2. Let a be a positive integer such that $a \equiv_{21} 5$. The Diophantine equation $a^{x}+(a+2)^{y}=z^{2}$ has no non-negative integer solution where x, y, z are non-negative integers.

Proof. Assume that there exist non-negative integers x, y, z such that $a^{x}+$ $(a+2)^{y}=z^{2}$. By Lemma 2.2 and Lemma 2.3, $x \geqslant 1$ and $y \geqslant 1$. If x is even, then $a^{x} \equiv_{3} 1$ because $a \equiv_{21} 5$. Since $(a+2)^{y} \equiv_{3} 1, z^{2} \equiv_{3} 2$ which contradicts the fact that $z^{2} \equiv_{3} 0,1$. As a result, x is odd. Since $a \equiv_{7} 5$, by Lemma 3.1, we have $a^{x} \equiv_{7} 3,5,6$. Since $(a+2)^{y} \equiv_{7} 0$, we obtain $z^{2} \equiv_{7} 3,5,6$, which contradicts the fact that $z^{2} \equiv_{7} 0,1,2,4$. This completes the proof.

4 Conclusion

In this paper, we proved that the Diophantine equation $a^{x}+(a+2)^{y}=z^{2}$, where a is a positive integer such that $a \equiv_{21} 5$ has no non-negative integer solution.
Note that the main theorem in [1] is a special case of Theorem 3.2.
Acknowledgment. This research project was financially supported by Mahasarakham University.

References

[1] R. Dokchann, A. Pakapongpun, On the Diophantine Equation $a^{x}+(a+$ $2)^{y}=z^{2}$, where $a \equiv 5(\bmod 42)$. Tatra Mt. Math. Publ., 77, no. 1, (2020), 39-42.
[2] A. Pakapongpun, B. Chattae, On the Diophantine Equation $a^{x}+(a+$ $2)^{y}=z^{2}$, where $a \equiv 3(\bmod 20)$. Int. J. Math. Comput. Sci., 17, no. 2, (2022), 711-716.
[3] E. Catalan, Note extraite dune lettre adressee a lediteur, J. Reine Angew. Math., 27, (1844), 192.
[4] S. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572, (2004), 167-195.

