The a-fuzzy normed algebra and its basic properties

Rasha Khudhur Abbas, Jehad Ramadan Kider

Branch of Mathematics and Computer Applications
Department of Applied Sciences
University of Technology
Baghdad, Iraq
email: as.21@grad.uotechnology.edu.iq, jehad.r.kider@uotechnology.edu.iq
(Received January 2, 2023, Accepted February 2, 2023, Published March 31, 2023)

Abstract

In this article, we introduce the notion of a-fuzzy normed algebra by using two binary operations: the t-conorm \circledast defined as $\mu \circledast \omega=$ $\mu+\omega-\mu \omega$ for all $\mu, \omega \in[0,1]$ and the t-norm \odot defined as $\eta \odot \theta=\eta \cdot \theta$ for all $\eta, \theta \in[0,1]$. Moreover, we give some examples to show the existence of such a notion. Furthermore, we introduce basic properties of a fuzzy complete a-fuzzy normed algebra and prove that \odot is a fuzzy continuous function and that every a-fuzzy normed algebra Z can be embedded in $a f b(Z, Z)$ as a closed subalgebra.

1 Introduction

This research consists of two sections:
In section 2, we define the a-fuzzy normed space and study its basic properties. Then we introduce theorems that are needed for section 3 .
In section 3, we introduce the definition of a-fuzzy normed algebra and prove some important theorems of fuzzy complete a-fuzzy normed algebra.

Key words and phrases: a-fuzzy normed space, fuzzy continuous operator, a-fuzzy normed algebra, fuzzy complete a-fuzzy normed algebra.
AMS Subject Classifications: 16D50.
ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net

2 Concepts and theorems for a-fuzzy normed spaces

For the definition of t-norm and t-conorm and their important properties, we refer the interested reader to [1] and [2], respectively.

Definition 2.1. [3] If $a_{\mathbb{R}}: \mathbb{R} \rightarrow I$ is a fuzzy set and \circledast is a t-conorm, then $a_{\mathbb{R}}$ is an a-fuzzy absolute value on \mathbb{R} if:
(i) $0<a_{\mathbb{R}}(\mu) \leq 1$.
(ii) $a_{\mathbb{R}}(\mu)=0$ if and only if $\mu=0$.
(iii) $a_{\mathbb{R}}(\eta \mu) \leq a_{\mathbb{R}}(\eta) \cdot a_{\mathbb{R}}(\mu)$.
(iv) $a_{\mathbb{R}}(\eta+\mu) \leq a_{\mathbb{R}}(\eta) \circledast a_{\mathbb{R}}(\mu)$
for all $\eta, \mu \in \mathbb{R}$.
In this case, $\left(\mathbb{R}, a_{\mathbb{R}}, \circledast\right)$ is an a-fuzzy absolute value space.
Definition 2.2. Let $L_{\mathbb{C}}: \mathbb{C} \rightarrow I$ be a fuzzy set and let \circledast be a t-conorm. Then $L_{\mathbb{C}}$ is an a-fuzzy length on \mathbb{C} if:
(i) $0<L_{\mathbb{C}}(\sigma) \leq 1$.
(ii) $L_{\mathbb{C}}(\sigma)=0$ if and only if $\sigma=0$.
(iii) $L_{\mathbb{C}}(\sigma \tau) \leq L_{\mathbb{C}}(\sigma) . L_{\mathbb{C}}(\tau)$.
(iv) $L_{\mathbb{C}}(\sigma+\tau) \leq L_{\mathbb{C}}(\sigma) \circledast L_{\mathbb{C}}(\tau)$ for all $\sigma, \tau \in \mathbb{C}$.

In this case, $\left(\mathbb{C}, L_{\mathbb{C}}, \circledast\right)$ is an a-fuzzy length space.
Remark 2.3. We will take \circledast to be $\alpha \circledast \beta=\alpha+\beta-\alpha \beta \forall \alpha, \beta \in I$.
Example 2.4. [3] Let $a_{|.|}(\alpha)=\frac{|\alpha|}{1+|\alpha|}$ for all $\alpha \in \mathbb{R}$ where $|$.$| is the absolute$ value on \mathbb{R}. Then $\left(\mathbb{R}, a_{|\cdot|}, \circledast\right)$ is an a-fuzzy absolute value space.

Example 2.5. Let $L_{|\cdot|}(\alpha)=\frac{|\alpha|}{1+|\alpha|}$ for all $\alpha \in \mathbb{C}$ where $|$.$| is the length value$ on \mathbb{C}. Then $\left(\mathbb{C}, a_{|\cdot|}, \circledast\right)$ is an a-fuzzy length space.

Definition 2.6. [3] Let $\left(\mathbb{C}, L_{\mathbb{C}}, \circledast\right)$ be an a-fuzzy length space and let Z be a vector space over \mathbb{C}. Suppose that \circledast is a t-conorm and $n_{Z}: Z \rightarrow I$ is a fuzzy set. Then n_{Z} is an a-fuzzy norm on Z if:
(i) $0<n_{Z}(z) \leq 1$.
(ii) $n_{Z}(z)=0 \Leftrightarrow z=0$.
(iii) $n_{Z}(\mu z) \leq L_{\mathbb{C}}(\mu) n(z)$ for all $0 \neq \mu \in \mathbb{C}$.
(iv) $n_{Z}(z+y) \leq n_{Z}(z) \circledast n_{Z}(y) \forall z, y \in Z$.

