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Abstract

A stochastic process {St}t∈[0,T ] is called a martingale process if
E[Sn|Sm] = Sm almost surely for all m ≤ n. Martingale processes are
often used in arbitrage-free pricing of financial assets due to its “fair
game” property, that is, when an asset is modeled using martingales
then no one can consistently make or lose money through trades in
that asset.

In this paper, we focus our attention on random variables that
follow a Pareto distribution. We then look at the set of martingale
measures on R

2 having marginal measures which are quantized using
the so-called Un-quantization. We shall then represent the transition
kernel of such martingale measures as bistochastic matrices. Finally,
we shall give some characterization of the set of such matrices.

1 Introduction

A stochastic process S = {St}t∈[0,T ] is called a martingale (process) if it
satisfies the condition EP[St2 |St1 ] = St1 , almost surely, for all t1 ≤ t2. In
mathematical finance and economics, martingales are often used in pricing
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models. In modeling an arbitrage-free financial asset, one normally uses a
martingale or some random process that can be transformed into a martin-
gale via a change of measure. This new measure is referred to as a risk-neutral
measure. Martingales are vital in non-arbitrage pricing since the martingale
property of an asset is equivalent to not being able to get or create arbitrage
through trades in that asset. As usually said for martingales, the expected
value for tomorrow equals the actual value today.

Given a sequence of random variables {Si : i = 1, 2, . . . , n}, an n-dimensional
measure γ is called a martingale measure if {Si : i = 1, 2, . . . , n} satisfy the
martingale condition under the expectation with respect to γ. The study on
the set of martingale measures first came up as an application of the Theory
of Optimal Transportation [7]. From then on, the authors in [1], [2] have
applied it to finance with the assumption that the first marginal measure be
absolutely continuous with respect to the Lebesgue measure. Furthermore,
such papers are focused on the existence and characterization of the martin-
gale measure that optimizes their desired pay-off function. The novelty of
this paper is that no one else seems to be looking at properties of the whole
set of martingale measures. In this paper, we shall provide a sufficient and
necessary condition for convex ordering of two random variables that follow
the Pareto distribution. We then apply a discrete approximation to the said
distributions, where we shall use the Un-quantization, proposed by Baker [3].
We then proceed to represent a martingale measure with quantized marginals
by a bistochastic matrix. Lastly, we shall give some characterization for the
set of such representations .

2 Preliminaries

Let (Ω,A,P) be a probability space andX be a (real-valued) random variable
on the said space. This random variable X induces a new probability space
(R,B(R),PX), with PX(B) = P(X−1(B)) for all B ∈ B(R). The probability
measure PX is called the law or distribution of X . We shall instead use
law(X) to denote the law of X instead of PX . The function FX : R → [0, 1]
such that FX(x) = PX((−∞, x]) for all x ∈ R is called the distribution
function of the random variable X and of PX .
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2.1 Martingale Measures

Let X and Y be random variables over the same probability space (Ω,A,P).
If Z is a bivariate random variable with joint distribution function given by
FZ(x, y) = P(X ≤ x, Y ≤ y), then law(Z) is called a transport plan between
law(X) and law(Y ). Note that law(Z) is a probability measure on R

2, and
that the marginal measures of law(Z) are law(X) and law(Y ). The set of
transport plans between two distributions µ and ν is denoted by Π(µ, ν).

Example 2.1. Consider X ∼ N (µ1, σ
2
1) and Y ∼ N (µ2, σ

2
2). If we take

a random random vector Z = (X, Y ) ∼ N

([

µ1

µ2

]

,

[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

])

, with

ρ ∈ (−1, 1), then law(Z), which is a probability measure on R2, is a transport
plan between law(X) and law(Y ).

We are interested on a specific subset of Π(µ, ν). If law(X) = µ and law(Y ) =
ν, we then define the set M(µ, ν) to be a subset of Π(µ, ν) such that any
π ∈ M(µ, ν) satisfies Eπ[Y |X ] = X, µ-almost surely. Such measure π is a
called a martingale measure between µ and ν.

