International Journal of Mathematics and Computer Science, **18**(2023), no. 3, 399–408



## The a-fuzzy normed algebra and its basic properties

#### Rasha Khudhur Abbas, Jehad Ramadan Kider

Branch of Mathematics and Computer Applications Department of Applied Sciences University of Technology Baghdad, Iraq

email: as.21@grad.uotechnology.edu.iq, jehad.r.kider@uotechnology.edu.iq

(Received January 2, 2023, Accepted February 2, 2023, Published March 31, 2023)

#### Abstract

In this article, we introduce the notion of a-fuzzy normed algebra by using two binary operations: the t-conorm  $\circledast$  defined as  $\mu \circledast \omega =$  $\mu + \omega - \mu \omega$  for all  $\mu, \omega \in [0, 1]$  and the t-norm  $\odot$  defined as  $\eta \odot \theta = \eta.\theta$ for all  $\eta, \theta \in [0, 1]$ . Moreover, we give some examples to show the existence of such a notion. Furthermore, we introduce basic properties of a fuzzy complete a-fuzzy normed algebra and prove that  $\odot$  is a fuzzy continuous function and that every a-fuzzy normed algebra Z can be embedded in afb(Z, Z) as a closed subalgebra.

## 1 Introduction

This research consists of two sections:

In section 2, we define the a-fuzzy normed space and study its basic properties. Then we introduce theorems that are needed for section 3.

In section 3, we introduce the definition of a-fuzzy normed algebra and prove some important theorems of fuzzy complete a-fuzzy normed algebra.

Key words and phrases: a-fuzzy normed space, fuzzy continuous operator, a-fuzzy normed algebra, fuzzy complete a-fuzzy normed algebra.AMS Subject Classifications: 16D50.

ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net

# 2 Concepts and theorems for a-fuzzy normed spaces

For the definition of t-norm and t-conorm and their important properties, we refer the interested reader to [1] and [2], respectively.

**Definition 2.1.** [3] If  $a_{\mathbb{R}} : \mathbb{R} \to I$  is a fuzzy set and  $\circledast$  is a t-conorm, then  $a_{\mathbb{R}}$  is an a-fuzzy absolute value on  $\mathbb{R}$  if: (i)  $0 < a_{\mathbb{R}}(\mu) \leq 1$ .

(i)  $0 < a_{\mathbb{R}}(\mu) \leq 1$ . (ii)  $a_{\mathbb{R}}(\mu) = 0$  if and only if  $\mu = 0$ . (iii)  $a_{\mathbb{R}}(\eta\mu) \leq a_{\mathbb{R}}(\eta) \cdot a_{\mathbb{R}}(\mu)$ . (iv)  $a_{\mathbb{R}}(\eta + \mu) \leq a_{\mathbb{R}}(\eta) \circledast a_{\mathbb{R}}(\mu)$ for all  $\eta, \mu \in \mathbb{R}$ . In this case,  $(\mathbb{R}, a_{\mathbb{R}}, \circledast)$  is an a-fuzzy absolute value space.

**Definition 2.2.** Let  $L_{\mathbb{C}} : \mathbb{C} \to I$  be a fuzzy set and let  $\circledast$  be a t-conorm. Then  $L_{\mathbb{C}}$  is an a-fuzzy length on  $\mathbb{C}$  if: (i)  $0 < L_{\mathbb{C}}(\sigma) \leq 1$ . (ii)  $L_{\mathbb{C}}(\sigma) = 0$  if and only if  $\sigma = 0$ . (iii)  $L_{\mathbb{C}}(\sigma\tau) \leq L_{\mathbb{C}}(\sigma).L_{\mathbb{C}}(\tau)$ . (iv)  $L_{\mathbb{C}}(\sigma + \tau) \leq L_{\mathbb{C}}(\sigma) \circledast L_{\mathbb{C}}(\tau)$  for all  $\sigma, \tau \in \mathbb{C}$ . In this case,  $(\mathbb{C}, L_{\mathbb{C}}, \circledast)$  is an a-fuzzy length space.

**Remark 2.3.** We will take  $\circledast$  to be  $\alpha \circledast \beta = \alpha + \beta - \alpha\beta \ \forall \alpha, \beta \in I$ .

**Example 2.4.** [3] Let  $a_{|.|}(\alpha) = \frac{|\alpha|}{1+|\alpha|}$  for all  $\alpha \in \mathbb{R}$  where |.| is the absolute value on  $\mathbb{R}$ . Then  $(\mathbb{R}, a_{|.|}, \circledast)$  is an a-fuzzy absolute value space.

**Example 2.5.** Let  $L_{|.|}(\alpha) = \frac{|\alpha|}{1+|\alpha|}$  for all  $\alpha \in \mathbb{C}$  where |.| is the length value on  $\mathbb{C}$ . Then  $(\mathbb{C}, a_{|.|}, \circledast)$  is an a-fuzzy length space.