Here, we say that $\left(Z, n_{Z}, \circledast\right)$ is an a-fuzzy normed space (or simply aFNS).

Example 2.7. [3] Define $n_{\|\cdot\|}(z)=\frac{\|z\|}{(1+\|z\|)}, \forall z \in Z$. Then $\left(Z, n_{\|\cdot\|}, \circledast\right)$ is a FNS if $(Z,\|\|$.$) is a normed space. Also n_{\|.\|}$is called the standard a-fuzzy norm on Z.

Definition 2.8. [3] Suppose that $\left(Z, n_{Z}, \circledast\right)$ is an a-FNS. If $\left(z_{k}\right)$ is a sequence in Z, then $\left(z_{k}\right)$ is said to be fuzzy convergent to the limit z as $k \rightarrow \infty$ if $\forall \mu \in(0,1), \exists N \in \mathbb{N}$ such that $n_{Z}\left(z_{k}-z\right)<\mu$, for all $k \geq N$. If $\left(z_{k}\right)$ is fuzzy convergent to z, then we write $\lim _{k \rightarrow \infty} z_{k}=z$ or $z_{k} \rightarrow z$ as $k \rightarrow \infty$ or $\lim _{k \rightarrow \infty}\left(z_{k}-z\right)=0$.

Definition 2.9. [3] Suppose $\left(Z, n_{Z}, \circledast\right)$ is an a-FNS. A sequence $\left(z_{k}\right)$ is a fuzzy Cauchy sequence in Z if $\forall \mu \in(0,1), \exists N \in \mathbb{N}$ such that $n_{Z}\left(z_{k}-z_{m}\right)<$ $\mu, \forall k, m \geq N$.

Definition 2.10. [3] If for all fuzzy Cauchy sequences $\left(z_{k}\right)$ in $Z, \exists z \in Z$ such that $z_{k} \rightarrow z$, then the a-fuzzy normed space $\left(Z, n_{Z}, \circledast\right)$ is said to be fuzzy complete.

Theorem 2.11. [4] The a-fuzzy absolute space $\left(\mathbb{R}, a_{\mathbb{R}}, \circledast\right)$ is fuzzy complete.
Theorem 2.12. [4] If (Z, n, \circledast) is an a-FNS, then $\left(Z^{k}, n_{k}, \circledast\right)$ is a fuzzy complete a-FNS if and only if ($Z, n, \odot)$ is fuzzy complete, where $Z^{k}=Z \times$ $Z \times \times Z\left[k\right.$-times], $k \in \mathbb{N}$, and $n_{k}\left[\left(z_{1}, z_{2}, \ldots, z_{k}\right)\right]=n\left(z_{1}\right) \circledast n\left(z_{2}\right) \circledast, \ldots, \circledast n\left(z_{k}\right)$ for all $\left(z_{1}, z_{2}, \ldots, z_{k}\right) \in Z^{k}$.

Corollary 2.13. $\left(\mathbb{R}^{k}, n_{k}, \circledast\right)$ is fuzzy complete.
Corollary 2.14. The a-fuzzy length space $\left(\mathbb{C}, L_{\mathbb{C}}, \circledast\right)$ is fuzzy complete.
Proof. Since $\mathbb{C}=\mathbb{R}^{2}$, it follows that $\left(\mathbb{C}, L_{\mathbb{C}}, \circledast\right)$ is fuzzy complete.
Theorem 2.15. [4] The operator $H: Z \rightarrow W$ is fuzzy continuous at $z \in Z$ if and only if whenever $\left(z_{k}\right)$ is fuzzy convergent to $z \in Z$, then $\left(H\left(z_{k}\right)\right)$ is fuzzy convergent to $H(z) \in W$.

Theorem 2.16. [4] If $\left(Z, n_{1}, \bigcirc\right)$ is an a-FNS, then the a-fuzzy norm n_{2} is equivalent to n_{1} if $\exists p, q$ in $(0,1)$ with $p n_{2}(z) \leq n_{1}(z) \leq q n_{2}(z)$.

Definition 2.17. [4] Suppose that $\left(Z, n_{Z}, \circledast\right)$ and $\left(Y, n_{Y}, \circledast\right)$ are two a-FNS. The operator $S: D(S) \rightarrow Y$ is said to be fuzzy bounded if $\exists \mu \in(0,1)$ such that $n_{Y}[S(z)]<\mu n_{Z}(z)$ for all $z \in D(S)$.

Notation 2.18. [4] Suppose that $\left(Z, n_{Z}, \circledast\right)$ and $\left(Y, n_{Y}, \circledast\right)$ are two a-FNS. We use the notation afb $(Z, Y)=\{S: Z \rightarrow Y\}$ for a fuzzy bounded operator.

Theorem 2.19. [4] Define: $n_{a f b(Z, Y)}(S)=\sup _{z \in D(S)} n_{W}(S z), \forall S \in a f b(Z, Y)$. Then $\left[\operatorname{afb}(Z, Y), n_{a f b(Z, W)}, \circledast\right]$ is $a-F N S$ if $\left(Z, n_{Z}, \circledast\right)$ and $\left(Y, n_{Y}, \circledast\right)$ are two $a-F N S$.

