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Abstract

In this article, we introduce the notion of a-fuzzy normed algebra
by using two binary operations: the t−conorm ⊛ defined as µ ⊛ ω =
µ+ω−µω for all µ, ω ∈ [0, 1] and the t−norm ⊙ defined as η⊙θ = η.θ

for all η, θ ∈ [0, 1]. Moreover, we give some examples to show the
existence of such a notion. Furthermore, we introduce basic properties
of a fuzzy complete a-fuzzy normed algebra and prove that ⊙ is a fuzzy
continuous function and that every a-fuzzy normed algebra Z can be
embedded in afb(Z,Z) as a closed subalgebra.

1 Introduction

This research consists of two sections:
In section 2, we define the a-fuzzy normed space and study its basic proper-
ties. Then we introduce theorems that are needed for section 3.
In section 3, we introduce the definition of a-fuzzy normed algebra and prove
some important theorems of fuzzy complete a-fuzzy normed algebra.
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2 Concepts and theorems for a-fuzzy normed

spaces

For the definition of t-norm and t-conorm and their important properties, we
refer the interested reader to [1] and [2], respectively.

Definition 2.1. [3] If aR : R → I is a fuzzy set and ⊛ is a t-conorm, then
aR is an a-fuzzy absolute value on R if:
(i) 0 < aR(µ) ≤ 1.
(ii) aR(µ) = 0 if and only if µ = 0.
(iii) aR(ηµ) ≤ aR(η).aR(µ).
(iv) aR(η + µ) ≤ aR(η)⊛ aR(µ)
for all η, µ ∈ R.
In this case, (R, aR,⊛) is an a-fuzzy absolute value space.

Definition 2.2. Let LC : C → I be a fuzzy set and let ⊛ be a t-conorm.
Then LC is an a-fuzzy length on C if:
(i) 0 < LC(σ) ≤ 1.
(ii) LC(σ) = 0 if and only if σ = 0.
(iii) LC(στ) ≤ LC(σ).LC(τ).
(iv) LC(σ + τ) ≤ LC(σ)⊛ LC(τ) for all σ, τ ∈ C.
In this case, (C, LC,⊛) is an a-fuzzy length space.

Remark 2.3. We will take ⊛ to be α⊛ β = α + β − αβ ∀α, β ∈ I.

Example 2.4. [3] Let a|.|(α) =
|α|

1+|α|
for all α ∈ R where |.| is the absolute

value on R. Then (R, a|.|,⊛) is an a-fuzzy absolute value space.

Example 2.5. Let L|.|(α) =
|α|

1+|α|
for all α ∈ C where |.| is the length value

on C. Then (C, a|.|,⊛) is an a-fuzzy length space.

Definition 2.6. [3] Let (C, LC,⊛) be an a-fuzzy length space and let Z be a
vector space over C. Suppose that ⊛ is a t-conorm and nZ : Z → I is a fuzzy
set. Then nZ is an a-fuzzy norm on Z if:
(i) 0 < nZ(z) ≤ 1.
(ii) nZ(z) = 0 ⇔ z = 0.
(iii) nZ(µz) ≤ LC(µ)n(z) for all 0 6= µ ∈ C.
(iv) nZ(z + y) ≤ nZ(z)⊛ nZ(y) ∀z, y ∈ Z.
Here, we say that (Z, nZ ,⊛) is an a-fuzzy normed space (or simply a-
FNS).
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Example 2.7. [3] Define n‖.‖(z) =
‖z‖

(1+‖z‖)
, ∀z ∈ Z. Then (Z, n‖.‖,⊛) is a-

FNS if (Z, ‖.‖) is a normed space. Also n‖.‖ is called the standard a-fuzzy

norm on Z.

Definition 2.8. [3] Suppose that (Z, nZ ,⊛) is an a-FNS. If (zk) is a se-
quence in Z, then (zk) is said to be fuzzy convergent to the limit z as
k → ∞ if ∀µ ∈ (0, 1), ∃N ∈ N such that nZ(zk − z) < µ, for all k ≥ N. If
(zk) is fuzzy convergent to z, then we write lim

k→∞
zk = z or zk → z as k → ∞

or lim
k→∞

(zk − z) = 0.