**Definition 2.6.** [3] Let  $(\mathbb{C}, L_{\mathbb{C}}, \circledast)$  be an a-fuzzy length space and let Z be a vector space over  $\mathbb{C}$ . Suppose that  $\circledast$  is a t-conorm and  $n_Z : Z \to I$  is a fuzzy set. Then  $n_Z$  is an a-fuzzy norm on Z if: (i)  $0 < n_Z(z) \le 1$ . (ii)  $n_Z(z) = 0 \Leftrightarrow z = 0$ .

(*iii*) 
$$n_Z(\mu z) \le L_{\mathbb{C}}(\mu)n(z)$$
 for all  $0 \ne \mu \in \mathbb{C}$ .

$$(iv) \ n_Z(z+y) \le n_Z(z) \circledast n_Z(y) \ \forall z, y \in Z.$$

Here, we say that  $(Z, n_Z, \circledast)$  is an a-fuzzy normed space (or simply a-FNS).

**Example 2.7.** [3] Define  $n_{\parallel,\parallel}(z) = \frac{\|z\|}{(1+\|z\|)}$ ,  $\forall z \in Z$ . Then  $(Z, n_{\parallel,\parallel}, \circledast)$  is a FNS if  $(Z, \parallel, \parallel)$  is a normed space. Also  $n_{\parallel,\parallel}$  is called the standard a-fuzzy norm on Z.

**Definition 2.8.** [3] Suppose that  $(Z, n_Z, \circledast)$  is an a-FNS. If  $(z_k)$  is a sequence in Z, then  $(z_k)$  is said to be **fuzzy convergent** to the limit z as  $k \to \infty$  if  $\forall \mu \in (0, 1), \exists N \in \mathbb{N}$  such that  $n_Z(z_k - z) < \mu$ , for all  $k \ge N$ . If  $(z_k)$  is fuzzy convergent to z, then we write  $\lim_{k\to\infty} z_k = z$  or  $z_k \to z$  as  $k \to \infty$  or  $\lim_{k\to\infty} (z_k - z) = 0$ .

**Definition 2.9.** [3] Suppose  $(Z, n_Z, \circledast)$  is an a-FNS. A sequence  $(z_k)$  is a fuzzy Cauchy sequence in Z if  $\forall \mu \in (0, 1), \exists N \in \mathbb{N}$  such that  $n_Z(z_k - z_m) < \mu, \forall k, m \geq N$ .

**Definition 2.10.** [3] If for all fuzzy Cauchy sequences  $(z_k)$  in Z,  $\exists z \in Z$  such that  $z_k \to z$ , then the a-fuzzy normed space  $(Z, n_Z, \circledast)$  is said to be fuzzy complete.

**Theorem 2.11.** [4] The a-fuzzy absolute space  $(\mathbb{R}, a_{\mathbb{R}}, \circledast)$  is fuzzy complete.

**Theorem 2.12.** [4] If  $(Z, n, \circledast)$  is an a-FNS, then  $(Z^k, n_k, \circledast)$  is a fuzzy complete a-FNS if and only if  $(Z, n, \circledcirc)$  is fuzzy complete, where  $Z^k = Z \times Z \times Z$  [k-times],  $k \in \mathbb{N}$ , and  $n_k[(z_1, z_2, ..., z_k)] = n(z_1) \circledast n(z_2) \circledast, ..., \circledast n(z_k)$  for all  $(z_1, z_2, ..., z_k) \in Z^k$ .

Corollary 2.13.  $(\mathbb{R}^k, n_k, \circledast)$  is fuzzy complete.

**Corollary 2.14.** The a-fuzzy length space  $(\mathbb{C}, L_{\mathbb{C}}, \circledast)$  is fuzzy complete.

*Proof.* Since  $\mathbb{C} = \mathbb{R}^2$ , it follows that  $(\mathbb{C}, L_{\mathbb{C}}, \circledast)$  is fuzzy complete.

**Theorem 2.15.** [4] The operator  $H : Z \to W$  is fuzzy continuous at  $z \in Z$ if and only if whenever  $(z_k)$  is fuzzy convergent to  $z \in Z$ , then  $(H(z_k))$  is fuzzy convergent to  $H(z) \in W$ .

**Theorem 2.16.** [4] If  $(Z, n_1, \odot)$  is an a-FNS, then the a-fuzzy norm  $n_2$  is equivalent to  $n_1$  if  $\exists p, q$  in (0, 1) with  $pn_2(z) \leq n_1(z) \leq qn_2(z)$ .

**Definition 2.17.** [4] Suppose that  $(Z, n_Z, \circledast)$  and  $(Y, n_Y, \circledast)$  are two a-FNS. The operator  $S : D(S) \to Y$  is said to be **fuzzy bounded** if  $\exists \mu \in (0, 1)$ such that  $n_Y[S(z)] < \mu n_Z(z)$  for all  $z \in D(S)$ .