Theorem 2.20. [4] Suppose that $\left(Z, n_{Z}, \circledast\right)$ and $\left(Y, n_{Y}, \circledast\right)$ are two a-FNS. If Y is fuzzy complete, then afb (Z, Y) is fuzzy complete.

Definition 2.21. [4] A linear functional h from $a-F N S\left(Z, n_{Z}, *\right)$ into the a-fuzzy absolute space $\left(\mathbb{R}, a_{\mathbb{R}}, \circledast\right)$ is said to be a fuzzy bounded functional if there exists $s \in(0,1)$ such that $a_{\mathbb{R}}[h(u)]<s . n_{U}(u)$ for any $u \in D(h)$. Furthermore, the a-fuzzy norm of h is $n_{a f b(Z, \mathbb{R})}(h)=\sup _{u \in D(L)} a_{\mathbb{R}}(h u)$ for all $L \in \operatorname{afb}(Z, \mathbb{R})$ and $a_{\mathbb{R}}[h(u)]<n_{\text {afb }(Z, \mathbb{R})}(h) . n_{Z}(u)$ for any $u \in D(h)$.
Definition 2.22. [4] Let $\left(Z, n_{z}, \circledast\right)$ be an a-FNS. Then $\operatorname{afb}(Z, \mathbb{R})=\{h: Z \rightarrow \mathbb{R}\}$, where h is fuzzy bounded and linear and forms a-fuzzy normed space with the a-fuzzy norm defined by $n_{a f b(Z, R)}(h)=\sup _{u \in D(L)} a_{R}(h u)$. Here, afb $(Z, \mathbb{R})=$ $\{h: Z \rightarrow \mathbb{R}\}$ is called the fuzzy dual space of Z.

Theorem 2.23. [4] If $\left(Z, n_{Z}, \circledast\right)$ is an a-FNS, then the fuzzy dual space afb (Z, \mathbb{R}) is fuzzy complete.

Definition 2.24. [4] Suppose that Z is a vector space over the field \mathbb{K} and D is a closed subspace of Z. Then $\frac{Z}{D}=\{z+D: z \in Z\}$ is a vector space over the field \mathbb{K} with the operations: $(v+D)+(z+D)=(v+z)+D$ and $\alpha(z+D)=(\alpha z)+D$.

Definition 2.25. [5] Suppose that $\left(Z, n_{Z}, \circledast\right)$ is an a-FNS and $D \subset Z$ is fuzzy closed in Z. Define a-fuzzy norm for the quotient space $\frac{Z}{D}$ by $q[u+D]=$ inf $f_{d \in D} n_{U}[z+d]$ for all $z+D \in \frac{Z}{D}$.
Theorem 2.26. [5] The quotient space $\left(\frac{Z}{D}, q, \circledast\right)$ is an a-FNS if $\left(Z, n_{Z}, \circledast\right)$ is an a-FNS and $D \subset Z$ is fuzzy closed in Z.

Remark 2.27. [5] If $\left(Z, n_{Z}, \circledast\right)$ is a-FNS and $D \subset Z$ is fuzzy closed in Z, then
(1) $\pi: Z \rightarrow \frac{Z}{D}$ is a natural operator defined by $\pi[z]=z+D$.
(2) $q(z+D) \leq n_{Z}(z)$.

Theorem 2.28. [5] Suppose that $\left(Z, n_{Z}, \circledast\right)$ is an a-FNS and $D \subset Z$ is fuzzy closed in Z. If $\left(\frac{Z}{D}, q, \circledast\right)$ is fuzzy complete, then $\left(Z, n_{Z}, \odot\right)$ is fuzzy complete.

Theorem 2.29. [5] Suppose that $\left(Z, n_{Z}, \circledast\right)$ is a-FNS and $D \subset Z$ is fuzzy closed in Z. If $\left(Z, n_{Z}, \circledast\right)$ is fuzzy complete, then $\left(\frac{Z}{D}, q, \odot\right)$ is fuzzy complete.

Theorem 2.30. [4] Let (Z, n_{Z}, ©) be a-fuzzy normed space. The geometric series $\sum_{j=0}^{\infty} z^{j}=1+z+^{2}+\ldots+z^{k}+\ldots$, is fuzzy convergent with sum $\frac{1}{1-z}$ whenever $n_{Z}(z)<1$, and diverge whenever $n_{Z}(z) \geq 1$.

3 When the a-fuzzy normed algebra is fuzzy complete

Definition 3.1. The space $\left(Z, n_{Z}, \circledast, \odot\right)$ is called an a-fuzzy normed algebra space (or simply a-FNAS) if
(1) $(Z,+,$.$) is an algebra space over the field K$, where $K=R$ or $K=C$.
(2) $\left(Z, n_{Z}, \circledast\right)$ is an a-FNS, with \circledast a continuous t-conorm.
(3) \odot is a continuous t-norm.
(4) $n_{Z}(a . b) \leq n_{Z}(a) \odot n_{Z}(b)$ for all $a, b \in Z$.

Remark 3.2. Here, we take
(1) $\sigma \odot \tau=\sigma . \tau, \forall \sigma, \tau \in[0,1]$.
(2) $\gamma \circledast \delta=\gamma+\delta-\gamma \delta, \forall \gamma, \delta \in[0,1]$.