Definition 2.9. [3] Suppose (Z, nZ ,⊛) is an a-FNS. A sequence (zk) is a
fuzzy Cauchy sequence in Z if ∀ µ ∈ (0, 1), ∃ N ∈ N such that nZ(zk−zm) <
µ, ∀k,m ≥ N.

Definition 2.10. [3] If for all fuzzy Cauchy sequences (zk) in Z, ∃ z ∈ Z

such that zk → z, then the a-fuzzy normed space (Z, nZ ,⊛) is said to be
fuzzy complete.

Theorem 2.11. [4] The a-fuzzy absolute space (R, aR,⊛) is fuzzy complete.

Theorem 2.12. [4] If (Z, n,⊛) is an a-FNS, then (Zk, nk,⊛) is a fuzzy
complete a-FNS if and only if (Z, n,⊚) is fuzzy complete, where Zk = Z ×
Z× ×Z [k-times], k ∈ N, and nk[(z1, z2, ..., zk)] = n(z1)⊛n(z2)⊛, ...,⊛n(zk)
for all (z1, z2, ..., zk) ∈ Zk.

Corollary 2.13. (Rk, nk,⊛) is fuzzy complete.

Corollary 2.14. The a-fuzzy length space (C, LC,⊛) is fuzzy complete.

Proof. Since C = R2, it follows that (C, LC,⊛) is fuzzy complete.

Theorem 2.15. [4] The operator H : Z → W is fuzzy continuous at z ∈ Z

if and only if whenever (zk) is fuzzy convergent to z ∈ Z, then (H(zk)) is
fuzzy convergent to H(z) ∈ W .

Theorem 2.16. [4] If (Z, n1,⊚) is an a-FNS, then the a-fuzzy norm n2 is
equivalent to n1 if ∃ p, q in (0, 1) with pn2(z) ≤ n1(z) ≤ qn2(z).

Definition 2.17. [4] Suppose that (Z, nZ ,⊛) and (Y, nY ,⊛) are two a-FNS.
The operator S : D(S) → Y is said to be fuzzy bounded if ∃ µ ∈ (0, 1)
such that nY [S(z)] < µnZ(z) for all z ∈ D(S).

Notation 2.18. [4] Suppose that (Z, nZ ,⊛) and (Y, nY ,⊛) are two a-FNS.
We use the notation afb(Z, Y ) = {S : Z → Y } for a fuzzy bounded operator.
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Theorem 2.19. [4] Define: nafb(Z,Y )(S) = supz∈D(S)nW (Sz), ∀ S ∈ afb(Z, Y ).
Then [afb(Z, Y ), nafb(Z,W ),⊛] is a-FNS if (Z, nZ ,⊛) and (Y, nY ,⊛) are two
a-FNS.

Theorem 2.20. [4] Suppose that (Z, nZ ,⊛) and (Y, nY ,⊛) are two a-FNS.
If Y is fuzzy complete, then afb(Z, Y ) is fuzzy complete .

Definition 2.21. [4] A linear functional h from a-FNS (Z, nZ ,⊛) into the
a-fuzzy absolute space (R, aR,⊛) is said to be a fuzzy bounded functional

if there exists s ∈ (0, 1) such that aR[h(u)] < s.nU(u) for any u ∈ D(h).
Furthermore, the a-fuzzy norm of h is nafb(Z,R)(h) = supu∈D(L)aR(hu) for all
L ∈ afb(Z,R) and aR[h(u)] < nafb(Z,R)(h).nZ(u) for any u ∈ D(h).

Definition 2.22. [4] Let (Z, nz,⊛) be an a-FNS. Then afb(Z,R) = {h : Z → R},
where h is fuzzy bounded and linear and forms a-fuzzy normed space with the
a-fuzzy norm defined by nafb(Z,R)(h) = supu∈D(L)aR(hu). Here, afb(Z,R) =
{h : Z → R} is called the fuzzy dual space of Z.