**Notation 2.18.** [4] Suppose that  $(Z, n_Z, \circledast)$  and  $(Y, n_Y, \circledast)$  are two a-FNS. We use the notation  $afb(Z, Y) = \{S : Z \to Y\}$  for a fuzzy bounded operator.

**Theorem 2.19.** [4] Define:  $n_{afb(Z,Y)}(S) = sup_{z \in D(S)}n_W(Sz), \forall S \in afb(Z,Y)$ . Then  $[afb(Z,Y), n_{afb(Z,W)}, \circledast]$  is a-FNS if  $(Z, n_Z, \circledast)$  and  $(Y, n_Y, \circledast)$  are two a-FNS.

**Theorem 2.20.** [4] Suppose that  $(Z, n_Z, \circledast)$  and  $(Y, n_Y, \circledast)$  are two a-FNS. If Y is fuzzy complete, then afb(Z, Y) is fuzzy complete.

**Definition 2.21.** [4] A linear functional h from a-FNS  $(Z, n_Z, \circledast)$  into the a-fuzzy absolute space  $(\mathbb{R}, a_{\mathbb{R}}, \circledast)$  is said to be a **fuzzy bounded functional** if there exists  $s \in (0, 1)$  such that  $a_{\mathbb{R}}[h(u)] < s.n_U(u)$  for any  $u \in D(h)$ . Furthermore, the a-fuzzy norm of h is  $n_{afb(Z,\mathbb{R})}(h) = sup_{u \in D(L)}a_{\mathbb{R}}(hu)$  for all  $L \in afb(Z,\mathbb{R})$  and  $a_{\mathbb{R}}[h(u)] < n_{afb(Z,\mathbb{R})}(h).n_Z(u)$  for any  $u \in D(h)$ .

**Definition 2.22.** [4] Let  $(Z, n_z, \circledast)$  be an a-FNS. Then  $afb(Z, \mathbb{R}) = \{h : Z \to \mathbb{R}\}$ , where h is fuzzy bounded and linear and forms a-fuzzy normed space with the a-fuzzy norm defined by  $n_{afb(Z,R)}(h) = \sup_{u \in D(L)} a_R(hu)$ . Here,  $afb(Z, \mathbb{R}) = \{h : Z \to \mathbb{R}\}$  is called the **fuzzy dual space** of Z.

**Theorem 2.23.** [4] If  $(Z, n_Z, \circledast)$  is an *a*-FNS, then the fuzzy dual space  $afb(Z, \mathbb{R})$  is fuzzy complete.

**Definition 2.24.** [4] Suppose that Z is a vector space over the field K and D is a closed subspace of Z. Then  $\frac{Z}{D} = \{z + D : z \in Z\}$  is a vector space over the field K with the operations: (v + D) + (z + D) = (v + z) + D and  $\alpha(z + D) = (\alpha z) + D$ .

**Definition 2.25.** [5] Suppose that  $(Z, n_Z, \circledast)$  is an a-FNS and  $D \subset Z$  is fuzzy closed in Z. Define a-fuzzy norm for the quotient space  $\frac{Z}{D}$  by  $q[u+D] = inf_{d\in D}n_U[z+d]$  for all  $z+D \in \frac{Z}{D}$ .

**Theorem 2.26.** [5] The quotient space  $(\frac{Z}{D}, q, \circledast)$  is an a-FNS if  $(Z, n_Z, \circledast)$  is an a-FNS and  $D \subset Z$  is fuzzy closed in Z.

**Remark 2.27.** [5] If  $(Z, n_Z, \circledast)$  is a-FNS and  $D \subset Z$  is fuzzy closed in Z, then (1)  $\pi: Z \to \frac{Z}{D}$  is a natural operator defined by  $\pi[z] = z + D$ . (2)  $q(z + D) \leq n_Z(z)$ .

**Theorem 2.28.** [5] Suppose that  $(Z, n_Z, \circledast)$  is an *a*-FNS and  $D \subset Z$  is fuzzy closed in Z. If  $(\frac{Z}{D}, q, \circledast)$  is fuzzy complete, then  $(Z, n_Z, \odot)$  is fuzzy complete.

**Theorem 2.29.** [5] Suppose that  $(Z, n_Z, \circledast)$  is a-FNS and  $D \subset Z$  is fuzzy closed in Z. If  $(Z, n_Z, \circledast)$  is fuzzy complete, then  $(\frac{Z}{D}, q, \circledcirc)$  is fuzzy complete.

**Theorem 2.30.** [4] Let  $(Z, n_Z, \odot)$  be a-fuzzy normed space. The geometric series  $\sum_{j=0}^{\infty} z^j = 1 + z + 2 + ... + z^k + ...$ , is fuzzy convergent with  $sum \frac{1}{1-z}$  whenever  $n_Z(z) < 1$ , and diverge whenever  $n_Z(z) \ge 1$ .

