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Abstract

Let Γ̄G and ΓG be the commuting and non-commuting graphs on
a finite group G, respectively, having G\Z(G) as the vertex set, where
Z(G) is the center of G. The order of Γ̄G and ΓG is |G\Z(G)|, denoted
by m. For ΓG, the edge joining two distinct vertices vp, vq ∈ G\Z(G) if
and only if vpvq 6= vqvp, on the other hand, whenever they commute in
G, vp and vq are adjacent in Γ̄G. The degree subtraction matrix (DSt)
of ΓG is denoted by DSt(ΓG), so that its (p, q)−entry is equal to dvp −
dvq , if vp 6= vq, and zero if vp = vq, where dvp is the degree of vp. For
i = 1, 2, . . . ,m, the maximum of |λi| as the DSt−spectral radius of ΓG

and the sum of |λi| as DSt−energy of ΓG, where λi are the eigenvalues
of DSt(ΓG). These notations can be applied analogously to the degree
subtraction matrix of the commuting graph, DSt(Γ̄G). Throughout
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this paper, we provide DSt−spectral radius and DSt−energy of ΓG

and Γ̄G for dihedral groups of order 2n, where n ≥ 3. We then present
the correlation of the energies and their spectral radius.

1 Introduction

There are many types of graphs whose vertices are elements of a finite group
G and two vertices will be linked by an edge subject to the type of graph
constructed. In this paper we are concerned with the commuting and non-
commuting graphs, having G\Z(G) as its vertices, where Z(G) is the center
of G. The non-commuting graph, denoted by ΓG, with the edge joining two
distinct vertices vp, vq ∈ G\Z(G) if and only if vpvq 6= vqvp [1]. On the other
hand, the commuting graph, Γ̄G, is the complement of ΓG with vp and vq are
joined by an edge whenever vpvq = vqvp [2]. Here ΓG and Γ̄G are considered
finite, simple, and undirected and their order is |G\Z(G)|, denoted by m.

Research on commuting and non-commuting graphs have developed in
algebraic graph theory through the years. Several works on the commuting
and non-commuting graphs especially for dihedral groups can be seen in [3,
4, 5, 6], which discusses the spectral and energy problem using the spectrum
of various matrices associated with ΓG and Γ̄G. The analogous concept of
commuting graph for finite non-abelian groups, the spectrum associated with
the adjacency matrix is given in [7]. Also, the ordinary spectrum and energy
of ΓG for finite groups inclusive of dihedral groups can be found in [8].

The energy of graph concept was introduced by Gutman in 1978 [9] whose
definition relates to the ordinary graph spectrum of the adjacency matrix.
This motivates the researchers to study the various graph energies involving
different matrices, such as the degree subtraction energy of a graph. Ramane
et al. [10] introduced this definition in 2018, the m ×m degree subtraction
matrix (DSt) of ΓG, defined as DSt(ΓG) = [dstpq], where

dstpq =

{

dvp − dvq , if vp 6= vq
0, if vp = vq,

and dvi be the degree of a vertex vi ∈ G\Z(G), for i = 1, 2, . . . , m.
The DSt−eigenvalues of DSt(ΓG) denoted by λ1 ≥ λ2 ≥ . . . ≥ λm are the

roots of the characteristic polynomial of DSt(ΓG), PDSt(ΓG)(λ) = det(λIm −
DSt(ΓG)), where Im is an m × m identity matrix. For i = 1, 2, . . . , m, the
maximum of |λi| is theDSt−spectral radius of ΓG, denoted by ρDSt(ΓG). The
DSt−spectrum of ΓG is denoted by Spec(ΓG) =

{

λk1
1 , λk2

2 , . . . λkm
m

}

where ki
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are the respective multiplicities of λi [11]. Now, DSt−energy of ΓG is defined
as EDSt(ΓG) = Σm

i=1 |λi|. Moreover, the above notations can be applied anal-
ogously to the degree subtraction matrix of the commuting graph, DSt(Γ̄G).

