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Abstract

An hourglass matrix is a nonsingular matrix obtained from quad-

rant interlocking factorization called WH factorization. In this paper,

we establish the determinant of hourglass matrix and show its appli-

cation in the triangular blocks of hourglass matrix called Hsystem.

Therefore, WH factorization exists for every nonsingular matrix and

hence its Schur complement exists for every Hsystem.

1 Introduction

The components of a matrix factorization are of prime importance but not
just as a mechanism for solving another problem [19]. Matrix factorization,
such as quadrant interlocking factorization (QIF ), serves to decompose orig-
inal task that may be relatively difficult to solve into subtasks which are
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solved and regrouped. QIF , an alternate to LU factorization but commonly
known asWZ factorization, is a factorization technique used to break nonsin-
gular matrices into block forms, assembled and then solved as sub-blocks, see
[15, 18, 11]. WZ factorization of a matrix B produces interlocking quadrant
factors called W -matrix and Z-matrix such that [8]

B = WZ. (1.1)

WZ factorization requires

⌊n
2
−1⌋

∑

k=1

(n − 2k) of linear systems which can be

computed via Cramer’s rule adopting the least condition number [4]. The
factorization is more effective for real symmetric, diagonally dominant or
positive definite, see [14, 23]. Its uniqueness and parallelization make it
possible to be used in scientific computing, statistics and engineering - see
[16, 14, 13, 9, 21] and the references therein. WZ factorization using a
parallel computer architecture is known to be faster in computing sparse and
dense linear system on SIMD (Single Instruction, Multiple Data) orMIMD
(Multiple Instruction, Multiple Data) [7, 22, 17, 2, 1, 12]. The factorization
depends on nonsingular central submatrices which execute components in
parallel irrespective of the number of processors [10, 11, 18]. Some of the
newest forms of WZ factorization, having the properties mentioned above,
with potential application in cryptography and graph theory is the WH
factorization, see [6, 3, 5]. WH factorization possesses an algorithm which
is slightly different from its counterpart WZ factorization by restricting the
output entries (specifically the first and last row of the submatrices) to be
nonzero. This allows the output matrix (called hourglass matrix) to perfectly
resemble an hourglass device, see Figure 1.

WH factorization (B = WH) produces W -matrix and H-matrix (hour-
glass matrix). WH factorization to yield H-matrix can fail to exist even
though if the matrix is nonsingular provided the submatrices of the nonsin-
gular matrix are invertible together with all the elements in the first row and
in the last row of its submatrices are nonzero, after applying row-interchange.
In general, algorithm of WZ factorization is less strict in the output showing
that if a nonsingular matrix exhibits WH factorization then WZ factor-
ization is also applicable to the matrix but not otherwise. Throughout the
sections, we will assume that matrix B has even order (the assumption is also
true for odd order). Then some results on the existence of WH factorization
for every strict dominant diagonal matrix, and the block triangular matrices
are established.
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Figure 1: Structural comparison between hourglass device and hourglass
matrix.

2 Preliminary and background

To establish some new results on hourglass matrix some terms associated to
our findings are included in this section.

Definition 2.1. [8] A strict dominant diagonal matrix is a square matrix
where the element in the diagonal entry in a row is greater than the sum of
the elements of all non-diagonal entries in that row. That is

|bi,i| >

n
∑

j=1,j 6=i

|bi,j|. (2.2)

Theorem 2.2. [20] Factorization Theorem Let B ∈ Rn×n be a nonsingular
matrix with a unique QIF factorization, then B = WZ provided that the
submatrices of B are invertible.

Definition 2.3. [6] An hourglass matrix (H-matrix) is a nonsingular matrix
with nonzero entries in the ith and (n− i+ 1)th row of the square matrix of
order n× n(n ≥ 3), otherwise 0’s, for i = 1, 2, ..., ⌊n+1

2
⌋. That is,

H =











hij , 1 ≤ i ≤ ⌊ (n+1)
2

⌋ i ≤ j ≤ n + 1− i;

hij , ⌈ (n+2)
2

⌉ ≤ i ≤ n n+ 1− i ≤ j ≤ i;

0, otherwise.