## 3 When the a-fuzzy normed algebra is fuzzy complete

**Definition 3.1.** The space  $(Z, n_Z, \circledast, \odot)$  is called an a-fuzzy normed algebra space (or simply a- FNAS) if

(1) (Z, +, .) is an algebra space over the field K, where K = R or K = C.

(2)  $(Z, n_Z, \circledast)$  is an a-FNS, with  $\circledast$  a continuous t-conorm.

(3)  $\odot$  is a continuous t-norm.

(4)  $n_Z(a.b) \leq n_Z(a) \odot n_Z(b)$  for all  $a, b \in Z$ .

**Remark 3.2.** Here, we take (1)  $\sigma \odot \tau = \sigma.\tau, \forall \sigma, \tau \in [0, 1].$ (2)  $\gamma \circledast \delta = \gamma + \delta - \gamma \delta, \forall \gamma, \delta \in [0, 1].$ 

**Example 3.3.** If (Z, +, .) is an algebra, then  $(Z, n_Z, \circledast, \odot)$  is an a-FNAS, with  $n_Z(u) = \begin{cases} 0 & \text{if } u = 0 \\ 1 & \text{if } u \neq 0 \end{cases}$ which is called the **discrete a-FNAS**.

Proof.

(1) It is clear that  $(Z, n_Z, \circledast)$  is an a-FNS.

(2) We have to prove that  $n_Z(uv) \leq n_Z(u) \odot n_Z(v)$  for all  $u, v \in Z$ .

Case 1: if u = 0 and v = 0, then  $u \cdot v = 0$  with  $0 \odot 0 = 0$  and so the inequality holds.

Case 2: if  $u \neq 0$  and  $v \neq 0$ , then  $u \cdot v \neq 0$  with  $1 \odot 1 = 1$  and so the inequality follows.

Case 3: if u = 0 or v = 0, then  $u \cdot v = 0$  with  $1 \odot 0 = 0 \odot 1 = 0$  and so the inequality obtains.

**Example 3.4.** Define  $n_Z(u) = \frac{\|\|u\|}{1+\|\|u\|}$  for all  $u \in Z$ . If  $(Z, \|\cdot\|, +, .)$  is a normed algebra, then  $(Z, n_Z, \circledast, \odot)$  is an a-FNAS.

Proof.

(1) By example 2.7, we have  $(Z, n_Z, \circledast)$  is an a-FNS.

R. K. Abbas, J. R. Kider

 $\begin{array}{l} (2) \ n_Z(u) \odot n_Z(v) = n_Z(u) . n_Z(v) = \left[\frac{\|u\|}{1+\|u\|}\right] . \left[\frac{\|v\|}{1+\|v\|}\right] = \frac{\|u\|\|v\|}{[1+\|u\|[1+\|v\|]]} \ge \frac{\|uv\|}{1+\|uv\|} = \\ n_Z(uv), \text{ since } 1 + \|uv\| < [1+\|u\|] . [1+\|v\|] \text{ and } \|uv\| < \|u\| . \|v\| . \end{array}$ 

**Definition 3.5.** If  $(Z, n_Z, \circledast)$  is a fuzzy complete a-FNS, then  $(Z, n_Z, \circledast, \odot)$  is called a fuzzy complete a-FNA.

**Example 3.6.** Let Z = C[0,1] with  $n_Z(f) = \sup_{x \in [0,1]} a_{\mathbb{R}}(f(x))$ . Let  $\odot$  be defined on Z pointwise as follows:  $(f \odot g)(z) = (f.g)(z) = f(z).g(z) = f(z) \odot g(z).$ Then  $(Z, n_Z, \circledast, \odot)$  is a commutative fuzzy complete a-FNA.

Proof.

(1) By example 2.15 in [5], we have  $(Z, n_Z, \circledast)$  is an a-FNS. (2) To show that  $n_Z(f.g) \leq n_Z(f) \odot n_Z(g), n_Z(f.g) = sup_{x \in [0,1]} a_{\mathbb{R}}(f.g(x)) = sup_{x \in [0,1]} a_{\mathbb{R}}(f(x).g(x)) \leq [sup_{x \in [0,1]} a_{\mathbb{R}}(f(x))] \cdot [sup_{x \in [0,1]} a_{\mathbb{R}}(g(x))] = n_Z(f) \odot n_Z(g)$ . Hence  $(Z, n_Z, \circledast, \odot)$  is a commutative fuzzy complete a-FNA.

**Example 3.7.** Let D denote the closed unit disc in  $\mathbb{C}$  and let Z denote the set of fuzzy continuous complex valued functions on D which are analytic in the interior of D. Equip Z with pointwise addition and multiplication and the a-fuzzy norm  $n_Z(f) = \sup \{L_{\mathbb{C}}(fz) : z \in \partial D\}$ , where  $\partial D$  is the boundary of D. Then  $(Z, n_Z, \circledast, \odot)$  is a fuzzy complete a-FNA and it is commutative with identity. Here,  $(Z, n_Z, \circledast, \odot)$  is called **the disc a-FNA**.

