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Abstract

Multivariate cryptography is listed among the promising candi-
dates for post-quantum cryptography primitives. Its hard problem
depends on the difficulty of solving m multivariate quadratic equa-
tions in n variables over a finite field, hence the name Multivariate
Quadratic Problem (MQP). In this paper, we present three multivari-
ate digital signature forgery mechanisms by a rogue service provider.
We also lay out techniques to identify two of such mechanisms. As for
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a potential signature forgery mechanism via Greatest Common Divi-
sors of evaluated polynomials in the system, it is still an open question
on how to detect it. This third strategy seems to inherit the NP-hard
difficulties of a random MQP in totality.

1 Introduction

The basic multivariate public key cryptosystem (MPKC) is built up from
an invertible quadratic map F : Fn → F

m (central map) and two invertible
affine (or linear) maps S : Fm → F

m and T : Fn → F
n. The public key is

given by P = S ◦F ◦T where S, F and T are the private keys. The security
of MPKC is based on the MQP which is proven to be NP-hard by Garey
and Johnson [1]. MQP falls into three categories; underdetermined system
(m < n), determined system (m = n), and overdetermined system (m > n).
Undetermined system is applied in the digital signature schemes of multi-
variate cryptography. The most promising multivariate signature schemes
are UOV [2] and Rainbow [3]. The existing algorithms to solve underde-
termined system [2],[4],[5],[6],[7],[8],[9] have either narrow applicable range
or exponential running-time. Therefore, this research provides two types of
non-randomized MQP which are easy to solve and if the non-randomized
systems satisfy m < n, forging a digital signature is possible.

Digital signature can be defined as a procedure which utilizes mathemat-
ics in order to authenticate digital documents as well as to provide message
integrity. An adversary who wants to forge the signature must be able to
produce a valid signature by manipulating the mathematical algorithms. In
multivariate digital signature schemes, the hash value of the document d is
computed such that z = H(d) and is compared with the value of P (s) = z

where s is the signature. If z = z, accept the signature, otherwise reject the
signature. Therefore, the goal of an adversary is either to get the secret keys
S,F and T , or to forge a valid signature s such that P (s) = z = z.

In this work, we identify parameters provided by a rogue multivariate
signature schemes service provider that will enable the service provider or
third party to forge the signature of the owner of the parameters. In the
first scenario, we show that the solution for a multivariate quadratic poly-
nomial is also a solution for other multivariate quadratic polynomials in the
same system P if every polynomials can be written as multiple of one of
the polynomial i.e. fj(x) = kfi(x). Then, we prove that the solution for
a system P is also a solution for the summation of all the polynomials in
P. By manipulating these two properties, we put forward two potential
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mechanisms by a rogue service provider that enables them to forge signa-
tures, and the techniques to identify the mechanisms. Next, we prove that
for i = 1, . . . , m, fi(x) ≡ 0(mod q) if and only if q = gcd(fi(x), fj(x)) for
i 6= j (i, j = 1, . . . , m), there exist a mechanism by a rogue system provider
that seems to inherit the NP-hard difficulties of a random MQP in totality.
As such, with the current literature a client of the rogue service provider is
unable to identify the weak system provided to him. Our mechanisms and at-
tacks can actually be used for any class of multivariate quadratic polynomial
systems. They are not restricted to the number of equations and variables.

The layout of the paper is structured as follows. In Section 2, we begin
by introducing the mathematical notations used in MPKC and the standard
process of encryption scheme and signature scheme. Then, we present our
main results and we include relevant examples in Section 3. We discuss the
time complexity in Section 4 and we briefly sum up our work in Section 5.

2 Preliminaries

In this section we provide some preliminaries for notations and cryptographic
primitives in multivariate cryptography.

2.1 Matrix Representation

Quoting verbatim from [10], we define the matrix representation in multi-
variate cryptography as follows:

Definition 2.1. (Multivariate Quadratic Polynomials.) Let F = Fq be a
finite field with q elements. We denote m as the number of equations and
n as the number of variables. A system P = (p(1), . . . , p(m)) of multivariate
quadratic polynomials is defined as

p(1)(x1, . . . , xn) =

n∑

i=1

n∑

j=1

p
(1)
ij · xixj +

n∑

i=1

p
(1)
i · xi + p

(1)
0

...

p(m)(x1, . . . , xn) =

n∑

i=1

n∑

j=1

p
(m)
ij · xixj +

n∑

i=1

p
(m)
i · xi + p

(m)
0 .
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2.2 The Multivariate Quadratic Problem (MQP)

Quoting verbatim from [11], we define MQP as follows:

Definition 2.2. Let F = Fq be a finite field with q elements. Given a sys-
tem P = (p(1)(x), . . . , p(m)(x)) of m multivariate quadratic polynomials in n

variables, find a vector x = (x1, . . . , xn) such that

p(1)(x) = . . . = p(m)(x) = 0.