Example 2.2. Let Ω1 = {0, 1}. Take Ω = Ω1 × Ω1, A = 2Ω, and P to be
the uniform (discrete) measure on Ω. Consider the random variables X and
Y on (Ω,A,P) with the following distributions: law(X) = 0.5(δ1 + δ3) and
law(Y ) = 0.25(δ0 + δ2) + 0.5δ1, where δa is the Dirac measure centered at
x = a. Suppose we take Z = (X, Y ) ∼ Unif{(1, 0), (1, 2), (3, 2), (3, 4)}. One
can then verify that E[Y |X ] = X and hence law(Z) is a martingale measure
between law(X) and law(Y ).

2.2 Convex Ordering

Given two probability measures µ and ν, the set Π(µ, ν) is always non-empty
since product measure µ× ν is always in Π(µ, ν). However, the set M(µ, ν)
may be empty just like in the case where the two random variables have
different means. As it turns out, having an additional assumption on the
marginal measures leads to the existence of a martingale measure.

Let µ, ν be probability measures on R. We say that µ is dominated by ν in
(stochastic) convex order, denoted by µ �c ν, if for all convex function ϕ,

Eµ[ϕ] ≤ Eν [ϕ].
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Moreover, two random variables X and Y are also said to be in convex order,
denoted by X �c Y , if law(X) �c law(Y ).

If two random variables X and Y are in convex order then by taking ϕ1(x) =
x and ϕ2(x) = −x, it can be shown that E[X ] = E[Y ]. Furthermore, using
ϕ3(x) = x2, one will obtain that Var(X) ≤ Var(Y ).
The next theorem shows that convex ordering in the distributions of the
marginal random variables is a sufficient and necessary condition for the
existence of a martingale measure.

Theorem 2.3 (Strassen [5]). Let µ, ν be probability measures on R. Then
the set M(µ, ν) is non-empty if and only if µ �c ν.

The following lemma, in conjunction with Strassen’s Theorem, will be used
to prove the sufficient condition for the existence of martingale measures.

Lemma 2.4 (Ohlin [4]). Suppose X and Y are random variables with fi-
nite and equal means. Let F and G be the distribution functions of X and
Y , respectively. Then X �c Y whenever there exists x0 ∈ R such that

F (x) ≤ G(x), ∀x ≤ x0 and F (x) ≥ G(x), ∀x ≥ x0.

Given a random variable X and its distribution function F , we define the
quantile function of X as

F−1(u) = inf{x ∈ R : F (x) ≥ u}.

In the case of a continuous random variable with strictly monotone distribu-
tion function, the quantile function is just the usual inverse of the distribution
function.

From here on, we only focus on martingale measures over R2. Even with this
streamlining, working with the set of martingale measures with arbitrary
marginal measures over R still proves to be difficult, so we first approximate
the marginal measures before looking at the set of martingale measures.

2.3 Quantization of Measure

Quantization is the mapping of possibly infinite values into a finite set. One
important application of quantization is on the approximation of a continuous
probability measure by a discrete measure with finite support. For this paper,
we shall be using the so-called Un-quantization from [3]. It is called Un-
quantization due to the fact that it produces a uniformly discrete random
variable with at most n mass points.
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Let X be a random variable with distribution µ and distribution function
F . Given n ∈ N, the Un-quantization of X is the discrete random variable
with distribution µn, which is a uniform discrete measure with mass points
a1, a2, . . . an, where

ai = n

∫ i
n

i−1

n

F−1(u) du. (2.1)

Here µn is referred as the Un-quantized version of µ.

Example 2.5. Consider an exponential random variable with F (x) = 1 −
e−0.125x, x ≥ 0. Hence the quantile function is given by F−1(u) = −8 ln(1−u),
u ∈ [0, 1]. If we take n = 5, then the mass points by (2.1) are

• a1 = −8[(−4) ln(4/5)− 1]

• a2 = −8[(−3) ln(3/5) + (4) ln(4/5)− 1]

• a3 = −8[(−2) ln(2/5) + (3) ln(3/5)− 1]

• a4 = −8[(−1) ln(1/5) + (2) ln(2/5)− 1]

• a5 = −8[ln(1/5)− 1]

Note that using this type of quantization doesn’t guarantee that the ai’s are
unique, but if the original random variable or measure is continuous then the
resulting mass points are unique and are in increasing order.