**Lemma 3.8.** If  $(Z, n_Z, \circledast, \odot)$  is an a-FNA, then multiplication is a fuzzy continuous function.

Proof.

If  $(z_k)$  and  $(u_k)$  are sequences in Z, with  $z_k \to z$  and  $u_k \to u$  as  $k \to \infty$ , then for any given  $0 < \gamma < 1$  and  $0 < \alpha < 1$  there is M such that  $n_Z(z_k - z) \leq \alpha$ , for all  $k \geq M$  and  $n_Z(u_k - u) \leq \gamma$ ,  $\forall k \geq M$ . Put  $n_Z(z_k) = \beta_k$  and  $n_Z(u) = \sigma$ , for some  $0 < \beta_k, \sigma < 1$ . In addition, let  $\beta_k \odot \sigma < \varepsilon$  and  $\alpha \odot \beta < \delta$ , for some  $0 < \delta, \varepsilon < 1$ . Now  $n_Z(z_k u_k - z u) = n_Z(z_k u_k - z_k u + z_k u - z u) \leq$  $n_Z(z_k(u_k - u)) \circledast n_Z((z_k - z)u)) \leq n_Z(z_k) \odot n_Z(u_Z - u) \circledast n_Z(z_k - z) \odot n_Z(u)$  $< (\beta_k \odot \gamma) \circledast (\alpha \odot \sigma) < \varepsilon \circledast \delta$ . Choose  $0 < \mu < 1$  satisfying  $\varepsilon \circledast \delta < \mu$ . Thus  $n_Z(z_k u_k - z u) < \mu$ , for all  $k \geq M$ . Therefore,  $z_k u_k \to z u$  as  $k \to \infty$  and hence multiplication is fuzzy continuous.

**Remark 3.9.** It is clear that  $\sigma \odot \mu \leq \rho \circledast \mu$ , for all  $\sigma, \mu \in [0, 1]$ .

**Theorem 3.10.** An *a*-FNA  $(Z, n_Z, \circledast, \odot)$  without identity can be embedded into an *a*-FNA  $Z_e$  with identity *e* and *Z* is an ideal in  $Z_e$ .

Proof.

Put  $Z_e = Z \times \mathbb{C}$  and define multiplication in  $Z_e$  by  $(z, \alpha).(u, \beta) = (zu + \beta z + \alpha u, \alpha \beta)$ . Then  $Z_e$  is an algebra with identity e = (0, 1) since  $(a, \alpha).(0, 1) = (a, \alpha)$ , for all  $(a, \alpha) \in Z_e$ . Then  $Z_e$  is an a-FNS with an a-fuzzy norm  $n_{Z_e}$ :  $Z_e \to [0, 1]$  defined by:  $n_{V_e}(z, \alpha) = n_Z(z) \circledast L_{\mathbb{C}}(\alpha)$ . Now  $n_{Z_e}(z, \alpha).(u, \beta) = n_{Z_e}(zu + \beta z + \alpha u, \alpha \beta) = n_Z(zu + \beta z + \alpha u) \circledast L_{\mathbb{C}}(\alpha \beta) \le n_Z(zu) \circledast L_{\mathbb{C}}(\alpha \beta)$   $\leq [n_Z(z) \odot n_Z(u)] \circledast [L_{\mathbb{C}}(\alpha) \odot L_{\mathbb{C}}(\beta)] \le [n_Z(z) \circledast n_Z(u)] \circledast [L_{\mathbb{C}}(\alpha) \circledast L_{\mathbb{C}}(\beta)]$  $\leq [n_Z(z) \circledast L_{\mathbb{C}}(\alpha)] \circledast [n_Z(u) \circledast L_{\mathbb{C}}(\beta)] \le n_{Z_e}(z, \alpha) \circledast n_{Z_e}(u, \beta).$ 

**Proposition 3.11.** The space  $(Z_e, n_{Z_e}, \circledast, \odot)$  is fuzzy complete if and only if  $(Z, n_Z, \circledast, \odot)$  is fuzzy complete.

#### Proof.

Suppose that  $Z_e = Z \times \mathbb{C}$  is fuzzy complete and let  $(z_k)$  and  $(\alpha_k)$  be fuzzy Cauchy sequences in Z and  $\mathbb{C}$ , respectively; that is, for any given  $0 < \varepsilon < 1, 0 < \sigma < 1$ , there exist  $M_1$  and  $M_2$  such that  $n_Z(z_k - z_m) < \varepsilon$ , for all  $k, m \ge M_1$  and  $L_{\mathbb{C}}(\alpha_k - \alpha_m) < \sigma$ , for all  $k, m > M_2$ . Let  $M = \min\{M_1, M_2\}$ . Now,  $n_{Z_e}[(z_k, \alpha_k) - (z_m, \alpha_m)] = n_{Z_e}(z_k - z_m, \alpha_k - \alpha_m) = n_Z[z_k - z_m] \circledast L_{\mathbb{C}}[\lambda_n - \lambda_m, t] < \varepsilon \circledast \sigma$ . Choose  $0 < \mu < 1$  with  $\varepsilon \circledast \sigma < \mu$ . Then  $n_{Z_e}[(z_k, \alpha_k) - (z_m, \alpha_m)] < \mu$ for all k, m > M. Thus  $\{(z_k, \alpha_k)\}$  is a fuzzy Cauchy sequence in  $Z_e$ . But  $Z_e$  is fuzzy complete. So there is  $(z, \alpha) \in Z_e$  such that  $(z_k, \alpha_k) \to (z, \alpha)$  as  $k \to \infty$ ; that is,