Theorem 2.23. [4] If (Z, nZ ,⊛) is an a-FNS, then the fuzzy dual space
afb(Z,R) is fuzzy complete.

Definition 2.24. [4] Suppose that Z is a vector space over the field K and
D is a closed subspace of Z. Then Z

D
= {z +D : z ∈ Z} is a vector space

over the field K with the operations: (v +D) + (z +D) = (v + z) +D and
α(z +D) = (αz) +D.

Definition 2.25. [5] Suppose that (Z, nZ ,⊛) is an a-FNS and D ⊂ Z is
fuzzy closed in Z. Define a-fuzzy norm for the quotient space Z

D
by q[u+D] =

infd∈DnU [z + d] for all z +D ∈ Z
D
.

Theorem 2.26. [5] The quotient space (Z
D
, q,⊛) is an a-FNS if (Z, nZ ,⊛)

is an a-FNS and D ⊂ Z is fuzzy closed in Z.

Remark 2.27. [5] If (Z, nZ ,⊛) is a-FNS and D ⊂ Z is fuzzy closed in Z,

then
(1) π : Z → Z

D
is a natural operator defined by π[z] = z +D.

(2) q(z +D) ≤ nZ(z).

Theorem 2.28. [5] Suppose that (Z, nZ ,⊛) is an a-FNS and D ⊂ Z is fuzzy
closed in Z. If (Z

D
, q,⊛) is fuzzy complete, then (Z, nZ ,⊚) is fuzzy complete.

Theorem 2.29. [5] Suppose that (Z, nZ ,⊛) is a-FNS and D ⊂ Z is fuzzy
closed in Z. If (Z, nZ ,⊛) is fuzzy complete, then (Z

D
, q,⊚) is fuzzy complete.
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Theorem 2.30. [4] Let (Z, nZ ,⊚) be a-fuzzy normed space. The geometric
series

∑∞
j=0 z

j = 1 + z +2 +... + zk + ..., is fuzzy convergent with sum 1
1−z

whenever nZ(z) < 1, and diverge whenever nZ(z) ≥ 1.

3 When the a-fuzzy normed algebra is fuzzy

complete

Definition 3.1. The space (Z, nZ ,⊛,⊙) is called an a-fuzzy normed al-

gebra space (or simply a- FNAS) if
(1) (Z,+, .) is an algebra space over the field K, where K = R or K = C.

(2) (Z, nZ ,⊛) is an a-FNS, with ⊛ a continuous t-conorm.
(3) ⊙ is a continuous t-norm.
(4) nZ(a.b) ≤ nZ(a)⊙ nZ(b) for all a, b ∈ Z.

Remark 3.2. Here, we take
(1) σ ⊙ τ = σ.τ, ∀ σ, τ ∈ [0, 1].
(2) γ ⊛ δ = γ + δ − γδ, ∀ γ, δ ∈ [0, 1].

Example 3.3. If (Z,+, .) is an algebra, then (Z, nZ ,⊛,⊙) is an a-FNAS,

with nZ(u) =

{

0 if u = 0

1 if u 6= 0

which is called the discrete a-FNAS.

Proof.
(1) It is clear that (Z, nZ ,⊛) is an a-FNS.
(2) We have to prove that nZ(uv) ≤ nZ(u)⊙ nZ(v) for all u, v ∈ Z.
Case 1: if u = 0 and v = 0, then u.v = 0 with 0⊙0 = 0 and so the inequality
holds.
Case 2: if u 6= 0 and v 6= 0, then u.v 6= 0 with 1⊙1 = 1 and so the inequality
follows.
Case 3: if u = 0 or v = 0, then u.v = 0 with 1 ⊙ 0 = 0 ⊙ 1 = 0 and so the
inequality obtains.