Example 3.3. If $(Z,+,$.$) is an algebra, then \left(Z, n_{Z}, \circledast, \odot\right)$ is an a-FNAS, with $n_{Z}(u)=\left\{\begin{array}{l}0 \text { if } u=0 \\ 1 \text { if } u \neq 0\end{array}\right.$
which is called the discrete a-FNAS.
Proof.
(1) It is clear that $\left(Z, n_{Z}, \circledast\right)$ is an a-FNS.
(2) We have to prove that $n_{Z}(u v) \leq n_{Z}(u) \odot n_{Z}(v)$ for all $u, v \in Z$.

Case 1: if $u=0$ and $v=0$, then $u . v=0$ with $0 \odot 0=0$ and so the inequality holds.
Case 2: if $u \neq 0$ and $v \neq 0$, then $u . v \neq 0$ with $1 \odot 1=1$ and so the inequality follows.
Case 3: if $u=0$ or $v=0$, then $u \cdot v=0$ with $1 \odot 0=0 \odot 1=0$ and so the inequality obtains.
Example 3.4. Define $n_{Z}(u)=\frac{\|u\|}{1+\|u\|}$ for all $u \in Z$. If $(Z,\|\cdot\|,+,$.$) is a$ normed algebra, then $\left(Z, n_{Z}, \circledast, \odot\right)$ is an a-FNAS.

Proof.
(1) By example 2.7, we have $\left(Z, n_{Z}, \circledast\right)$ is an a-FNS.
(2) $n_{Z}(u) \odot n_{Z}(v)=n_{Z}(u) \cdot n_{Z}(v)=\left[\frac{\|u\|}{1+\|u\|}\right] \cdot\left[\frac{\|v\|}{1+\|v\|}\right]=\frac{\|u\|\|v\|}{[1+\|u\|[1+\|v\|]} \geq \frac{\|u v\|}{1+\|u v\|}=$ $n_{Z}(u v)$, since $1+\|u v\|<[1+\|u\|] \cdot[1+\|v\|]$ and $\|u v\|<\|u\| \cdot\|v\|$.

Definition 3.5. If $\left(Z, n_{Z}, \circledast\right)$ is a fuzzy complete a-FNS, then $\left(Z, n_{Z}, \circledast, \odot\right)$ is called a fuzzy complete a-FNA.

Example 3.6. Let $Z=C[0,1]$ with $n_{Z}(f)=\sup _{x \in[0,1]} a_{\mathbb{R}}(f(x))$. Let \odot be defined on Z pointwise as follows:
$(f \odot g)(z)=(f \cdot g)(z)=f(z) \cdot g(z)=f(z) \odot g(z)$.
Then $\left(Z, n_{Z}, \circledast, \odot\right)$ is a commutative fuzzy complete $a-F N A$.
Proof.
(1) By example 2.15 in [5], we have $\left(Z, n_{Z}, \circledast\right)$ is an a-FNS.
(2) To show that $n_{Z}(f . g) \leq n_{Z}(f) \odot n_{Z}(g), n_{Z}(f . g)=\sup _{x \in[0,1]} a_{\mathbb{R}}(f . g(x))=$ $\sup _{x \in[0,1]} a_{\mathbb{R}}(f(x) . g(x)) \leq\left[\sup _{x \in[0,1]} a_{\mathbb{R}}(f(x))\right] \cdot\left[\sup _{x \in[0,1]} a_{\mathbb{R}}(g(x))\right]=n_{Z}(f) \odot$ $n_{Z}(g)$. Hence $\left(Z, n_{Z}, \circledast, \odot\right)$ is a commutative fuzzy complete a-FNA.

Example 3.7. Let D denote the closed unit disc in \mathbb{C} and let Z denote the set of fuzzy continuous complex valued functions on D which are analytic in the interior of D. Equip Z with pointwise addition and multiplication and the a-fuzzy norm $n_{Z}(f)=\sup \left\{L_{\mathbb{C}}(f z): z \in \partial D\right\}$, where ∂D is the boundary of D. Then $\left(Z, n_{Z}, \circledast, \odot\right)$ is a fuzzy complete a-FNA and it is commutative with identity. Here, $\left(Z, n_{Z}, \circledast, \odot\right)$ is called the disc a-FNA.

Lemma 3.8. If $\left(Z, n_{Z}, \circledast, \odot\right)$ is an a-FNA, then multiplication is a fuzzy continuous function.