Throughout this note, we focus on dihedral groups of order 2n for n ≥ 3,
written as

D2n =
〈

a, b : an = b2 = e, bab = a−1
〉

,

and Z(D2n) is the center of D2n defined as {e} if n is odd and
{

e, a
n
2

}

for
the even n. The centralizer of the element ai in D2n is CD2n

(ai) = {aj : 1 ≤
j ≤ n} and for the element aib is either CD2n

(aib) = {e, aib}, if n is odd, or
CD2n

(aib) =
{

e, a
n
2 , aib, a

n
2
+ib

}

, if n is even.

2 Preliminaries

We need some properties for constructing the degree subtraction matrix ΓG

and Γ̄G for G = G1 ∪ G2, where G1 = {ai : 1 ≤ i ≤ n}\Z (D2n) and
G2 = {aib : 1 ≤ i ≤ n}. Several results on the vertex degree of ΓG and Γ̄G

are given in Theorem 2.1 and 2.3. The isomorphism of ΓG and Γ̄G with some
types of common graphs are presented in Theorem 2.2 and 2.4.

Theorem 2.1. [12] Let ΓG be the non-commuting graph on G = G1 ∪ G2.
Then

1. the degree of ai in ΓG is dai = n, and

2. the degree of aib in ΓG is daib =

{

2(n− 1), if n is odd
2(n− 2), if n is even.

Theorem 2.2. [12] Let ΓG be the non-commuting graph on G = G1 ∪G2.

1. If G = G1, then ΓG
∼= K̄m, where m = |G1|.

2. If G = G2, then ΓG
∼=

{

Kn, if n is odd
Kn −

n
2
K2, if n is even,

for a complete graph Kn on n vertices with K̄n is the complement of Kn

where n
2
K2 denotes n

2
copies of K2.

Theorem 2.3. [5] Let Γ̄G be the commuting graph on G = G1 ∪G2. Then

1. the degree of ai in Γ̄G is dai =

{

n− 2, if n is odd
n− 3, if n is even,

and
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2. the degree of aib in Γ̄G is daib =

{

0, if n is odd
1, if n is even.

Theorem 2.4. [5] Let Γ̄G be the commuting graph for G.

1. If G = G1, then Γ̄G
∼= Km, where m = |G1|.

2. If G = G2, then Γ̄G
∼=

{

K̄n, if n is odd
1− regular graph, if n is even.

The following lemma is used to assist in the determination of the charac-
teristic polynomial of ΓG and Γ̄G for G = G1 ∪G2.

Lemma 2.5. [13] If a, b, c and d are real numbers, and Jn is an n×n matrix
whose all entries are equal to one, then the determinant of the (n1 + n2) ×
(n1 + n2) matrix of the form

∣

∣

∣

∣

(λ+ a)In1
− aJn1

−cJn1×n2

−dJn2×n1
(λ+ b)In2

− bJn2

∣

∣

∣

∣

can be simplified in an expression as

(λ+ a)n1−1(λ+ b)n2−1 ((λ− (n1 − 1) a) (λ− (n2 − 1) b)− n1n2cd) ,

where 1 ≤ n1, n2 ≤ n and n1 + n2 = n.

3 Main Results

In this section, we start with finding the degree subtraction energy of com-
muting and non-commuting graphs, Γ̄G and ΓG for G = G1 and G = G2.

Theorem 3.1. Let Γ̄G and ΓG be the commuting and non-commuting graphs
on G, respectively. For G = G1 or G2, then

EDSt(ΓG) = EDSt(Γ̄G) = 0.