Example 3.4. Define nZ(u) = ‖u‖
1+‖u‖

for all u ∈ Z. If (Z, ‖·‖ ,+, .) is a

normed algebra, then (Z, nZ ,⊛,⊙) is an a-FNAS.

Proof.
(1) By example 2.7, we have (Z, nZ ,⊛) is an a-FNS.
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(2) nZ(u)⊙ nZ(v) = nZ(u).nZ(v) = [ ‖u‖
1+‖u‖

].[ ‖v‖
1+‖v‖

] = ‖u‖‖v‖
[1+‖u‖[1+‖v‖]

≥ ‖uv‖
1+‖uv‖

=

nZ(uv), since 1 + ‖uv‖ < [1 + ‖u‖].[1 + ‖v‖] and ‖uv‖ < ‖u‖ . ‖v‖ .

Definition 3.5. If (Z, nZ ,⊛) is a fuzzy complete a-FNS, then (Z, nZ ,⊛,⊙)
is called a fuzzy complete a-FNA.

Example 3.6. Let Z = C[0, 1] with nZ(f) = supx∈[0,1]aR(f(x)). Let ⊙ be
defined on Z pointwise as follows:
(f ⊙ g)(z) = (f.g)(z) = f(z).g(z) = f(z)⊙ g(z).
Then (Z, nZ ,⊛,⊙) is a commutative fuzzy complete a-FNA.

Proof.
(1) By example 2.15 in [5], we have (Z, nZ ,⊛) is an a-FNS.
(2) To show that nZ(f.g) ≤ nZ(f)⊙ nZ(g), nZ(f.g) = supx∈[0,1]aR(f.g(x)) =
supx∈[0,1]aR(f(x).g(x)) ≤ [supx∈[0,1]aR(f(x))].[supx∈[0,1]aR(g(x))] = nZ(f) ⊙
nZ(g). Hence (Z, nZ ,⊛,⊙) is a commutative fuzzy complete a-FNA.

Example 3.7. Let D denote the closed unit disc in C and let Z denote the
set of fuzzy continuous complex valued functions on D which are analytic in
the interior of D. Equip Z with pointwise addition and multiplication and
the a-fuzzy norm nZ(f) = sup {LC(fz) : z ∈ ∂D}, where ∂D is the boundary
of D. Then (Z, nZ ,⊛,⊙) is a fuzzy complete a-FNA and it is commutative
with identity. Here, (Z, nZ ,⊛,⊙) is called the disc a-FNA.

Lemma 3.8. If (Z, nZ ,⊛,⊙) is an a-FNA, then multiplication is a fuzzy
continuous function.

Proof.
If (zk) and (uk) are sequences in Z, with zk → z and uk → u as k → ∞, then
for any given 0 < γ < 1 and 0 < α < 1 there is M such that nZ(zk − z) ≤ α,

for all k ≥ M and nZ(uk − u) ≤ γ, ∀ k ≥ M . Put nZ(zk) = βk and
nZ(u) = σ, for some 0 < βk, σ < 1. In addition, let βk⊙σ < ε and α⊙β < δ,

for some 0 < δ, ε < 1. Now nZ(zkuk − zu) = nZ(zkuk − zku + zku − zu) ≤
nZ(zk(uk −u))⊛nZ((zk − z)u)) ≤ nZ(zk)⊙nZ(uZ −u)⊛nZ(zk − z)⊙nZ(u)
< (βk ⊙ γ)⊛ (α⊙ σ) < ε⊛ δ. Choose 0 < µ < 1 satisfying ε⊛ δ < µ. Thus
nZ(zkuk − zu) < µ, for all k ≥ M . Therefore, zkuk → zu as k → ∞ and
hence multiplication is fuzzy continuous.

Remark 3.9. It is clear that σ ⊙ µ ≤ ρ⊛ µ, for all σ, µ ∈ [0, 1].