Proof.
If $\left(z_{k}\right)$ and $\left(u_{k}\right)$ are sequences in Z, with $z_{k} \rightarrow z$ and $u_{k} \rightarrow u$ as $k \rightarrow \infty$, then for any given $0<\gamma<1$ and $0<\alpha<1$ there is M such that $n_{Z}\left(z_{k}-z\right) \leq \alpha$, for all $k \geq M$ and $n_{Z}\left(u_{k}-u\right) \leq \gamma, \forall k \geq M$. Put $n_{Z}\left(z_{k}\right)=\beta_{k}$ and $n_{Z}(u)=\sigma$, for some $0<\beta_{k}, \sigma<1$. In addition, let $\beta_{k} \odot \sigma<\varepsilon$ and $\alpha \odot \beta<\delta$, for some $0<\delta, \varepsilon<1$. Now $n_{Z}\left(z_{k} u_{k}-z u\right)=n_{Z}\left(z_{k} u_{k}-z_{k} u+z_{k} u-z u\right) \leq$ $\left.n_{Z}\left(z_{k}\left(u_{k}-u\right)\right) \circledast n_{Z}\left(\left(z_{k}-z\right) u\right)\right) \leq n_{Z}\left(z_{k}\right) \odot n_{Z}\left(u_{Z}-u\right) \circledast n_{Z}\left(z_{k}-z\right) \odot n_{Z}(u)$ $<\left(\beta_{k} \odot \gamma\right) \circledast(\alpha \odot \sigma)<\varepsilon \circledast \delta$. Choose $0<\mu<1$ satisfying $\varepsilon \circledast \delta<\mu$. Thus $n_{Z}\left(z_{k} u_{k}-z u\right)<\mu$, for all $k \geq M$. Therefore, $z_{k} u_{k} \rightarrow z u$ as $k \rightarrow \infty$ and hence multiplication is fuzzy continuous.

Remark 3.9. It is clear that $\sigma \odot \mu \leq \rho \circledast \mu$, for all $\sigma, \mu \in[0,1]$.
Theorem 3.10. An a-FNA $\left(Z, n_{Z}, \circledast, \odot\right)$ without identity can be embedded into an a-FNA Z_{e} with identity e and Z is an ideal in Z_{e}.