The next theorem shows that this type of approximation is an ideal tool for
the purpose of maintaining the existence of martingale measures even after
the quantization.

Theorem 2.6 ([3]). The Un-quantization preserves convex ordering, that is,
if X �c Y with U and V to be the Un-quantization of X and Y , respectively,
then U �c V .

3 Matrix Representation

After applying the Un-quantization to any measure, we can then represent
the quantized measure as an n-dimensional vector. It would also be of help,
if there is an easy way to represent a martingale measure with quantized
marginals.
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If Q is a probability measure on R2, then for any A,B ∈ B(R),

Q(A× B) =
∑

a∈A

P(Y ∈ B|X = a)P(X = a).

In particular, if ai and bj are mass points of the quantized versions of X and
Y , respectively, then

1

n
= P(Y = bj) =

n
∑

i=1

P(X = ai, Y = bj) =

n
∑

i=1

P(Y = bj |X = ai)P(X = ai)

=
n

∑

i=1

P(Y = bj |X = ai)
1

n

which implies that

n
∑

i=1

P(Y = bj |X = ai) = 1. Using the same line of rea-

soning, we get

n
∑

j=1

P(Y = bj |X = ai) = 1.

Since we are to fix the marginal measures to be discrete uniform distribu-
tions, knowledge of the transport plan is equivalent to the knowledge of
its transition probability. Moreover, similar to what is usually done with
Markov chains, we can associate every transport plan with a bistochastic
matrix B = (bij) that represents the transition probabilities, where bij =
P(Y = bj |X = ai).

A non-negative matrix B = (bij) ∈ Mn(R) is said to be an n× n bistochastic
matrix if

n
∑

k=1

bik = 1 and

n
∑

k=1

bkj = 1, for all i, j = 1, 2, . . . , n

One known result regarding bistochatic matrices is from Birkhoff.

Theorem 3.1 (Birkhoff). The set of all n × n bistochastic matrices, de-
noted by Dn, is an (n− 1)2-dimensional polytope in R

n2

.

4 Results

We now present our results starting with the sufficient and necessary condi-
tion for convex ordering of two Pareto distributed random variables, followed
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by the quantization of the desired marginal measures. We then give a char-
acterization, similar to that of Birkhoff, to the set of bistochastic matrices
that represent a martingale measure with quantized marginals. Lastly, we
look at certain sets of 3× 3 bistochastic matrices.

4.1 Convex Ordering

A random variable X is said to follow a Pareto Distribution with shape
parameter a > 0 and scale parameter k > 0, denoted by X ∼ Pareto(a, k), if

F (x) = 1−

(

k

x

)a

1[k,∞)(x).

Theorem 4.1. If X ∼ Pareto(a, k), then E[X ] =
ak

a− 1
, a > 1 and Var(X) =

ak2

(a− 1)2(a− 2)
, a > 2.

The next result gives us a necessary and sufficient condition for the exis-
tence of martingale measures with marginal measures that follow a Pareto
distribution.

Proposition 4.2. Suppose X ∼ Pareto(α, k) and Y ∼ Pareto(β, j) with

α, β > 2. Then, X �c Y if and only if α ≥ β, k ≥ j, and
αk

α− 1
=

βj

β − 1
.

Proof. If X �c Y then E[X ] = E[Y ], and hence
αk

α− 1
=

βj

β − 1
. Moreover

Var(X) ≤ Var(Y ), which then implies that
β

α− 2
≤

α

β − 2
. From this

inequality, it can then be shown that α ≥ β and eventually k ≥ j.
Conversely, if we take the distribution functions of X and Y as FX(x) =

1 −

(

k

x

)α

and FY (y) = 1 −

(

j

y

)β

, and assume that α ≥ β, k ≥ j, and

αk

α− 1
=

βj

β − 1
, then FX ≤ FY for all x ≤

(

kα

jβ

)
1

α−β

and FX ≥ FY for all

x ≥

(

kα

jβ

)
1

α−β

. So, by Lemma 2.4, X �c Y . �
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4.2 Quantized Version of the Pareto Distribution

Proposition 4.3. Suppose X ∼ Pareto(α, k), then its Un-quantized version
has mass points given by

ai = n
1

αk
α

α− 1

[

(n− i+ 1)
α−1

α − (n− i)
α−1

α

]

i = 1, . . . , n. (4.2)

The formula for the ai’s is a direct consequence of (2.1) and the fact that

FX(x) = 1 −

(

k

x

)α

, with x > k, while its quantile function is given by

F−1
X (u) = k(1− u)

−1

α , with u ∈ (0, 1).