(2.3)

Now, from Equation (2.3) we can partition H-matrix of even order n into
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triangular blocks matrices (non-zero entries) as

H =































α1,1 · · · · · · α1,n
2

β1,n
2
+1 · · · · · · β1,n

. . . H1,1
...

... H1,2
...

. . .
...

...
...

αn
2
,n
2

βn
2
,n
2
+1

γn
2
+1,n

2
δn

2
+1,n

2
+1

...
...

...
. . .

... H2,1
...

... H2,2
. . .

γn,1 · · · · · · γn,n
2

δn,n
2
+1 · · · · · · δn,n































(2.4)

α block, β block, δ block and γ block.

Definition 2.4. [3] Hsystem is the grouping of H-matrix of order n (n ≥ 4)
into 2 × 2 block triangular matrices with each block containing ⌊n

2
⌋ × ⌊n

2
⌋

matrices.

Hsystem gives four blocks of triangular matrices whenever the dimension
(n) of H-matrix is even, such that

Hsystem =

[

H1,1 H1,2

H2,1 H2,2

]

(2.5)

where

H1,1 =

{

hij , 1 ≤ i ≤ ⌈n−1
2
⌉, i ≤ j ≤ ⌈n−1

2
⌉;

0, otherwise.

H1,2 =

{

hij, 1 ≤ i ≤ ⌈n−1
2
⌉, ⌊n+3

2
⌋ ≤ j ≤ n + 1− i;

0, otherwise.

H2,1 =

{

hij , ⌊n+3
2
⌋ ≤ i ≤ n, ⌊n+3

2
⌋ ≤ j ≤ i;

0, otherwise.

H2,2 =

{

hij , ⌊n+3
2
⌋ ≤ i ≤ n, n+ 1− i ≤ j ≤ ⌈n−1

2
⌉;

0, otherwise.

Definition 2.5. [3] Schur complement of a block matrix are functions of its
blocks such that if H1,1 (see Equation (2.5)) is invertible then H1,1 in Hsystem

is
Hsystem/H1,1 = H2,2 −H2,1H

−1
1,1H1,2. (2.6)

Theorem 2.6. [3] Schur complement exists in Hsystem only if H-matrix is
nonsingular.
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3 SOME RESULTS ON HOURGLASS MA-

TRIX

It should be noted that some results on Z-matrix have been established which
are similar to the results obtained here, see for instance [8]. However, the
results for hourglass matrix are not directly applicable to Z-matrix.

Theorem 3.1. If there exists WH factorization for a nonsingular matrix,
then there exists WZ factorization.

Proof. If B = WH , then the central submatrices ∆b = bi,j of B has the
least condition number adopting any matrix norm which are nonsingular
according to its factorization algorithm otherwise the factorization fails, for
k = 1, 2, ..., ⌊n−1

2
⌋. If bi,j = hi,j then

∆h =







hk,k · · · hk,n−k+1
...

...
hn−k+1,k · · · hn−k+1,n−k+1







1≤k≤⌊n−1

2
⌋

.

This assumption is also applicable to B = WZ according to Theorem
2.2, if and only if its counterpart central submatrices ∆z are invertible such
that

∆z =







zk,k · · · zk,n−k+1
...

...
zn−k+1,k · · · zn−k+1,n−k+1







1≤k≤⌊n−1

2
⌋

.

If a nonsingular matrix B assumes WH factorization such that det (∆h) =
hn−k+1,n−k+1hk,k − hn−k+1,khk,n−k+1 6= 0, then the matrix also assumes WZ
factorization such that det (∆z) = zn−k+1,n−k+1zk,k − zn−k+1,kzk,n−k+1 6= 0.
However, the computed entry zi,j may or may not be nonzero for i, j = k, k+
1, ..., n−k+1. This is because WZ factorization only requires invertibility of
∆z, whereas WH factorization ensures where necessary that row interchange
exists for ∆h to contain only nonzero entries and still being invertible. In a
case where zi,j 6= 0 then zi,j = hi,j, but if an entry in zi,j is zero then zi,j 6= hi,j

even though det (∆z) 6= 0 and det (∆h) 6= 0. Thus, every WH factorization
always implies WZ factorization but the converse is not true.