Proof.
Put $Z_{e}=Z \times \mathbb{C}$ and define multiplication in Z_{e} by $(z, \alpha) .(u, \beta)=(z u+\beta z+$ $\alpha u, \alpha \beta)$. Then Z_{e} is an algebra with identity $e ́=(0,1)$ since $(a, \alpha) \cdot(0,1)=$ (a, α), for all $(a, \alpha) \in Z_{e}$. Then Z_{e} is an a-FNS with an a-fuzzy norm $n_{Z_{e}}$: $Z_{e} \rightarrow[0,1]$ defined by: $n_{V_{e}}(z, \alpha)=n_{Z}(z) \circledast L_{\mathbb{C}}(\alpha)$. Now $n_{Z_{e}}(z, \alpha) .(u, \beta)=$ $n_{Z_{e}}(z u+\beta z+\alpha u, \alpha \beta)=n_{Z}(z u+\beta z+\alpha u) \circledast L_{\mathbb{C}}(\alpha \beta) \leq n_{Z}(z u) \circledast L_{\mathbb{C}}(\alpha \beta)$ $\leq\left[n_{Z}(z) \odot n_{Z}(u)\right] \circledast\left[L_{\mathbb{C}}(\alpha) \odot L_{\mathbb{C}}(\beta)\right] \leq\left[n_{Z}(z) \circledast n_{Z}(u)\right] \circledast\left[L_{\mathbb{C}}(\alpha) \circledast L_{\mathbb{C}}(\beta)\right]$ $\leq\left[n_{Z}(z) \circledast L_{\mathbb{C}}(\alpha)\right] \circledast\left[n_{Z}(u) \circledast L_{\mathbb{C}}(\beta)\right] \leq n_{Z_{e}}(z, \alpha) \circledast n_{Z_{e}}(u, \beta)$.
Proposition 3.11. The space $\left(Z_{e}, n_{Z_{e}}, \circledast, \odot\right)$ is fuzzy complete if and only if $\left(Z, n_{Z}, \circledast, \odot\right)$ is fuzzy complete.
Proof.
Suppose that $Z_{e}=Z \times \mathbb{C}$ is fuzzy complete and let $\left(z_{k}\right)$ and $\left(\alpha_{k}\right)$ be fuzzy Cauchy sequences in Z and \mathbb{C}, respectively; that is, for any given $0<\varepsilon<$ $1,0<\sigma<1$, there exist M_{1} and M_{2} such that $n_{Z}\left(z_{k}-z_{m}\right)<\varepsilon$, for all $k, m \geq$ M_{1} and $L_{\mathbb{C}}\left(\alpha_{k}-\alpha_{m}\right)<\sigma$, for all $k, m>M_{2}$. Let $M=\min \left\{M_{1}, M_{2}\right\}$. Now, $n_{Z_{e}}\left[\left(z_{k}, \alpha_{k}\right)-\left(z_{m}, \alpha_{m}\right)\right]=n_{Z_{e}}\left(z_{k}-z_{m}, \alpha_{k}-\alpha_{m}\right)=n_{Z}\left[z_{k}-z_{m}\right] \circledast L_{\mathbb{C}}\left[\lambda_{n}-\lambda_{m}, t\right]<$ $\varepsilon \circledast \sigma$. Choose $0<\mu<1$ with $\varepsilon \circledast \sigma<\mu$. Then $n_{Z_{e}}\left[\left(z_{k}, \alpha_{k}\right)-\left(z_{m}, \alpha_{m}\right)\right]<\mu$ for all $k, m>M$. Thus $\left\{\left(z_{k}, \alpha_{k}\right)\right\}$ is a fuzzy Cauchy sequence in Z_{e}. But Z_{e} is fuzzy complete. So there is $(z, \alpha) \in Z_{e}$ such that $\left(z_{k}, \alpha_{k}\right) \rightarrow(z, \alpha)$ as $k \rightarrow \infty$; that is,
$0=\lim _{k \rightarrow \infty} n_{Z_{e}}\left[\left(z_{k}, \alpha_{n}\right)-(z, \alpha)\right]=\lim _{k \rightarrow \infty} n_{Z}\left(z_{k}-z\right) \circledast \lim _{k \rightarrow \infty} a_{\mathbb{C}}\left(\alpha_{k}-\alpha\right)$. Therefore, $\lim _{k \rightarrow \infty} n_{Z}\left(z_{k}-z\right)=0$ and $\lim _{k \rightarrow \infty} L_{\mathbb{C}}\left(\alpha_{k}-\alpha\right)=0$. Hence Z is fuzzy complete.
Conversely, assume that Z is fuzzy complete and let $\left\{\left(z_{k}, \alpha_{k}\right)\right\}$ be a fuzzy Cauchy sequence in Z_{e}. Then for any given $0<\varepsilon<1$, there is M such that $n_{Z_{e}}\left[\left(z_{k}, \alpha_{k}\right)-\left(z_{m}, \alpha_{m}\right)\right]<\varepsilon$, for all $k, m>M$ or $n_{Z}\left(z_{k}-z_{m}\right) \circledast L_{\mathbb{C}}\left(\alpha_{k}-\right.$ $\left.\alpha_{\dot{m}} t\right)<\varepsilon$. Hence $n_{Z}\left(z_{k}-z_{m}\right)<\varepsilon$ and $a_{\mathbb{C}}\left(\alpha_{k}-\alpha_{\dot{m}} t\right)<\varepsilon$, for all $k, m>M$. This implies that $\left(z_{k}\right)$ and $\left(\alpha_{k}\right)$ are fuzzy Cauchy sequences in Z and \mathbb{C}, respectively. But Z and \mathbb{C} are fuzzy complete. So there is $z \in Z$ and $\alpha \in \mathbb{C}$ such that $\lim _{k \rightarrow \infty} n_{Z}\left(z_{k}-z\right)=0$ and $\lim _{k \rightarrow \infty} L_{\mathbb{C}}\left(\alpha_{k}-\alpha\right)=0$. Now, $\lim _{k \rightarrow \infty} n_{V_{e}}\left[\left(z_{k}, \alpha_{k}\right)-(z, \alpha)\right]=\lim _{k \rightarrow \infty} n_{Z}\left(z_{k}-z\right) \circledast \lim _{k \rightarrow \infty} L_{\mathbb{C}}\left(\alpha_{n}-\alpha\right)=$ $0 \circledast 0=0$. Hence $\left(z_{k}, \alpha_{k}\right) \rightarrow(z, \alpha)$ as $k \rightarrow \infty$. Consequently, Z_{e} is fuzzy complete.
Theorem 3.12. Let $\left(Z, n_{Z}, \circledast, \odot\right)$ be an a-FNA with identity e. Then there is a a-fuzzy norm \dot{n}_{Z} on Z such that n_{Z} is equivalent to \dot{n}_{Z} implies $\left(Z, n_{Z}\right.$ $, \circledast, \odot)$ is an a-FNA with $n_{Z}(e)=1$.
Proof.
For each $x \in Z$, let N_{x} be a linear operator defined by $N_{x}(z)=x z$, for all
$z \in Z$. If $N_{x}=N_{y}$, it follows that $N_{x}(e)=N_{y}(e)$. So $x=y$ and, as a result, the operator $x \longmapsto N_{x}$ is injective from Z into the set of all linear operators on Z. Since $n_{Z}\left(N_{x}(z)\right)=n_{Z}(x z) \leq n_{Z}(x) \circledast n_{Z}(v)$ for $z \in Z$, we have N_{x} is fuzzy bounded and $n_{Z}\left(N_{x}\right) \leq t n_{Z}(x)$. Put $n_{Z}(z)=n_{Z}\left(N_{(z,)}\right)$. Then

$$
\begin{equation*}
\dot{n}_{Z}(z) \leq t \cdot n_{Z}(z) \tag{1}
\end{equation*}
$$

for some $t, 0 \leq t \leq 1$.
On the other hand,

$$
\begin{aligned}
\dot{n}_{Z}(z)= & n_{Z}\left(N_{z}\right)=\sup _{y \in D\left(N_{z}\right)} n_{Z}\left(N_{z}(y)\right)=\sup _{y \in D\left(N_{z}\right)} n_{Z}(z y) \\
& \geq n_{Z}(z \dot{y})=n_{Z}(z) \odot n_{Z}(\dot{y})=n_{Z}(z) \cdot n_{Z}(\dot{y}),
\end{aligned}
$$

or

$$
\begin{equation*}
\dot{n}_{Z}(z) \geq s n_{Z}(z) . \tag{2}
\end{equation*}
$$

for some s such that $0 \leq s \leq 1$.
From (1) and (2) we have $s n_{Z}(z) \leq n_{Z}(z) \leq t n_{Z}(z)$ for all $z \in Z$. Hence $n_{Z}($.$) is equivalent to \dot{n}_{Z}($.$) . Now \dot{n}_{Z}(u w)=n_{Z}\left(N_{u w}\right)=n_{Z}\left(N_{u} \cdot N_{w}\right) \leq$ $n_{Z}\left(N_{u}\right) \odot n_{Z}\left(N_{w}\right) \leq \dot{n}_{Z}(u) \odot \dot{n}_{Z}(w)$. Therefore, $\left(Z, n_{Z}, \circledast, \odot\right)$ is an a-FNA. Consequently, $\dot{n}_{Z}(e)=n_{Z}\left(N_{e}\right)=1$.