Proof. 1. Let G = G1 and m being the number of elements in G1. Hence,
m = n − 1 for odd n, and m = n − 2 for even n. Consequently,
from Theorem 2.2 (1), the non-commuting graph ΓG

∼= K̄m implies
every vertex of ΓG has degree zero. On the contrary, every vertex
of the commuting graph Γ̄G

∼= Km has a degree of either n − 2 for
odd n, or n − 3 for even n. However, by the definition of the degree
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subtraction matrix, not only the diagonal entries of DSt(Γ̄G) are zero,
but all non-diagonal entries are also zero, since (n− 2)− (n− 2) = 0 =
(n−3)−(n−3). Then, evidently DSt(ΓG) = DSt(Γ̄G) = [0]. It follows
that zero is the only eigenvalue of DSt(ΓG) and DSt(Γ̄G). Therefore,
EDSt(ΓG) = EDSt(Γ̄G) = 0.

2. When G = G2 and n is odd, Theorem 2.2 (2) gives ΓG
∼= Kn, which

means the degree of each vertex is n − 1. Consequently, the (p, q)−th
entry of DSt(ΓG) is (n − 1) − (n − 1) = 0, for vp 6= vq, and it is zero
for vp = vq. Moreover, due to the fact that Γ̄G

∼= K̄m by Theorem
2.4 (2), all entries of DSt(Γ̄G) are also zero. Hence, both DSt(ΓG)
and DSt(Γ̄G) are zero matrices. Thus, EDSt(ΓG) = EDSt(Γ̄G) = 0.
Now for the even n case, as it is known from Theorem 2.2 (2), ΓG

∼=
Kn − n

2
K2, which implies daib is n − 2. Following the definition of

the degree subtraction matrix of ΓG, we know that the non-diagonal
entries of DSt(ΓG) are (n− 2)− (n− 2) = 0 and zero for the diagonal
entries. Similarly, all of the entries of DSt(Γ̄G) are also zero, because
the commuting graph Γ̄G is a regular graph with degree one and so
1 − 1 = 0, for vp 6= vq, and it is zero for vp = vq. Then, in the same
manner, as in the odd n case, we obtain EDSt(ΓG) = EDSt(Γ̄G) = 0.

In the next two theorems, we formulate the characteristic polynomial of
DSt(Γ̄G) and DSt(ΓG) for G = G1 ∪G2.

Theorem 3.2. Let ΓG be non-commuting graphs on G, where G = G1∪G2 ⊂
D2n, then the characteristic polynomial of the degree subtraction matrix of
ΓG is

1. PDSt(ΓG)(λ) = λ2n−3 (λ2 + n(n− 1)(n− 2)2), for odd n, and

2. PDSt(ΓG)(λ) = λ2(n−2) (λ2 + n(n− 2)(n− 4)2), for even n.

Proof. 1. The first proof for the odd n, we know that Z(D2n) = {e}.
So ΓG has 2n − 1 vertices where G = G1 ∪ G2. We write the set
G1 as {a, a2, . . . , an−1} and G2 as {b, ab, a2b, . . . , an−1b}. Considering
Theorem 2.1 we get that dai = n and daib = 2(n − 1), for all i =
1, 2, . . . , n. Now the degree subtraction matrix of ΓG is the (2n− 1)×
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(2n− 1) matrix,

DSt(ΓG) =

a . . . an−1 b . . . an−1b




































a 0 . . . 0 −(n− 2) . . . −(n− 2)
...

...
. . .

...
...

. . .
...

an−1 0 . . . 0 −(n− 2) . . . −(n− 2)
b n− 2 . . . n− 2 0 . . . 0
...

...
. . .

...
...

. . .
...

an−1b n− 2 . . . n− 2 0 . . . 0

.

Here, the degree subtraction matrix of ΓG can be obtained as the block
matrices

DSt(ΓG) =

(

0n−1 −(n− 2)J(n−1)×n

(n− 2)Jn×(n−1) 0n

)

,

and the determinant below is the characteristic polynomial ofDSt(ΓG),

PDSt(ΓG)(λ) = |λI2n−1 −DSt(ΓG)| =

∣

∣

∣

∣

λIn−1 (n− 2)J(n−1)×n

−(n− 2)Jn×(n−1) λIn

∣

∣

∣

∣

.