Theorem 3.10. An a-FNA (Z, nZ ,⊛,⊙) without identity can be embedded
into an a-FNA Ze with identity e and Z is an ideal in Ze.
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Proof.
Put Ze = Z×C and define multiplication in Ze by (z, α).(u, β) = (zu+βz+
αu, αβ). Then Ze is an algebra with identity é = (0, 1) since (a, α).(0, 1) =
(a, α), for all (a, α) ∈ Ze. Then Ze is an a-FNS with an a-fuzzy norm nZe

:
Ze → [0, 1] defined by: nVe

(z, α) = nZ(z) ⊛ LC(α). Now nZe
(z, α).(u, β) =

nZe
(zu + βz + αu, αβ) = nZ(zu + βz + αu) ⊛ LC(αβ) ≤ nZ(zu) ⊛ LC(αβ)

≤ [nZ(z) ⊙ nZ(u)] ⊛ [LC(α) ⊙ LC(β)] ≤ [nZ(z) ⊛ nZ(u)] ⊛ [LC(α) ⊛ LC(β)]
≤ [nZ(z)⊛ LC(α)]⊛ [nZ(u)⊛ LC(β)] ≤ nZe

(z, α)⊛ nZe
(u, β).

Proposition 3.11. The space (Ze, nZe
,⊛,⊙) is fuzzy complete if and only

if (Z, nZ ,⊛,⊙) is fuzzy complete.

Proof.
Suppose that Ze = Z × C is fuzzy complete and let (zk) and (αk) be fuzzy
Cauchy sequences in Z and C, respectively; that is, for any given 0 < ε <

1, 0 < σ < 1, there exist M1 and M2 such that nZ(zk−zm) < ε, for all k,m ≥
M1 and LC(αk −αm) < σ, for all k,m > M2. Let M = min {M1,M2}. Now,
nZe

[(zk, αk)−(zm, αm)] = nZe
(zk−zm, αk−αm) = nZ [zk−zm]⊛LC[λn−λm, t] <

ε⊛ σ. Choose 0 < µ < 1 with ε⊛ σ < µ. Then nZe
[(zk, αk)− (zm, αm)] < µ

for all k,m > M . Thus {(zk, αk)} is a fuzzy Cauchy sequence in Ze. But
Ze is fuzzy complete. So there is (z, α) ∈ Ze such that (zk, αk) → (z, α) as
k → ∞; that is,
0 = limk→∞ nZe

[(zk, αn)− (z, α)] = limk→∞ nZ(zk − z)⊛ limk→∞ aC(αk − α).
Therefore, limk→∞ nZ(zk − z) = 0 and limk→∞LC(αk − α) = 0. Hence Z is
fuzzy complete.
Conversely, assume that Z is fuzzy complete and let {(zk, αk)} be a fuzzy
Cauchy sequence in Ze. Then for any given 0 < ε < 1, there is M such that
nZe

[(zk, αk) − (zm, αm)] < ε, for all k,m > M or nZ(zk − zm) ⊛ LC(αk −
αḿt) < ε. Hence nZ(zk − zm) < ε and aC(αk − αḿt) < ε, for all k,m > M .
This implies that (zk) and (αk) are fuzzy Cauchy sequences in Z and C,
respectively. But Z and C are fuzzy complete. So there is z ∈ Z and
α ∈ C such that limk→∞ nZ(zk − z) = 0 and limk→∞ LC(αk − α) = 0. Now,
limk→∞ nVe

[(zk, αk) − (z, α)] = limk→∞ nZ(zk − z) ⊛ limk→∞ LC(αn − α) =
0 ⊛ 0 = 0. Hence (zk, αk) → (z, α) as k → ∞. Consequently, Ze is fuzzy
complete.

Theorem 3.12. Let (Z, nZ ,⊛,⊙) be an a-FNA with identity e. Then there
is a a-fuzzy norm ńZ on Z such that nZ is equivalent to ńZ implies (Z, ńZ

,⊛,⊙) is an a-FNA with ńZ(e) = 1.

