International Journal of Mathematics and Computer Science, **18**(2023), no. 3, 393–397

(M CS)

Characterizations of (Λ, p) -extremally disconnected spaces

Butsakorn Kong-ied, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

email: butsakorn.k@msu.ac.th, chawalit.b@msu.ac.th

(Received November 8, 2022, Accepted January 24, 2023, Published March 31, 2023)

Abstract

Our main purpose is to investigate some characterizations of (Λ, p) extremally disconnected spaces.

1 Introduction

In 1960, Gillman and Jerison [5] introduced the concept of extremally disconnected topological spaces. Thompson [9] introduced the notion of Sclosed spaces. Cameron [3] proved that every maximally S-closed space is extremally disconnected. Niori [8] introduced the notion of locally S-closed spaces which is strictly weaker than that of S-closed spaces. In 1988, Noiri [7] investigated some characterizations of extremally disconnected spaces by utilizing preopen sets and semi-preopen sets. Mashhour et al. [6] introduced and investigated the concept of preopen sets and preclosed sets. In 2002, Ganster et al. [4] introduced the notions of a pre- Λ -set and a pre-V-set in topological spaces and investigated their fundamental properties. Quite recently, Boonpok and Viriyapong [1] introduced the notions of (Λ , p)-open sets

Key words and phrases: (Λ, p) -open set, (Λ, p) -extremally disconnected space.

Butsakorn Kong-ied is the corresponding author. AMS (MOS) Subject Classifications: 54A05, 54G05. ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net and (Λ, p) -closed sets which are defined by utilizing the notions of Λ_p -sets and preclosed sets. The concept of (Λ, p) -extremally disconnected spaces was introduced in [10]. In this paper, we investigate some characterizations of (Λ, p) -extremally disconnected spaces.

2 Preliminaries

Let A be a subset of a topological space (X, τ) . The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is said to be preopen [6] if $A \subseteq Int(Cl(A))$. The complement of a preopen set is called *preclosed*. The family of all preopen sets of a topological space (X, τ) is denoted by $PO(X, \tau)$. A subset $\Lambda_p(A)$ [4] is defined as follows: $\Lambda_p(A) = \bigcap \{ U \mid A \subseteq U, U \in PO(X, \tau) \}$. A subset A of a topological space (X, τ) is called a Λ_p -set [1] (pre- Λ -set [4]) if $A = \Lambda_p(A)$. A subset A of a topological space (X, τ) is called (Λ, p) -closed [1] if $A = T \cap C$, where T is a Λ_p -set and C is a preclosed set. The complement of a (Λ, p) -closed set is called (Λ, p) -open. The family of all (Λ, p) -open (resp. (Λ, p) -closed) sets in a topological space (X, τ) is denoted by $\Lambda_p O(X, \tau)$ (resp. $\Lambda_p C(X, \tau)$). Let A be a subset of a topological space (X, τ) . A point $x \in X$ is called a (Λ, p) cluster point [1] of A if $A \cap U \neq \emptyset$ for every (Λ, p) -open set U of X containing x. The set of all (Λ, p) -cluster points of A is called the (Λ, p) -closure [1] of A and is denoted by $A^{(\Lambda,p)}$. The union of all (Λ,p) -open sets contained in A is called the (Λ, p) -interior [1] of A and is denoted by $A_{(\Lambda, p)}$. A subset A of a topological space (X, τ) is said to be $s(\Lambda, p)$ -open (resp. $p(\Lambda, p)$ -open, $\beta(\Lambda, p)$ -open, $r(\Lambda, p)$ -open) [1] if $A \subseteq [A_{(\Lambda, p)}]^{(\Lambda, p)}$ (resp. $A \subseteq [A^{(\Lambda, p)}]_{(\Lambda, p)}$, $A \subseteq [[A^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)}, A = [A^{(\Lambda,p)}]_{(\Lambda,p)}). A subset A of a topological space$ (X,τ) is called $\alpha(\Lambda,p)$ -open [10] (resp. $b(\Lambda,p)$ -open) if $A \subseteq [[A_{(\Lambda,p)}]^{(\Lambda,p)}]_{(\Lambda,p)}$ (resp. $A \subseteq [A^{(\Lambda,p)}]_{(\Lambda,p)} \cup [A_{(\Lambda,p)}]^{(\Lambda,p)}$). The complement of a $s(\Lambda,p)$ -open (resp. $p(\Lambda, p)$ -open, $r(\Lambda, p)$ -open, $\beta(\Lambda, p)$ -open, $\alpha(\Lambda, p)$ -open, $b(\Lambda, p)$ -open) set is called $s(\Lambda, p)$ -closed (resp. $p(\Lambda, p)$ -closed, $r(\Lambda, p)$ -closed, $\beta(\Lambda, p)$ -closed, $\alpha(\Lambda, p)$ -closed, $b(\Lambda, p)$ -closed). The family of all $s(\Lambda, p)$ -open (resp. $p(\Lambda, p)$ open, $r(\Lambda, p)$ -open, $\beta(\Lambda, p)$ -open, $\alpha(\Lambda, p)$ -open, $b(\Lambda, p)$ -open) sets in a topological space (X,τ) is denoted by $s\Lambda_n O(X,\tau)$ (resp. $p\Lambda_n O(X,\tau)$, $r\Lambda_n O(X,\tau)$) $\beta \Lambda_p O(X, \tau), \alpha \Lambda_p O(X, \tau), b \Lambda_p O(X, \tau)).$ The family of all $s(\Lambda, p)$ -closed (resp. $p(\Lambda, p)$ -closed, $r(\Lambda, p)$ -closed, $\beta(\Lambda, p)$ -closed, $\alpha(\Lambda, p)$ -closed, $b(\Lambda, p)$ -closed) sets in a topological space (X, τ) is denoted by $s\Lambda_p C(X, \tau)$ (resp. $p\Lambda_p C(X, \tau)$) $r\Lambda_p C(X,\tau), \ \beta\Lambda_p C(X,\tau), \ \alpha\Lambda_p C(X,\tau), \ b\Lambda_p C(X,\tau)).$