Theorem 3.13. Every a-FNA $\left(Z, n_{Z}, \circledast, \odot\right)$ can be embedded as a closed subalgebra of afb (Z, Z).

Proof.
Define $N_{z}: Z \rightarrow Z$ by $N_{z}(u)=z u$, for all $u \in Z$. Then $N_{z} \in \operatorname{afb}(Z, Z)$ since $N_{z}\left(u_{1}+u_{2}\right)=z u_{1}+z u_{2}=N_{z}\left(u_{1}\right)+N_{z}\left(u_{2}\right)$ and $N_{z}\left(\alpha u_{1}\right)=z\left(\alpha u_{1}\right)=$ $\alpha\left(z u_{1}\right)=\alpha N_{z}\left(u_{1}\right)$. Also, $n_{Z}\left(N_{z}(u)\right)=n_{Z}(z u) \leq n_{Z}(z) \odot n_{Z}(u) \leq n_{Z}(z) ;$ that is, $n_{Z}\left(N_{z}\right) \leq n_{Z}(z)$ Now we show that $N_{a+b}=N_{a}+N_{b}$ and $N_{a b}=$ $N_{a} \cdot N_{b}, N_{\alpha a}=\alpha N_{a}$, as well as $N_{e}=I_{Z}$. We have $N_{a+b}(z)=(a+b) z=$ $a z+b z=N_{a}(z)+N_{b}(z)$ and $N_{\alpha a}(z)=(\alpha a) z=\alpha(a z)=\alpha N_{a}(z)$. In addition, $N_{a b}(z)=(a b) z=a(b z)=N_{a} \cdot N_{a}(z)$ as well as $N_{e}(z)=e z=z=I_{Z}(z)$. We have $n_{Z}\left(N_{x}(y)\right)=n_{Z}(x y) \leq n_{Z}(x) \odot n_{Z}(y)=n_{Z}(x) . n_{Z}(y)$. Put $n_{Z}(x)=\delta$, for some $0<\delta<1$. That is, $n_{Z}\left(N_{x}(y)\right) \leq \delta . n_{Z}(y)$. Therefore, N_{x} is fuzzy bounded. Let $T: Z \rightarrow \operatorname{afb}(Z, Z)$ be a mapping defined by $T(z)=N_{z}$. T isometric and so it is injective. Moreover, the image of the operator T $T(Z)=\left\{N_{z}: z \in Z\right\}$ is a subalgebra of $a f b(Z, Z)$ and $T(Z)$ is fuzzy closed in $\operatorname{afb}(Z, Z)$. Now, suppose that $N_{z_{k}}$ is a sequence in $\operatorname{afb}(Z, Z)$ such that $N_{z_{k}} \rightarrow S$ in $\operatorname{afb}(Z, Z)$. Then $N_{z_{k}}(x)=z_{k} x=N_{e}\left(z_{k}\right) x$ and so, as $k \rightarrow \infty$, $S(x)=S(e x)$; that is, $S=N_{e}$. Thus $T(Z)$ is fuzzy closed in $\operatorname{afb}(Z, Z)$.

Proposition 3.14. If $\left(Z, n_{Z}, \circledast, \odot\right)$ is a fuzzy complete a-FNA and $z \in Z$, then $e-z$ is invertible and the series $\sum_{k=0}^{\infty} z^{k}$ is fuzzy convergent where $\sum_{k=0}^{\infty} z^{k}=(e-z)^{-1}$.

Proof.
Let $z \in Z$. Put $s_{k}=1+z+z^{2}+\ldots+z^{k}$ or $s_{k}=\sum_{j=0}^{k} z^{j}$. Then s_{k} is a fuzzy Cauchy sequence in Z and so it is fuzzy convergent since Z is complete. Let u denote its limit; that is, $u=\sum_{j=0}^{\infty} z^{j}$. We will prove that u is the inverse of $e-z$ as follows:
$(e-z) u=\lim _{k \rightarrow \infty}(e-z) s_{k}=\lim _{k \rightarrow \infty}\left(e-z^{k+1}\right)=e$, and $u(e-z)=$ $\lim _{k \rightarrow \infty} s_{k}(e-z)=\lim _{k \rightarrow \infty}\left(e-z^{k+1}\right)=e$. Hence $(e-z) u=u(e-z)=e$.

Theorem 3.15. Let $\left(Z, n_{Z}, \circledast, \odot\right)$ be a fuzzy complete a-FNA and suppose that D is a fuzzy closed ideal in Z. Then $\left(\frac{Z}{D}, q, \circledast, \odot\right)$ is a fuzzy complete a-FNA. If Z has identity, then so does $\frac{Z}{D}$. Moreover, the identity of $\frac{Z}{D}$ has fuzzy norm equal to 1 .

Proof.