 $0 = \lim_{k \to \infty} n_{Z_e}[(z_k, \alpha_n) - (z, \alpha)] = \lim_{k \to \infty} n_Z(z_k - z) \circledast \lim_{k \to \infty} a_{\mathbb{C}}(\alpha_k - \alpha).$ Therefore,  $\lim_{k \to \infty} n_Z(z_k - z) = 0$  and  $\lim_{k \to \infty} L_{\mathbb{C}}(\alpha_k - \alpha) = 0$ . Hence Z is fuzzy complete.

Conversely, assume that Z is fuzzy complete and let  $\{(z_k, \alpha_k)\}$  be a fuzzy Cauchy sequence in  $Z_e$ . Then for any given  $0 < \varepsilon < 1$ , there is M such that  $n_{Z_e}[(z_k, \alpha_k) - (z_m, \alpha_m)] < \varepsilon$ , for all k, m > M or  $n_Z(z_k - z_m) \circledast L_{\mathbb{C}}(\alpha_k - \alpha_m t) < \varepsilon$ . Hence  $n_Z(z_k - z_m) < \varepsilon$  and  $a_{\mathbb{C}}(\alpha_k - \alpha_m t) < \varepsilon$ , for all k, m > M. This implies that  $(z_k)$  and  $(\alpha_k)$  are fuzzy Cauchy sequences in Z and  $\mathbb{C}$ , respectively. But Z and  $\mathbb{C}$  are fuzzy complete. So there is  $z \in Z$  and  $\alpha \in \mathbb{C}$  such that  $\lim_{k\to\infty} n_Z(z_k - z) = 0$  and  $\lim_{k\to\infty} L_{\mathbb{C}}(\alpha_k - \alpha) = 0$ . Now,  $\lim_{k\to\infty} n_{V_e}[(z_k, \alpha_k) - (z, \alpha)] = \lim_{k\to\infty} n_Z(z_k - z) \circledast \lim_{k\to\infty} L_{\mathbb{C}}(\alpha_n - \alpha) =$  $0 \circledast 0 = 0$ . Hence  $(z_k, \alpha_k) \to (z, \alpha)$  as  $k \to \infty$ . Consequently,  $Z_e$  is fuzzy complete.

**Theorem 3.12.** Let  $(Z, n_Z, \circledast, \odot)$  be an a-FNA with identity e. Then there is a a-fuzzy norm  $\hat{n}_Z$  on Z such that  $n_Z$  is equivalent to  $\hat{n}_Z$  implies  $(Z, \hat{n}_Z, \circledast, \odot)$  is an a-FNA with  $\hat{n}_Z(e) = 1$ .

#### Proof.

For each  $x \in Z$ , let  $N_x$  be a linear operator defined by  $N_x(z) = xz$ , for all

 $z \in Z$ . If  $N_x = N_y$ , it follows that  $N_x(e) = N_y(e)$ . So x = y and, as a result, the operator  $x \mapsto N_x$  is injective from Z into the set of all linear operators on Z. Since  $n_Z(N_x(z)) = n_Z(xz) \le n_Z(x) \circledast n_Z(v)$  for  $z \in Z$ , we have  $N_x$  is fuzzy bounded and  $n_Z(N_x) \le tn_Z(x)$ . Put  $\hat{n}_Z(z) = n_Z(N_{(z,)})$ . Then

$$\acute{n}_Z(z) \le t.n_Z(z)....(1)$$

for some  $t, 0 \le t \le 1$ . On the other hand,

$$\begin{split} \acute{n}_{Z}(z) &= n_{Z}(N_{z}) = sup_{y \in D(N_{z})} n_{Z}(N_{z}(y)) = sup_{y \in D(N_{z})} n_{Z}(zy) \\ &\geq n_{Z}(z\acute{y}) = n_{Z}(z) \odot n_{Z}(\acute{y}) = n_{Z}(z) . n_{Z}(\acute{y}), \end{split}$$

or

$$\acute{n}_Z(z) \ge sn_Z(z)....(2)$$

for some s such that  $0 \le s \le 1$ .