3 Characterizations of (Λ, p) -extremally disconnected spaces

In this section, we investigate some characterizations of (Λ, p) -extremally disconnected spaces.

Recall that a topological space (X, τ) is said to be (Λ, p) -extremally disconnected [10] if $V^{(\Lambda,p)}$ is (Λ, p) -open in X for every (Λ, p) -open set V of X.

Theorem 3.1. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is (Λ, p) -extremally disconnected.
- (2) For every $r(\Lambda, p)$ -open set of X is (Λ, p) -closed.
- (3) For every $r(\Lambda, p)$ -closed set of X is (Λ, p) -open.

Proof. (1) \Rightarrow (2): Let U be a $r(\Lambda, p)$ -open set. Then, $U = [U^{(\Lambda,p)}]_{(\Lambda,p)}$. Since U is (Λ, p) -open, we have $U^{(\Lambda,p)}$ is (Λ, p) -open. Thus, $U = [U^{(\Lambda,p)}]_{(\Lambda,p)} = U^{(\Lambda,p)}$ and hence U is (Λ, p) -closed.

(2) \Rightarrow (1): Let U be a (Λ, p) -open set. Since $[U^{(\Lambda,p)}]_{(\Lambda,p)}$ is $r(\Lambda, p)$ -open, we have $[U^{(\Lambda,p)}]_{(\Lambda,p)}$ is (Λ, p) -closed and hence $U^{(\Lambda,p)} \subseteq [[U^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)} = [U^{(\Lambda,p)}]_{(\Lambda,p)}$. Thus, $U^{(\Lambda,p)}$ is (Λ, p) -open. This shows that (X, τ) is (Λ, p) extremally disconnected.

 $(2) \Leftrightarrow (3)$: This is obvious.

Lemma 3.2. For a subset A of a topological space (X, τ) , the following properties are equivalent:

- (1) $A \in \beta \Lambda_p O(X, \tau)$.
- (2) $A^{(\Lambda,p)} \in r\Lambda_p C(X,\tau).$
- (3) $A^{(\Lambda,p)} \in \beta \Lambda_p O(X,\tau).$
- (4) $A^{(\Lambda,p)} \in s\Lambda_p O(X,\tau).$

(5)
$$A^{(\Lambda,p)} \in b\Lambda_p O(X,\tau).$$

Theorem 3.3. For a topological space (X, τ) , the following properties are equivalent:

(1)
$$(X, \tau)$$
 is (Λ, p) -extremally disconnected.
(2) For each $V \in \beta \Lambda_p O(X, \tau)$, $V^{(\Lambda, p)} \in r \Lambda_p O(X, \tau)$.
(3) For each $V \in b \Lambda_p O(X, \tau)$, $V^{(\Lambda, p)} \in r \Lambda_p O(X, \tau)$.
(4) For each $V \in s \Lambda_p O(X, \tau)$, $V^{(\Lambda, p)} \in r \Lambda_p O(X, \tau)$.
(5) For each $V \in \alpha \Lambda_p O(X, \tau)$, $V^{(\Lambda, p)} \in r \Lambda_p O(X, \tau)$.
(6) For each $V \in \Lambda_p O(X, \tau)$, $V^{(\Lambda, p)} \in r \Lambda_p O(X, \tau)$.
(7) For each $V \in r \Lambda_p O(X, \tau)$, $V^{(\Lambda, p)} \in r \Lambda_p O(X, \tau)$.
(8) For each $V \in p \Lambda_p O(X, \tau)$, $V^{(\Lambda, p)} \in r \Lambda_p O(X, \tau)$.

Proof. The proof follows from Theorem 2 of [2].

Theorem 3.4. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is (Λ, p) -extremally disconnected.
- (2) $r\Lambda_p C(X,\tau) \subseteq \Lambda_p O(X,\tau).$
- (3) $r\Lambda_p C(X,\tau) \subseteq \alpha \Lambda_p O(X,\tau).$
- (4) $r\Lambda_p C(X,\tau) \subseteq p\Lambda_p O(X,\tau).$
- (5) $s\Lambda_p O(X,\tau) \subseteq \alpha \Lambda_p O(X,\tau).$
- (6) $s\Lambda_p C(X,\tau) \subseteq \alpha\Lambda_p C(X,\tau).$
- (7) $s\Lambda_p C(X,\tau) \subseteq p\Lambda_p C(X,\tau).$
- (8) $s\Lambda_p O(X,\tau) \subseteq p\Lambda_p O(X,\tau).$
- (9) $\beta \Lambda_p O(X, \tau) \subseteq p \Lambda_p O(X, \tau).$
- (10) $\beta \Lambda_p C(X, \tau) \subseteq p \Lambda_p C(X, \tau).$
- (11) $b\Lambda_p C(X,\tau) \subseteq p\Lambda_p C(X,\tau).$
- (12) $b\Lambda_p O(X,\tau) \subseteq p\Lambda_p O(X,\tau).$
- (13) $r\Lambda_p O(X,\tau) \subseteq p\Lambda_p C(X,\tau).$

396

(14) $r\Lambda_p O(X,\tau) \subseteq \Lambda_p C(X,\tau).$

(15) $r\Lambda_p O(X,\tau) \subseteq \alpha \Lambda_p C(X,\tau).$

Proof. The proof follows from Theorem 3 of [2].

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- C. Boonpok, C. Viriyapong, On (Λ, p)-closed sets and the related notions in topological spaces, Eur. J. Pure Appl. Math., 15, no. 2, (2022), 415– 436.
- [2] C. Boonpok, J. Khampakdee, (Λ, sp) -open sets in topological spaces, Eur. J. Pure Appl. Math., **15**, no. 2, (2022), 572–588.
- [3] D. Cameron, Properties of S-closed spaces, Proc. Oklahoma Topology Conference, Oklahoma, USA, 1978.
- [4] M. Ganster, S. Jafari, T. Noiri, On pre-Λ-sets and pre-V-sets, Acta Math. Hungar., 95, (2002), 337–343.
- [5] L. Gillman, M. Jerison, Rings of continuous functions, Univ. Series in Higher Math., Van Nostrand, Princeton, New York, 1960.
- [6] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53, (1982), 47–53.
- [7] T. Noiri, Characterizations of extremally disconnected spaces, Indian J. Pure Appl. Math., 19, (1988), 325–329.
- [8] T. Noiri, On S-closed subspaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 64, (1978), 273–285.
- [9] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc., 60, (1976), 335–338.
- [10] N. Viriyapong, C. Boonpok, On (Λ, p) -extremally disconnected spaces, Int. J. Math. Comput. Sci., **18**, no. 2, (2023), 289–293.