We know that $\frac{Z}{D}$ is a fuzzy complete a-FNS by Theorem 2.29 . Since D is an ideal, it is easy to see that $\frac{Z}{D}$ is an algebra with multiplication given by $(x+D)(y+D)=(x y)+D$. Now, $q[(x+D) .(y+D)]=q[(x y)+D]$ $=i n f_{d \in D} n_{Z}[(x y+d)] \leq i n f_{d \in D} n_{Z}[(x+d) .(y+d)] \leq i n f_{d \in D} n_{Z}(x+d) \odot$ $\inf f_{d \in D} n_{Z}(y+d)=q(x+D) \odot q(y+D)$. Thus $\left(\frac{Z}{D}, q, \circledast, \odot\right)$ is a fuzzy complete a-FNA. Moreover, if e is the identity of Z with $n_{Z}(e)=1$, then $e+D$ is the identity of $\frac{Z}{D}$. Furthermore, $q(e+D)=\inf f_{d \in D} n_{Z}(e+d)=n_{Z}(e)=1$.

Remark 3.16. If $\left(Z, n_{Z}, \circledast, \odot\right)$ is fuzzy complete, then for any $a \neq 0, a^{-1}$ exists and $a^{-1} \in Z$.

Proof.
If $0 \neq a \in Z$, then we put $a=e-(e-a)$. Using Proposition 3.14 with $z=e-a$, we see that a is invertible and its inverse a^{-1} is given by the convergent series $\sum_{k=0}^{\infty}(e-a)^{k}$.

Proposition 3.17. If $\left(Z, n_{Z}, \circledast, \odot\right)$ is a fuzzy complete a-FNA, then the inverse operator $z \rightarrow z^{-1}$ is a fuzzy continuous mapping.

Proof.
First, we show that the inverse map is fuzzy continuous at e. Let $0<\varepsilon<1$ be given. We want to find $0<\delta<1$ such that $n_{Z}(u-e)<\delta$ implies $n_{Z}\left(u^{-1} e\right)<\varepsilon$. Since $n_{Z}(u-e)<1$ implies $u^{-1}=\sum_{k=0}^{\infty}(e-u)^{k}$, we have $n_{Z}\left(u^{-1} e\right)=n_{Z}\left(\sum_{k=1}^{\infty}(e-u)^{k}\right) \leq \delta \circledast \delta^{2} \circledast \delta^{3} \ldots$ Setting $\delta \circledast \delta^{2} \circledast \delta^{3} \ldots<\varepsilon$, we
get $n_{Z}\left(u^{-1}-e\right)<\varepsilon$. Now, as $n \rightarrow \infty, z_{n} \rightarrow z$ and so $z_{n} z^{-1} \rightarrow z z^{-1}=e$. This implies that $\left(z_{n} z^{-1}\right)^{-1} \rightarrow e$ or $z z_{n}^{-1} \rightarrow e$. Consequently, $z_{n}^{-1} \rightarrow z^{-1}$ as $n \rightarrow \infty$.

Lemma 3.18. Let $\left(Z, n_{Z}, \circledast, \odot\right)$ be fuzzy complete with identity e. If z and u are invertible elements of Z, then $z u$ and $u z$ are invertible.

Proof.
We have $n_{z}(u z) \leq n_{z}(u) \odot n_{z}(z), n_{z}(u z) \leq 1$. Similarly, $n_{z}(z u) \leq 1$. This implies that $e-u z$ and $e-z u$ are both invertible with inverses given as $a=$ $(e-u z)^{-1}=\sum_{k=0}^{\infty}(u z)^{k}$ and $b=(e-z u)^{-1}=\sum_{k=0}^{\infty}(z u)^{k}$, respectively.

Proposition 3.19. Let $\left(Z, n_{Z}, \circledast, \odot\right)$ be a fuzzy complete a-FNA with identity e. Suppose that z and u are elements of Z such that $e-z u$ is invertible. Let $a=(e-z u)^{-1}$. Then $b=e+u a z$ is the inverse of $e-u z$.

Proof.
$b(e-u z)=(e+u a z)(e-u z)=e-u z+u a z-u a z u z=e-u z+u a(e-z u) z=$ $e-u z+u[a(e-z u)] z=e-u z+u z=e$.

References

[1] A. A. Khalaf, J. R. Kider, The extension of a linear operator on afuzzy normed space when it is fuzzy compact, International Journal of Mathematics and Computer Science, 17, no. 3, (2022), 1133-1144.
[2] J. R. Kider, The Product Fuzzy Metric Space and its Basic Properties, Journal of Physics: Conference Series, 2322, no. 1, (2022), 1-11.
[3] Z. A. Khudhair, J. R. Kider, Some Properties of Fuzzy Compact Algebra Fuzzy Normed Spaces and Finite Dimensional Algebra Fuzzy Normed Spaces, Journal of Physics: Conference Series, 1879, no. 2, (2021), 1-11.
[4] A. A. Khalaf, J. R. Kider, Linear Operator of Various Types and its Basic Properties, International Journal of Nonlinear Analysis and Applications, 13, no. 1, (2022), 3949-3957.
[5] Z. A. Khudhair, J. R. Kider, The algebra fuzzy norm of the quotient space and pseudo algebra fuzzy normed space, International Journal of Nonlinear Analysis and Applications, 13, no. 1, (2022), 3589-3597.