Garey and Johnson [1] has proved that MQP is NP-hard even for the
quadratic polynomials over GF(2). More exactly, solving MQP is as hard as
solving 3SAT problem since 3SAT problem can be reduced to MQP [12].

3 Novel Forgery Mechanisms for Multivari-

ate Signature Schemes

In this section we present our main results.

3.1 MQP with the structure fj(x) = kjf1(x)

We begin by presenting the first theorem which describes the relation of
solution for multivariate quadratic polynomials that can be written into
fj(x) = kjf1(x).

Theorem 3.1. Let P = (f1(x), . . . , fm(x)) be a system of m multivariate
quadratic polynomials in n variables over Fq. If fj(x) (j = 2, . . . , m) can be
written into fj(x) = kjf1(x) where kj ∈ Fq, then the solutions for fi(x) = 0
for any (i = 1, . . . , m) is also the solutions for fj(x) = 0, for all j 6= i.

Proof. Suppose fj(x) (j = 2, . . . , m) can be written into fj(x) = kjf1(x)

f2(x) = k2f1(x)

...

fm(x) = kmf1(x)

where kj ∈ Zq and suppose we have a solution set x = (x1, . . . , xm) such that
f1(x) = f1(x1, . . . , xn) = 0. Then,

f2(x) = k2f1(x) = k2(0) = 0

...

fm(x) = kmf1(x) = km(0) = 0.
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Thus, if we can solve fi(x) = 0 such that fi(x) = 0 we have also solved the
whole system.

Corollary 3.2. Let P = (f1(x), . . . , fm(x)) be a system of m multivariate
quadratic polynomials in n variables over Fq and fj(x) (j = 2, . . . , m) can
be written into fj(x) = kjf1(x) where kj ∈ Zq. Suppose for an arbitrary x,
f1(x) = z1 then for kj(i = 2, . . . , m) ∈ Zq,

f2(x) = z2 = k2z1
...

fm(x) = zm = kmz1.

Based on Corollary 1, it is easy to find s′ 6= s such that P(s′) = z′ and
z′ = z.

3.1.1 Digital Signature Forgery Mechanism 1

The system P of which its polynomials can be written as fj = kjf1 is con-
structed by choosing two random invertible affine maps S : Fm → F

m and
T : Fn → F

n. Next, choose a central map F : Fn → F
m of which its polyno-

mials can also be written as fj = kjf1. All maps S, T and F are kept secret.
Then, compute P = S ◦ F ◦ T .

We note here that, as the modulus q gets larger, the published system
P seems randomized. That is, the constants of the equations seem not to
relate to one another and to identify whether there exists the relation fj(x) =
kjf1(x), without a proper algorithm the complexity is O(q). Nevertheless,
from Theorem 1 if we can solve fi(x) = 0 then, we also solve the whole
system.

3.1.2 Identifying digital signature forgery from Mechanism 1

From Theorem 1 and Corollary 1, we now put forward an algorithm to iden-
tify a system that will allow digital signature forgery to occur from Mecha-
nism 1.
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Algorithm 1 Identifying digital signature forgery from Mechanism 1

Input: The system P = (f1(x), . . . , fm(x)) of multivariate quadratic poly-
nomials over Fq

Output: P is a forgeable system

1. for j = 2 to m do

2. kj = cfj ·c
−1
f1
mod q where cfj and cf1 are the coefficients of polynomial

fj(x) and f1(x) respectively.

3. If fj(x) = kjf1(x), then P is a forgeable system.

4. end for

5. else P is not a forgeable system.

6. return

For discussion on the complexity of Algorithm 1, refer to Section 4 in this
article.

3.2 MQP with the structure fj(x) = fi(x) + fh(x)

The lemma below describes the relation of solution for multivariate quadratic
polynomials that can be written into fj = fi(x) + fh(x).

Lemma 3.3. Let P = (f1(x), . . . , fm(x)) be a system of m multivariate
quadratic polynomials in n variables over Fq. Let x = (x1, x2, . . . , xn) be
the solution of each fi(x) (i = 1, . . . , m) such that f1(x) = . . . = fm(x) = 0.
Set fh(x) = f1(x) + f2(x) + . . .+ fm(x) over Fq. Then fh(x) = 0.

Proof.

fh(x) = (f1 + f2 + . . .+ fm)(x)

= f1(x) + f2(x) + . . .+ fm(x)

= 0 + 0 + . . .+ 0 = 0.

3.2.1 Digital Signature Forgery Mechanism 2

The system P of which its polynomials can be written as fj = fi(x) + fh(x)
is constructed by choosing two invertible affine maps S : F

2 → F
2 and
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T : Fn → F
n, and a central map F : Fn → F

2. All maps S, T and F are
kept secret. Then, compute S◦F◦T to output two equations f1(x) and f2(x).
For fj(x) (j = 3, . . . , m), set fj(x) = fi(x)+ fh(x) where i = 1, . . . , j−1 and
h = 1, . . . , j − 1. Publish P = (f1(x), . . . , fm(x)) as public key over Fq.