Proof.
For each x ∈ Z, let Nx be a linear operator defined by Nx(z) = xz, for all
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z ∈ Z. If Nx = Ny, it follows that Nx(e) = Ny(e). So x = y and, as a result,
the operator x 7−→ Nx is injective from Z into the set of all linear operators
on Z. Since nZ(Nx(z)) = nZ(xz) ≤ nZ(x)⊛ nZ(v) for z ∈ Z, we have Nx is
fuzzy bounded and nZ(Nx) ≤ tnZ(x). Put ńZ(z) = nZ(N(z,)). Then

ńZ(z) ≤ t.nZ(z)..........................(1)

for some t, 0 ≤ t ≤ 1.
On the other hand,

ńZ(z) = nZ(Nz) = supy∈D(Nz)nZ(Nz(y)) = supy∈D(Nz)nZ(zy)

≥ nZ(zý) = nZ(z)⊙ nZ(ý) = nZ(z).nZ(ý),

or
ńZ(z) ≥ snZ(z)....................(2)

for some s such that 0 ≤ s ≤ 1.
From (1) and (2) we have snZ(z) ≤ ńZ(z) ≤ tnZ(z) for all z ∈ Z. Hence
nZ(.) is equivalent to ńZ(.). Now ńZ(uw) = nZ(Nuw) = nZ(Nu.Nw) ≤
nZ(Nu) ⊙ nZ(Nw) ≤ ńZ(u) ⊙ ńZ(w). Therefore, (Z, ńZ ,⊛,⊙) is an a-FNA.
Consequently, ńZ(e) = nZ(Ne) = 1.

Theorem 3.13. Every a-FNA (Z, nZ ,⊛,⊙) can be embedded as a closed
subalgebra of afb(Z,Z).

Proof.
Define Nz : Z → Z by Nz(u) = zu, for all u ∈ Z. Then Nz ∈ afb(Z,Z)
since Nz(u1 + u2) = zu1 + zu2 = Nz(u1) + Nz(u2) and Nz(αu1) = z(αu1) =
α(zu1) = αNz(u1). Also, nZ(Nz(u)) = nZ(zu) ≤ nZ(z) ⊙ nZ(u) ≤ nZ(z);
that is, nZ(Nz) ≤ nZ(z) Now we show that Na+b = Na + Nb and Nab =
Na.Nb, Nαa = αNa, as well as Ne = IZ . We have Na+b(z) = (a + b)z =
az+bz = Na(z)+Nb(z) and Nαa(z) = (αa)z = α(az) = αNa(z). In addition,
Nab(z) = (ab)z = a(bz) = Na.Na(z) as well as Ne(z) = ez = z = IZ(z). We
have nZ(Nx(y)) = nZ(xy) ≤ nZ(x) ⊙ nZ(y) = nZ(x).nZ(y). Put nZ(x) = δ,

for some 0 < δ < 1. That is, nZ(Nx(y)) ≤ δ.nZ(y). Therefore, Nx is fuzzy
bounded. Let T : Z → afb(Z,Z) be a mapping defined by T (z) = Nz.

T isometric and so it is injective. Moreover, the image of the operator T

T (Z) = {Nz : z ∈ Z} is a subalgebra of afb(Z,Z) and T (Z) is fuzzy closed
in afb(Z,Z). Now, suppose that Nzk is a sequence in afb(Z,Z) such that
Nzk → S in afb(Z,Z). Then Nzk(x) = zkx = Ne(zk)x and so, as k → ∞,
S(x) = S(ex); that is, S = Ne. Thus T (Z) is fuzzy closed in afb(Z,Z).
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Proposition 3.14. If (Z, nZ ,⊛,⊙) is a fuzzy complete a-FNA and z ∈ Z,

then e − z is invertible and the series
∑∞

k=0 z
k is fuzzy convergent where

∑∞
k=0 z

k = (e− z)−1.