From (1) and (2) we have  $sn_Z(z) \leq \acute{n}_Z(z) \leq tn_Z(z)$  for all  $z \in Z$ . Hence  $n_Z(.)$  is equivalent to  $\acute{n}_Z(.)$ . Now  $\acute{n}_Z(uw) = n_Z(N_{uw}) = n_Z(N_u.N_w) \leq n_Z(N_u) \odot n_Z(N_w) \leq \acute{n}_Z(u) \odot \acute{n}_Z(w)$ . Therefore,  $(Z, \acute{n}_Z, \circledast, \odot)$  is an a-FNA. Consequently,  $\acute{n}_Z(e) = n_Z(N_e) = 1$ .

**Theorem 3.13.** Every a-FNA  $(Z, n_Z, \circledast, \odot)$  can be embedded as a closed subalgebra of afb(Z, Z).

#### Proof.

Define  $N_z: Z \to Z$  by  $N_z(u) = zu$ , for all  $u \in Z$ . Then  $N_z \in afb(Z,Z)$ since  $N_z(u_1 + u_2) = zu_1 + zu_2 = N_z(u_1) + N_z(u_2)$  and  $N_z(\alpha u_1) = z(\alpha u_1) = z(\alpha u_1)$  $\alpha(zu_1) = \alpha N_z(u_1)$ . Also,  $n_Z(N_z(u)) = n_Z(zu) \leq n_Z(z) \odot n_Z(u) \leq n_Z(z)$ ; that is,  $n_Z(N_z) \leq n_Z(z)$  Now we show that  $N_{a+b} = N_a + N_b$  and  $N_{ab} =$  $N_a N_b$ ,  $N_{\alpha a} = \alpha N_a$ , as well as  $N_e = I_Z$ . We have  $N_{a+b}(z) = (a+b)z = (a+b)z$  $az+bz = N_a(z)+N_b(z)$  and  $N_{\alpha a}(z) = (\alpha a)z = \alpha(az) = \alpha N_a(z)$ . In addition,  $N_{ab}(z) = (ab)z = a(bz) = N_a N_a(z)$  as well as  $N_e(z) = ez = z = I_Z(z)$ . We have  $n_Z(N_x(y)) = n_Z(xy) \leq n_Z(x) \odot n_Z(y) = n_Z(x) \cdot n_Z(y)$ . Put  $n_Z(x) = \delta$ , for some  $0 < \delta < 1$ . That is,  $n_Z(N_x(y)) \leq \delta n_Z(y)$ . Therefore,  $N_x$  is fuzzy bounded. Let  $T: Z \to afb(Z,Z)$  be a mapping defined by  $T(z) = N_z$ . T isometric and so it is injective. Moreover, the image of the operator T $T(Z) = \{N_z : z \in Z\}$  is a subalgebra of afb(Z, Z) and T(Z) is fuzzy closed in afb(Z,Z). Now, suppose that  $N_{z_k}$  is a sequence in afb(Z,Z) such that  $N_{z_k} \to S$  in afb(Z,Z). Then  $N_{z_k}(x) = z_k x = N_e(z_k) x$  and so, as  $k \to \infty$ , S(x) = S(ex); that is,  $S = N_e$ . Thus T(Z) is fuzzy closed in afb(Z, Z). 

**Proposition 3.14.** If  $(Z, n_Z, \circledast, \odot)$  is a fuzzy complete a-FNA and  $z \in Z$ , then e - z is invertible and the series  $\sum_{k=0}^{\infty} z^k$  is fuzzy convergent where  $\sum_{k=0}^{\infty} z^k = (e - z)^{-1}$ .

#### Proof.

Let  $z \in Z$ . Put  $s_k = 1 + z + z^2 + ... + z^k$  or  $s_k = \sum_{j=0}^k z^j$ . Then  $s_k$  is a fuzzy Cauchy sequence in Z and so it is fuzzy convergent since Z is complete. Let u denote its limit; that is,  $u = \sum_{j=0}^{\infty} z^j$ . We will prove that u is the inverse of e - z as follows:

 $(e - z)u = \lim_{k \to \infty} (e - z)s_k = \lim_{k \to \infty} (e - z^{k+1}) = e$ , and  $u(e - z) = \lim_{k \to \infty} s_k(e - z) = \lim_{k \to \infty} (e - z^{k+1}) = e$ . Hence (e - z)u = u(e - z) = e.

**Theorem 3.15.** Let  $(Z, n_Z, \circledast, \odot)$  be a fuzzy complete a-FNA and suppose that D is a fuzzy closed ideal in Z. Then  $(\frac{Z}{D}, q, \circledast, \odot)$  is a fuzzy complete a-FNA. If Z has identity, then so does  $\frac{Z}{D}$ . Moreover, the identity of  $\frac{Z}{D}$  has fuzzy norm equal to 1.