4.3 Matrix Representation

We now present a characterization result for the set of martingale measures
with Un-quantized marginals. This theorem works for any marginal distri-
bution as long as the Un-quantization gives a support of n distinct points.

Proposition 4.4. Let X and Y be distinct, continuous random variables
such that law(X) = µ, law(Y ) = ν and X �c Y . Let n ∈ N, and take µn

and νn to be the Un-quantized version of µ and ν, respectively. Then, the
set of transition kernels corresponding to the elements of M(µn, νn) is an
(n− 1)(n− 2)-dimensional polytope.

Proof. Let µn have mass points a1, . . . , an while νn have mass points
b1, . . . , bn, obtained by using formula (2.1). Note that these mass points
are arranged in increasing order. If Q ∈ M(µn, νn), then there exists an
n × n bistochastic matrix M = (mij) corresponding to Q such that mij =
P[Y = bj |X = ai]. We then have the following equations satisfied by the
entries of M .

n
∑

k=1

mik = 1, i = 1, 2, . . . , n [Equations (1)− (n)]

n
∑

k=1

mkj = 1, j = 1, 2, . . . , n [Equations (n + 1)− (2n)]

n
∑

k=1

bkmik = ai, i = 1, 2, . . . , n [Equations (2n+ 1)− (3n)]

The first 2n equations are needed so that M is a bistochastic matrix, while
the last set of n equations guarantees that Q is a martingale measure. It
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can be shown that equation (2n) is a linear combination of equations (1) to
(2n−1). Moreover, equation (2n+1) can also be shown as a linear combina-
tion of the remaining 3n−2 equations. Lastly, the remaining 3n−2 equations
can be verified to be linearly independent. Hence, by using the rank-nullity
theorem, the dimension of the solution space is n2−(3n−2) = (n−2)(n−1).
Due to the fact that all the entries of M are between 0 and 1, the resulting
set M(µn, νn) will be the intersection of the above solution space and of all
flat regions having the form {e ∈ Rn2

: e(i) ∈ [0, 1], for some i ≤ n2}. �

Lastly, we look at the case when n = 3 and that the marginals follow a Pareto
distribution.

Proposition 4.5. Let X ∼ Pareto(α, k) and Y ∼ Pareto(β, j) be Pareto-
distributed random variables such that law(X) = µ and law(Y ) = ν and
X �c Y. If µ3 and ν3 are the U3−quantization of µ and ν, respectively, then
any martingale measure in M(µ3, ν3) can be associated to a matrix of the
form













b3−b2
b1−b2

x+ b3−b2
b1−b2

y + b1+b2−a2−a3
b1−b2

b3−b1
b2−b1

x+ b3−b1
b2−b1

y + b1+b2−a2−a3
b2−b1

1− x− y

a2−b2
b1−b2

− b3−b2
b1−b2

x a2−b1
b2−b1

− b3−b1
b2−b1

x x

a3−b2
b1−b2

− b3−b2
b1−b2

y a3−b1
b2−b1

− b3−b1
b2−b1

y y













,

where ai = 3
1

αk α
α−1

[

(3− i+ 1)
α−1

α − (3− i)
α−1

α

]

and bi = 3
1

β j β

β−1

[

(3− i+ 1)
β−1

β − (3− i)
β−1

β

]

, for all i = 1, 2, 3.

The point (x, y) would lie on the following feasible regions depending on three
cases:

Case 1: b3 − a3 ≤ a2 − b1 and
b3 − a3
b3 − b2

≤
a2 − b1
b3 − b1

.

Case 2: b3 − a3 ≤ a2 − b1 and
b3 − a3
b3 − b2

>
a2 − b1
b3 − b1

.