Proof.
Let z ∈ Z. Put sk = 1+ z+ z2 + ...+ zk or sk =

∑k

j=0 z
j . Then sk is a fuzzy

Cauchy sequence in Z and so it is fuzzy convergent since Z is complete. Let
u denote its limit; that is, u =

∑∞
j=0 z

j . We will prove that u is the inverse
of e− z as follows:
(e − z)u = limk→∞(e − z)sk = limk→∞(e − zk+1) = e, and u(e − z) =
limk→∞ sk(e−z) = limk→∞(e−zk+1) = e. Hence (e−z)u = u(e−z) = e.

Theorem 3.15. Let (Z, nZ ,⊛,⊙) be a fuzzy complete a-FNA and suppose
that D is a fuzzy closed ideal in Z. Then (Z

D
, q,⊛,⊙) is a fuzzy complete

a-FNA. If Z has identity, then so does Z
D
. Moreover, the identity of Z

D
has

fuzzy norm equal to 1.

Proof.
We know that Z

D
is a fuzzy complete a-FNS by Theorem 2.29. Since D is

an ideal, it is easy to see that Z
D

is an algebra with multiplication given
by (x + D)(y + D) = (xy) + D. Now, q[(x + D).(y + D)] = q[(xy) + D]
= infd∈DnZ [(xy + d)] ≤ infd∈DnZ [(x + d).(y + d)] ≤ infd∈DnZ(x + d) ⊙
infd∈DnZ(y+d) = q(x+D)⊙q(y+D). Thus (Z

D
, q,⊛,⊙) is a fuzzy complete

a-FNA. Moreover, if e is the identity of Z with nZ(e) = 1, then e+D is the
identity of Z

D
. Furthermore, q(e+D) = infd∈DnZ(e+ d) = nZ(e) = 1.

Remark 3.16. If (Z, nZ ,⊛,⊙) is fuzzy complete, then for any a 6= 0, a−1

exists and a−1 ∈ Z.

Proof.
If 0 6= a ∈ Z, then we put a = e − (e − a). Using Proposition 3.14 with
z = e − a, we see that a is invertible and its inverse a−1 is given by the
convergent series

∑∞
k=0(e− a)k.

Proposition 3.17. If (Z, nZ ,⊛,⊙) is a fuzzy complete a-FNA, then the in-
verse operator z → z−1 is a fuzzy continuous mapping.

Proof.
First, we show that the inverse map is fuzzy continuous at e. Let 0 < ε < 1
be given. We want to find 0 < δ < 1 such that nZ(u − e) < δ implies
nZ(u

−1e) < ε. Since nZ(u − e) < 1 implies u−1 =
∑∞

k=0(e − u)k, we have
nZ(u

−1e) = nZ(
∑∞

k=1(e− u)k) ≤ δ ⊛ δ2 ⊛ δ3... Setting δ ⊛ δ2 ⊛ δ3... < ε, we
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get nZ(u
−1 − e) < ε. Now, as n → ∞, zn → z and so znz

−1 → zz−1 = e.

This implies that (znz
−1)−1 → e or zz−1

n → e. Consequently, z−1
n → z−1 as

n → ∞.

Lemma 3.18. Let (Z, nZ ,⊛,⊙) be fuzzy complete with identity e. If z and
u are invertible elements of Z, then zu and uz are invertible.

Proof.
We have nz(uz) ≤ nz(u) ⊙ nz(z), nz(uz) ≤ 1. Similarly, nz(zu) ≤ 1. This
implies that e− uz and e− zu are both invertible with inverses given as a =
(e− uz)−1 =

∑∞
k=0(uz)

k and b = (e− zu)−1 =
∑∞

k=0(zu)
k, respectively.

Proposition 3.19. Let (Z, nZ ,⊛,⊙) be a fuzzy complete a-FNA with iden-
tity e. Suppose that z and u are elements of Z such that e− zu is invertible.
Let a = (e− zu)−1. Then b = e+ uaz is the inverse of e− uz.

Proof.
b(e−uz) = (e+uaz)(e−uz) = e−uz+uaz−uazuz = e−uz+ua(e−zu)z =
e− uz + u[a(e− zu)]z = e− uz + uz = e.
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