Theorem 3.2. WH factorization exists for every strict dominant diagonal
matrix B.

Proof. Let the matrix B be a strictly dominant diagonal matrix, then
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|bi,i| >

n
∑

j=1,j 6=i

|bi,j|.

The initial step of the factorization is to consider that the entries in the first
row are nonzero (b1,j 6= 0) and that the entries in the last row are nonzero
(bn,j 6= 0) for j = 1, 2, ..., n. Though all steps of the WH factorization are
analogous, we will consider only the first step of factorization.

b
(1)
i,j = bi,j −

bi,1bn,n − bi,nbn,1
b1,1bn,n − b1,nbn,1

b1,j −
b1,1bi,n − b1,nbi,1
b1,1bn,n − b1,nbn,1

bn,j = bi,j + ujbi,n + vjbi,1

where

uj =
b1,jbn,1 − bn,jb1,1
b1,1bn,n − b1,nbn,1

and vj =
bn,jb1,n − b1,jbn,n
b1,1bn,n − b1,nbn,1

.

Since
n−1
∑

j=2

|uj| ≤ 1 and

n−1
∑

j=2

|vj | ≤ 1

b
(1)
i,i = bi,i + uibi,n + v1bi,1. (3.7)

By inequality

|uibi,n + v1bi,1| ≤ |ui||bi,n|+ |v1||bi,1|

≤ |bi,n|+ |bi,1| (3.8)

−|uibi,n + v1bi,1| ≥ −|bi,n| − |bi,1| (3.9)

|bi,i| >
n

∑

j=1

|bi,j| = |bi,n|+ |bi,1|+
n−1
∑

j=2

|bi,j|. (3.10)

Adding Equation (3.9) and Equation (3.10) to obtain

|bi,i| − |uibi,n + v1bi,1| >
n−1
∑

j=2

|bi,j|. (3.11)

Since b
(1)
i,i = h

(1)
i,i and bk,k = hk,k 6= 0 which permits the use of WH factor-

ization, for k = 1, 2, ..., n
2
. Then, based on Equation (3.7), we can deduce

that

|h
(1)
i,i | ≥ |hi,i| − |uihi,n + v1hi,1|

>

n−1
∑

j=2

|hi,j| > 0.
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Proposition 3.3. The determinant of H-matrix (of even order) is
n
2
∏

k=1

(αk,kδl,l − βk,lγl,k)l=n−k+1

where k = 1, 2, ..., n
2
; l = n− k + 1.

Proof: Using cofactor expansion to compute the determinant of H-matrix
through the sum of minors, we obtain (n − 1) × (n − 1) matrices and then
expand it along the column.

det(H) = det































αk,1 · · · · · · αk,n
2

βk,n
2
+1 · · · · · · βk,n

. . . · · ·
...

... · · ·
...

. . .
...

...
...

αk,k βk,l

γl,k δl,l
...

...
...

. . .
... · · ·

...
... · · ·

. . .

γn,k · · · · · · γn,n
2

δn,n
2
+1 · · · · · · δn,n































k=1,2,...,n
2
; l=n,n−1,...,n−k+1

= (α1,1δn,n − β1,nγn,1) · det



















αk,2 · · · αk,n
2
+1 βk,n

2
+2 · · · βk,n+1

. . .
...

...
...

αk,k+1 βk,l+1

γl,k+1 δl,l+1

...
...

...
. . .