By Lemma 2.5, with a = b = 0, c = −(n − 2), d = n − 2, n1 = n − 1
and n2 = n, we get the required result.

2. As it is known for n is even, Z(D2n) = {e, a
n
2 } implies that there are

2n− 2 vertices for ΓG, where G = G1 ∪G2, with n− 2 vertices ai, 1 ≤
i < n

2
, n

2
< i < n and n vertices aib, for 1 ≤ i ≤ n. We label the set G1

as {a, a2, . . . , a
n
2
−1, a

n
2
+1, . . . , an−1} and G2 as {b, ab, a

2b, . . . , an−1b}. A
similar argument as given in Theorem 2.1 is dai = n and daib = 2(n−2),
consequently the degree subtraction matrix of ΓG is DSt(ΓG) of the size
(2n− 2)× (2n− 2),

a . . . a
n

2
−1 a

n

2
+1 . . . an−1 b . . . an−1b

































































a 0 . . . 0 0 . . . 0 −(n− 4) . . . −(n− 4)
...

...
. . .

...
...

. . .
...

...
. . .

...
a

n

2
−1 0 . . . 0 0 . . . 0 −(n− 4) . . . −(n− 4)

a
n

2
+1 0 . . . 0 0 . . . 0 −(n− 4) . . . −(n− 4)
...

...
. . .

...
...

. . .
...

...
. . .

...
an−1 0 . . . 0 0 . . . 0 −(n− 4) . . . −(n− 4)
b n− 4 . . . n− 4 n− 4 . . . n− 4 0 . . . 0
...

...
. . .

...
...

. . .
...

...
. . .

...
an−1b n− 4 . . . n− 4 n− 4 . . . n− 4 0 . . . 0

.
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Here DSt(ΓG) can be partitioned as the block matrices

DSt(ΓG) =

(

0n−2 −(n− 4)J(n−2)×n

(n− 4)Jn×(n−2) 0n

)

,

and the characteristic polynomial of DSt(ΓG) as follows

PDSt(ΓG)(λ) = |λI2n−2 −DSt(ΓG)| =

∣

∣

∣

∣

λIn−2 (n− 4)J(n−2)×n

−(n− 4)Jn×(n−2) λIn

∣

∣

∣

∣

.

Lemma 2.5 is further applied with a = b = 0, c = −(n− 4), d = n− 4,
n1 = n− 2 and n2 = n, which leads to

PDSt(ΓG)(λ) = λ2(n−2)
(

λ2 + n(n− 2)(n− 4)2
)

.

Theorem 3.3. Let Γ̄G be the commuting graph on G, where G = G1 ∪
G2 ⊂ D2n, where n ≥ 3. Then the characteristic polynomial of the degree
subtraction matrix of Γ̄G is

1. PDSt(Γ̄G)(λ) = λ2n−3 (λ2 + n(n− 1)(n− 2)2), for odd n, and

2. PDSt(Γ̄G)(λ) = λ2(n−2) (λ2 + n(n− 2)(n− 4)2) , for even n.

Proof. 1. When n is odd and G = G1 ∪G2 ⊂ D2n, considering the prop-
erties from Theorem 2.3 that dai = n−2 and daib = 0, for all 1 ≤ i ≤ n
together with the definition of the degree subtraction matrix, then
DSt(Γ̄G) is an (2n− 1)× (2n− 1) matrix as follows:

DSt(Γ̄G) =

a . . . an−1 b . . . an−1b




































a 0 . . . 0 n− 2 . . . n− 2
...

...
. . .

...
...

. . .
...

an−1 0 . . . 0 n− 2 . . . n− 2
b −(n− 2) . . . −(n− 2) 0 . . . 0
...

...
. . .

...
...

. . .
...

an−1b −(n− 2) . . . −(n− 2) 0 . . . 0

.