#### Proof.

We know that  $\frac{Z}{D}$  is a fuzzy complete a-FNS by Theorem 2.29. Since D is an ideal, it is easy to see that  $\frac{Z}{D}$  is an algebra with multiplication given by (x + D)(y + D) = (xy) + D. Now, q[(x + D).(y + D)] = q[(xy) + D] $= inf_{d \in D}n_Z[(xy + d)] \leq inf_{d \in D}n_Z[(x + d).(y + d)] \leq inf_{d \in D}n_Z(x + d) \odot$  $inf_{d \in D}n_Z(y + d) = q(x + D) \odot q(y + D)$ . Thus  $(\frac{Z}{D}, q, \circledast, \odot)$  is a fuzzy complete a-FNA. Moreover, if e is the identity of Z with  $n_Z(e) = 1$ , then e + D is the identity of  $\frac{Z}{D}$ . Furthermore,  $q(e + D) = inf_{d \in D}n_Z(e + d) = n_Z(e) = 1$ .

**Remark 3.16.** If  $(Z, n_Z, \circledast, \odot)$  is fuzzy complete, then for any  $a \neq 0, a^{-1}$  exists and  $a^{-1} \in Z$ .

#### Proof.

If  $0 \neq a \in Z$ , then we put a = e - (e - a). Using Proposition 3.14 with z = e - a, we see that a is invertible and its inverse  $a^{-1}$  is given by the convergent series  $\sum_{k=0}^{\infty} (e - a)^k$ .

**Proposition 3.17.** If  $(Z, n_Z, \circledast, \odot)$  is a fuzzy complete a-FNA, then the inverse operator  $z \to z^{-1}$  is a fuzzy continuous mapping.

#### Proof.

First, we show that the inverse map is fuzzy continuous at e. Let  $0 < \varepsilon < 1$  be given. We want to find  $0 < \delta < 1$  such that  $n_Z(u - e) < \delta$  implies  $n_Z(u^{-1}e) < \varepsilon$ . Since  $n_Z(u - e) < 1$  implies  $u^{-1} = \sum_{k=0}^{\infty} (e - u)^k$ , we have  $n_Z(u^{-1}e) = n_Z(\sum_{k=1}^{\infty} (e - u)^k) \le \delta \circledast \delta^2 \circledast \delta^3$ ... Setting  $\delta \circledast \delta^2 \circledast \delta^3$ ... <  $\varepsilon$ , we

get  $n_Z(u^{-1} - e) < \varepsilon$ . Now, as  $n \to \infty$ ,  $z_n \to z$  and so  $z_n z^{-1} \to z z^{-1} = e$ . This implies that  $(z_n z^{-1})^{-1} \to e$  or  $z z_n^{-1} \to e$ . Consequently,  $z_n^{-1} \to z^{-1}$  as  $n \to \infty$ .

**Lemma 3.18.** Let  $(Z, n_Z, \circledast, \odot)$  be fuzzy complete with identity e. If z and u are invertible elements of Z, then zu and uz are invertible.

#### Proof.

We have  $n_z(uz) \leq n_z(u) \odot n_z(z)$ ,  $n_z(uz) \leq 1$ . Similarly,  $n_z(zu) \leq 1$ . This implies that e - uz and e - zu are both invertible with inverses given as  $a = (e - uz)^{-1} = \sum_{k=0}^{\infty} (uz)^k$  and  $b = (e - zu)^{-1} = \sum_{k=0}^{\infty} (zu)^k$ , respectively.  $\Box$ 

**Proposition 3.19.** Let  $(Z, n_Z, \circledast, \odot)$  be a fuzzy complete a-FNA with identity e. Suppose that z and u are elements of Z such that e - zu is invertible. Let  $a = (e - zu)^{-1}$ . Then b = e + uaz is the inverse of e - uz.

Proof.

 $\begin{array}{l} b(e-uz)=(e+uaz)(e-uz)=e-uz+uaz-uazuz=e-uz+ua(e-zu)z=e-uz+u[a(e-zu)]z=e-uz+uz=e.\end{array}$ 

### References

- A. A. Khalaf, J. R. Kider, The extension of a linear operator on afuzzy normed space when it is fuzzy compact, International Journal of Mathematics and Computer Science, 17, no. 3, (2022), 1133–1144.
- [2] J. R. Kider, The Product Fuzzy Metric Space and its Basic Properties, Journal of Physics: Conference Series, 2322, no. 1, (2022), 1–11.
- [3] Z. A. Khudhair, J. R. Kider, Some Properties of Fuzzy Compact Algebra Fuzzy Normed Spaces and Finite Dimensional Algebra Fuzzy Normed Spaces, Journal of Physics: Conference Series, 1879, no. 2, (2021), 1–11.
- [4] A. A. Khalaf, J. R. Kider, Linear Operator of Various Types and its Basic Properties, International Journal of Nonlinear Analysis and Applications, 13, no. 1, (2022), 3949–3957.
- [5] Z. A. Khudhair, J. R. Kider, The algebra fuzzy norm of the quotient space and pseudo algebra fuzzy normed space, International Journal of Nonlinear Analysis and Applications, 13, no. 1, (2022), 3589–3597.