We note here that, the published system P seems randomized. That
is, the constants of the equations seem not to relate to one another and
to identify whether there exists the relation fj(x) = fi(x) + fh(x), without
a proper algorithm the complexity is the same complexity as solving MQP
which is NP-hard. Nevertheless, from Lemma 1 if we can solve f1(x) = 0 and
f2(x) = 0 then, we also solve fj(x) = 0 i.e. f1(x) = f2(x) = 0 and fj(x) = 0
for j = 3, . . . , m.

3.2.2 Identifying digital signature forgery from Mechanism 2

We now put forward from Lemma 1 an algorithm to identify a system that
will allow digital signature forgery to occur from Mechanism 2.

Algorithm 2 Identifying digital signature forgery from Mechanism 2

Input: The system P = (f1(x), . . . , fm(x)) of multivariate quadratic poly-
nomials over Fq

Output: P is a forgeable system

1. for j = 3 to m do

2. for i = 1 to j − 1 do

3. for h = i to j − 1 do

4. fi(x) + fh(x)

5. If fj(x) = fi(x) + fh(x), then P is a forgeable system.

6. end for

7. end for

8. end for

9. else P is not a forgeable system.

10. return
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For discussion on the complexity of Algorithm 2, refer to Section 4 in this
article.

3.3 Greatest Common Divisor-Based Digital Signature
Forgery Mechanism

The theorem below describes the relation between a set of polynomials and
its Greatest Common Divisors (GCD).

Theorem 3.4. Let P = (f1(x), . . . , fm(x)) be a system of m multivariate
quadratic polynomials in n variables over Fq. Let x = (x1, x2, . . . , xn) where
at least one of xi is not zero. For all i 6= j(i, j = 1, . . . , m), if

gcd(fi(x), fj(x)) = q then f1(x) = . . . = fm(x) = 0.

Proof. Since at least one of xi is not zero, then f(x) ≥ xi > 0. So, f(x) = 0
prior to modular reduction is not possible. From textbook congruence re-
lation definition, f(x) = a + kq, the integer k corresponds to the modular
reduction value. When k = 0 corresponds to no modular reduction upon the
value of f(x) while when k > 0 corresponds to the modular reduction upon
the value of f(x).

If gcd(fi(x), fj(x)) = q, then

f1(x) = k1q

...

fm(x) = kmq.

This implies fi(x) ≡ 0(mod q) for all i = 1, . . . , m.

3.3.1 Digital Signature Forgery Mechanism 3

We present an algorithm to construct a system that will allow digital signa-
ture forgery to occur based on Theorem 2, which outputs system P which
seems to follow the hardness definition of MQP in totality.



Novel Forgery Mechanisms in Multivariate Signature Schemes 459

Algorithm 3 The GCD-Based Forgeable Signature Schemes Parameters
Generation
Input: The system P = (f1(x), . . . , fm(x)) of multivariate quadratic poly-
nomials over integers and x = (x1, . . . , xn)
Output: The system P = (f1(x), . . . , fm(x)) of multivariate quadratic poly-
nomials over Fq such that f1(x) = . . . = fm(x) = 0

1. repeat

2. Substitute x = (x1, . . . , xn) into f1(x), . . . , fm(x).

3. Compute the GCD of fi(x) ∈ Z for i = 1, . . . , m.

4. Set the GCD as q.

5. until q is greater than every constants of each terms in fi(x) (i =
1, . . . , m)

6. return q and P

4 Time Complexity for Algorithms 1 and 2

For Algorithm 1, the complexity is given by O(m) where m is the number
of equations. This is because, one only needs to execute Algorithm 1 for the
first constant only. As for Algorithm 2, the complexity is given by O(m3)
where m is the number of equations, This is due to steps 1− 3 in Algorithm
2.

For a practical multivariate signature scheme, the number of equations
in the system must be of polynomial size. As such, O(m) and O(m3) is of
polynomial running time.

5 Conclusion

In conclusion, we have put forward three strategies of potential digital sig-
nature forgery mechanisms by rogue service provider. For digital signature
forgery mechanism 1 and 2, we have identified strategies to identify whether
the provided parameters will allow digital signature forgery to occur. How-
ever, for forgery mechanism 3 it is still an open question on how to identify it.
This discussion shows empirical evidence that rogue multivariate signature
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schemes service provider has the potential to be a rogue service provider via
mechanism 3. That is, we have identified a mechanism where an unknow-
ingly trusting client does not have the means within the current literature
to do due diligence to examine the parameters provided to him by the rogue
service provider. We have proven that the rogue service provider can forge
the signature of its clients. Finally, we point out that the complexity of Algo-
rithm 1 is better than the complexity of Algorithm 2 in terms of identifying
a forgeable system.
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