In other words, DSt(Γ̄G) can be partitioned into four blocks,

DSt(Γ̄G) =

(

0n−1 (n− 2)J(n−1)×n

−(n− 2)Jn×(n−1) 0n

)

.
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Here, the characteristic polynomial of DSt(Γ̄G) is

PDSt(Γ̄G)(λ) =

∣

∣

∣

∣

λIn−1 −(n− 2)J(n−1)×n

(n− 2)Jn×(n−1) λIn

∣

∣

∣

∣

.

Using Lemma 2.5 with a = b = 0, c = n− 2, d = −(n− 2), n1 = n− 1
and n2 = n, it is clear that

PDSt(Γ̄G)(λ) = λ2n−3
(

λ2 + n(n− 1)(n− 2)2
)

.

2. By Theorem 2.3 for the even n, we know that dai = n−3 and daib = 1.
For G = G1 ∪G2 ⊂ D2n, in the same way for labeling G1 and G2 with
the proof of Theorem 3.2 (2), we then obtain the degree subtraction
matrix of Γ̄G, DSt(Γ̄G) is an (2n− 2)× (2n− 2) matrix,

a . . . a
n

2
−1 a

n

2
+1 . . . an−1 b . . . an−1b









































































a 0 . . . 0 0 . . . 0 n− 4 . . . n− 4
...

...
. . .

...
...

. . .
...

...
. . .

...

a
n

2
−1 0 . . . 0 0 . . . 0 n− 4 . . . n− 4

a
n

2
+1 0 . . . 0 0 . . . 0 n− 4 . . . n− 4
.
..

.

..
. . .

.

..
.
..

. . .
.
..

.

..
. . .

.

..
an−1 0 . . . 0 0 . . . 0 n− 4 . . . n− 4
b −(n− 4) . . . −(n− 4) −(n− 4) . . . −(n− 4) 0 . . . 0
...

...
. . .

...
...

. . .
...

...
. . .

...
an−1b −(n− 4) . . . −(n− 4) −(n− 4) . . . −(n− 4) 0 . . . 0

.

We then provide the block matrices of DSt(Γ̄G),

DSt(Γ̄G) =

(

0n−2 (n− 4)J(n−2)×n

−(n− 4)Jn×(n−2) 0n

)

.

Here, the characteristic polynomial of DSt(Γ̄G) is

PDSt(Γ̄G)(λ) =

∣

∣

∣

∣

λIn−2 −(n− 4)J(n−2)×n

(n− 4)Jn×(n−2) λIn

∣

∣

∣

∣

.

Again by Lemma 2.5 with a = b = 0, c = n−4, d = −(n−4), n1 = n−2
and n2 = n, we get

PDSt(Γ̄G)(λ) = λ2(n−2)
(

λ2 + n(n− 2)(n− 4)2
)

.
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Now as a result of two preceding theorems, we can relate the characteristic
polynomial of ΓG and Γ̄G as shown in the following corollary:

Corollary 3.4. Let ΓG and Γ̄G be the non-commuting and commuting graphs
on G, respectively, where G = G1 ∪G2, then PDSt(ΓG)(λ) = PDSt(Γ̄G)(λ).

In the next discussion, we focus on the relationship between the degree
subtraction energy of commuting and non-commuting graphs for G = G1 ∪
G2. First, we need to find the spectrum and the spectral radius of ΓG and
Γ̄G as presented below.

Theorem 3.5. Let ΓG be the non-commuting graph and Γ̄G be the commut-
ing graph on G, where G = G1 ∪G2, then DSt−spectral radius are

1. ρDSt(ΓG) = ρDSt(Γ̄G) = (n− 2)
√

n(n− 1), for odd n, and

2. ρDSt(ΓG) = ρDSt(Γ̄G) = (n− 4)
√

n(n− 2), for even n.