γn,k+1 · · · γn,n
2
+1 δn,n

2
+2 · · · δn,n+1



















k=2,...,n
2
−1; l=n−1,...,n−k

= (α1,1δn,n − β1,nγn,1) · (α2,2δn−1,n−1 − β2,n−1γn−1,2) · ... · det

[

αk,k βk,l

γl,k δl,l

]

k=n
2
; l=n−k+1

= (α1,1δn,n − β1,nγn,1) · (α2,2δn−1,n−1 − β2,n−1γn−1,2) · ... ·
(

αn
2
,n
2
δn−k+1,n−k+1 − βn

2
,n−k+1γn−k+1,n

2

)

Since det(H) 6= 0 then

αn
2
,n
2
δn−k+1,n−k+1 6= βn

2
,n−k+1γn−k+1,n

2

∀ k = 1, 2, ..., n
2
; l = n− k + 1. Therefore,

(α1,1δn,n − β1,nγn,1)·(α2,2δn−1,n−1 − β2,n−1γn−1,2)·...·
(

αn
2
,n
2
δn−k+1,n−k+1 − βn

2
,n−k+1γn−k+1,n

2

)

6= 0.

�
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Corollary 3.4. If αk,kδl,l 6= βk,lγl,k then H-matrix is nonsingular, for k =
1, 2, ..., n

2
; l = n− k + 1.

Proof. This proof is obvious from Proposition 1, since αk,kδl,l − βk,lγl,k 6=
0.

Theorem 3.5. The matrix H2,2 −H2,1H
−1
1,1H1,2 is a lower triangular invert-

ible matrix if Hsystem and H1,1 are invertible.

Proof. We have that H-matrix when divided into 4 square n
2
× n

2
blocks (that

is 2× 2 triangular block matrices) gives

Hsystem =

[

H1,1 H1,2

H2,1 H2,2

]

. (3.12)

Then the Schur complement of the block H1,1 on Hsystem is defined in Defi-
nition 3. Since

H1,1 =











αk,1 · · · · · · αk,n
2

0
. . .

...
...

...
. . .

. . .
...

0 · · · 0 αk,k











(3.13)

and det(H1,1) = αk,1 · ... · αk,k 6= 0, ∀ k = 1, 2, ..., n
2
. Then, there exists an

inverse of the matrix H1,1 of the form

H−1
1,1 =













1
αk,1

· · · · · · ∗

0
. . .

...
...

...
. . .

. . .
...

0 · · · 0 1
αk,k













(3.14)

such that

H2,1H
−1
1,1 =













0 · · · 0
γl,k
αk,k

...
...

...
...

0
...

...
...

γn,k

αk,1
· · · · · · ∗













. (3.15)

Thus, the product H2,1H
−1
1,1H1,2 is a lower triangular matrix of the form

H2,1H
−1
1,1H1,2 =













γl,kβk,l

αk,k
0 · · · 0

...
. . .

. . .
...

...
...

. . . 0

∗ · · · · · ·
γn,kβk,n

αk,1













. (3.16)
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Therefore,

H2,2 −H2,1H
−1
1,1H1,2 =













δl,l −
γl,kβk,l

αk,k
0 · · · 0

...
. . .

. . .
...

...
...

. . . 0

∗ · · · · · · δn,n −
γn,kβk,n

αk,1













(3.17)

det(H2,2 −H2,1H
−1
1,1H1,2) =

(

δl,l −
γl,kβk,l

αk,k

)

· ... ·

(

δn,n −
γn,kβk,n

αk,1

)

. (3.18)

Based on the property of Schur complement, the determinant of Equation
(3.18) is nonzero since H2,2 − H2,1H

−1
1,1H1,2 is a lower triangular invertible

matrix and
det(H2,2 −H2,1H

−1
1,1H1,2)

det(H1,1)
6= 0.

It implies that

det(H2,2 −H2,1H
−1
1,1H1,2) =

det(Hsystem)

det(H1,1)
6= 0.

4 Conclusion

It has been shown that WH factorization implies WZ factorization but the
converse is not always true. The WH factorization is suitable for factorizing
strict dominant diagonal matrix. H-matrix is a nonsingular matrix and its
Hsystem has a lower triangular invertible matrix which is always invertible.
Hence there exists block WH factorization of a nonsingular matrix.
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