Case 3: b3 − a3 > a2 − b1.
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Feasible regions of Case 1 and Case 2

Feasible regions of Case 3

where

A =

(

b3 − a3
b3 − b1

,
a3 − b1
b3 − b1

)

, C =
(

a2−b2
b3−b2

,
a3b3+a2b1−a2b2−a3b2−b1b3+b2

2

(b3−b1)(b3−b2)

)

,

B =

(

a2 − b2
b3 − b2

,
a3 − b1
b3 − b1

)

, D =
(

a2b3+a3b1−a2b2−a3b2−b1b3+b2
2

(b3−b1)(b3−b2)
, a3−b2
b3−b2

)

,

E =

(

b3 − a3
b3 − b2

,
a3 − b2
b3 − b2

)

, M =
(

a3b3+a2b3−b2b3−a2b1−a3b1+b2
1

(b3−b1)(b3−b2)
, a3−b1
b3−b1

)

,

F =

(

a2 − b1
b3 − b1

,
b3 − a2
b3 − b1

)

, O =
(

a2−b1
b3−b1

,
a3b3+a2b2−b2b3−a2b1−a3b1+b2

1

(b3−b1)(b3−b2)

)

.

G =

(

a2 − b1
b3 − b1

,
a3 − b2
b3 − b2

)

,
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Proof. Since n = 3, by Proposition 4.4, we expect that the desired set of
3×3 bistochastic matrices has dimension 2. Furthermore, by using the algo-
rithm stated in the proof of the Proposition 4.4 and by taking m23 and m33 as
the generators, one would then yield the desired matrix. The corresponding
cases and their respective feasible regions arose from the restriction that the
matrix entries should be between 0 and 1.

�

It should be noted that the matrix representation given in the previous propo-
sition will work for any pair of continuous marginal distributions as long as
the two are in convex order, with the ai’s and bj ’s to be the mass points
obtained after quantization.

Example 4.6. Let X ∼ Pareto(4, 3) and Y ∼ Pareto
(

3, 8
3

)

. Using Proposi-
tion 4.2, we get X �c Y . Taking n = 3, the mass points of the U3-quantized
versions of X and Y are given below

i 1 2 3

ai 3
1

4 (4)
[

3
3

4 − 2
3

4

]

3
1

4 (4)
[

2
3

4 − 1
]

3
1

4 (4)

bi 3
1

3 (4)
[

3
2

3 − 2
2

3

]

3
1

3 (4)
[

2
2

3 − 1
]

3
1

3 (4)

.

Then, based on Proposition 4.5, any bistochastic matrix that has the form
seen below, with (x, y) lying on the following region, is a transition matrix of
some martingale measure.





−4.3561x− 4.3561y + 4.7992 5.3561x+ 5.3561y − 4.7992 1− x− y
−0.3668 + 4.3561x 1.3668− 5.3561x x
−3.4324 + 4.3561y 4.4324− 5.3561y y
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5 Summary and Further Works

Using the Un-quantization on Pareto distributed random variables, we came
up with discrete marginal measures having n support points. Furthermore,
since this type of quantization preserves the convex ordering of the original
measures, we came up with a set of martingale measures which are then
represented by bistochastic matrices. It was also shown that using such
quantization, the set of martingale measures is (n − 2)(n − 1)-dimensional.
Future direction for this kind of research can involve the use of a different
quantization technique as well as the characterization of the set of martin-
gale measures having continuous marginal measures (non-quantized). Also
of interest would be the use of such sets in optimizing certain reward/cost
functions and examining if convergence is achieved as the number of support
points increase.
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[2] M. Beiglböck, M. Nutz, N. Touzi, Complete Duality for Martingale Opti-
mal Transport on the Line, The Annals of Probability, 45, no. 5, (2015),
3038–3074.

[3] D. Baker, Quantizations of probability measures and preservation of the
convex order, Statistics and Probability Letters, 107, (2015), 280–285.

[4] J. Ohlin, On a Class of Measures of Dispersion with Application to
Optimal Reinsurance, ASTIN Bulletin, 5, (1969), 249–266.

[5] V. Strassen, The existence of probability measures with given marginals,
Annals of Mathematical Statistics, 36, (1965), 423–439.

[6] M. Shaked, J. Shanthikumar, Stochastic Orders, 2006.

[7] Cedric Villani, Optimal Transport: Old and New, 2008.