Proof. 1. The result according to Corollary 3.4 is that the spectrum of ΓG

and Γ̄G are the same. Theorem 3.2 (1) and Theorem 3.3 (1) give one
real eigenvalue and two complex eigenvalues obtained from PDSt(ΓG)(λ)
and PDSt(Γ̄G)(λ), for odd n. They are λ1 = 0 of multiplicity 2n − 3,

λ2 = i(n − 2)
√

n(n− 1) of multiplicity 1 and a single λ2 = −i(n −

2)
√

n(n− 1). Hence, the spectrum of ΓG and Γ̄G are as follows:

Spec(ΓG) = Spec(Γ̄G) =

{

(

i(n− 2)
√

n(n− 1)
)1

, (0)2n−3,
(

−i(n− 2)
√

n(n− 1)
)1

}

.

Evidently, the DSt−spectral radius of ΓG and Γ̄G is

ρDSt(ΓG) = ρDSt(Γ̄G) = (n− 2)
√

n(n− 1).

2. The eigenvalues of ΓG and Γ̄G for even n are given by the roots of
PDSt(ΓG)(λ) = PDSt(Γ̄G)(λ) = 0 which is obtained from Theorem 3.2 (2)
and Theorem 3.3 (2). The first eigenvalue is λ1 = 0 with the multiplic-

ity 2(n−2), the other two eigenvalues are λ2 = i(n−4)
√

n(n− 2) and

λ3 = −i(n − 4)
√

n(n− 2) of multiplicity 1, respectively. So that the
spectrum of ΓG and Γ̄G are

Spec(ΓG) = Spec(Γ̄G) =

{

(

i(n− 4)
√

n(n− 2)
)1

, (0)2(n−2),
(

−i(n− 4)
√

n(n− 2)
)1

}

.

Taking the maximum modulus eigenvalues, then we get theDSt−spectral
radius of ΓG and Γ̄G as follows

ρDSt(ΓG) = ρDSt(Γ̄G) = (n− 4)
√

n(n− 2).
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Theorem 3.6. Let Γ̄G and ΓG be the commuting and non-commuting graph
on G, respectively, where G = G1 ∪ G2, then the degree subtraction energy
for ΓG and Γ̄G are

1. EDSt(ΓG) = EDSt(Γ̄G) = 2(n− 2)
√

n(n− 1), for odd n, and

2. EDSt(ΓG) = EDSt(Γ̄G) = 2(n− 4)
√

n(n− 2), for even n.

Proof. 1. Calculating the eigenvalues from Spec(ΓG) and Spec(Γ̄G) in
Theorem 3.5 (1), the degree subtraction energy of ΓG and Γ̄G are then
given by

EDSt(ΓG) =EDSt(Γ̄G)

=(2n− 3)|0|+
∣

∣

∣i(n− 2)
√

n(n− 1)
∣

∣

∣+
∣

∣

∣−i(n− 2)
√

n(n− 1)
∣

∣

∣

=2(n− 2)
√

n(n− 1).

2. Using Spec(ΓG) and Spec(Γ̄G) given in Theorem 3.5 (2) for the even
n, we get the degree subtraction energy of ΓG and Γ̄G,

EDSt(ΓG) =EDSt(Γ̄G)

=2(n− 2)|0|+
∣

∣

∣
i(n− 4)

√

n(n− 2)
∣

∣

∣
+
∣

∣

∣
−i(n− 4)

√

n(n− 2)
∣

∣

∣

=2(n− 4)
√

n(n− 2).

By observing Theorem 3.5 and Theorem 3.6, we find the following rela-
tion.

Corollary 3.7. Let ΓG and Γ̄G be the non-commuting and commuting graphs
on G, respectively, where G = G1 ∪ G2, then EDSt(ΓG) = EDSt(Γ̄G) =
2ρDSt(ΓG) = 2ρDSt(Γ̄G).

4 Conclusion

In this paper, we present the formula of DSt−spectrum, DSt−spectral ra-
dius, and DSt−energy of ΓG and Γ̄G for G = D2n\Z(D2n). DSt−energy is
similar for both ΓG and Γ̄G, which is either 2(n−2)

√

n(n− 1), for odd n, or

2(n − 4)
√

n(n− 2), for even n, and also equal to twice their DSt−spectral
radius.
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