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Abstract

The neighborhood color set of each vertex v in a vertex-colored
graph G is defined as the collection of the colors of all the neighbors
of v. If there are no two adjacent vertices that have equal neighbor-
hood color sets, then the coloring is called a set coloring of G. The
set coloring problem on G refers to the problem of determining its
set chromatic number, which refers to the fewest colors using which
a set coloring of G may be constructed. In this work, we consider
the set coloring problem on graphs obtained from applying middle
graph, a unary graph operation. The middle graph of G is the graph
whose vertex set is the union of V (G) and E(G) and whose edge set
is {{u, uv} : u ∈ V (G) and uv ∈ E(G)} ∪ {{uv1, uv2} : uv1, uv2 ∈
E(G) and v1 6= v2}. We consider the set coloring problem on the
middle graph of different tree families such as brooms, double brooms
and caterpillars. We construct set colorings of such graphs using al-
gorithms or explicit formulas. By proving the optimality of these set
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colorings, we obtain the set chromatic number for these different graph
families.

1 Introduction

We consider the set coloring problem on the middle graph of different tree
families such as brooms, double brooms, and caterpillars. We denote by Nk,
where k is some positive integer, the set {1, 2, ..., k}. We denote by NG(v)
the collection of neighbors of v in a graph/subgraph G. We begin by defining
set colorings.

Definition 1.1 ([2]). Suppose c : V (G) → N is a coloring of a graph G.
For each vertex v in G, the neighborhood color set NC(v) of v is defined
to be the collection of all colors of all neighbors of v. If there are no two
adjacent vertices that have equal neighborhood color sets (NC), we say that c
is a set coloring. Moreover, the set chromatic number χs(G) of G is defined
to be the minimum number of colors using which a set coloring of G may be
constructed.

As stated in [2], the set chromatic number of a graph G is at most its
chromatic number. There have been different studies focused on set colorings:
[6] dealt mainly with perfect graphs while [3] considered random graphs.
There have also been studies in which the set coloring problem is studied in
the context of different graph operations. For example, previous works have
studied set coloring in relation to corona [2], join [5, 11], comb product [5],
total graph [14], and middle graph [4].

Thus, in line with these recent works, this paper aims to continue the
work done in [4], in particular, by considering the set coloring problem on the
middle graph of different tree families. The graph operation middle graph was
introduced in [7] and was defined using the notion of intersection graph. In
this paper, we adopt the following equivalent definition: Given a graph G, its
middle graph M(G) can be obtained by taking the vertex set of M(G) to be
the union of V (G) and E(G) and its edge set to be E(M(G)) = {{u, uv} : u ∈
V (G) and uv ∈ E(G)}∪{{uv1, uv2} : uv1, uv2 ∈ E(G) and v1 6= v2}. In [10],
it was established that χ(M(G)) = ∆(G) + 1, where ∆(G) := max{deg v :
v ∈ V (G)}. Consequently, ∆(G)+1 ≥ χs(M(G)) as well. A lower bound for
χs(M(G)), when G has pendant vertices, has also been obtained previously.

Lemma 1.2 ([4]). Let G be a graph that has at least one vertex with degree
1. For each vertex v in G, set S(v) = {w : vw ∈ E(G) and degw = 1}.
Then χs(M(G)) ≥ 1 + max{|S(v)| : v ∈ V (G)}.
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Aside from set coloring, there have also been other graph colorings with
which middle graph has been studied. For instance, there have been studies
on sigma coloring [9], equitable coloring [12], harmonious coloring [1], r-
dynamic vertex coloring [8], and irregular coloring [13].

In this paper, we will consider the middle graph of different tree fami-
lies such as brooms, double brooms and caterpillars. As different references
may have different formulations and notations for these graph families, our
definitions are given hereunder.

Definition 1.3. Let s, t, t1, t2 be positive integers and x1, x2, ..., xs be non-
negative integers. Let Ps = v1v2 · · · vs be a path graph with s vertices.

1. The broom Bs,t is the graph obtained by identifiying an endvertex of the
Ps and the central vertex of the star K1,t.

2. For t1 ≥ t2, the double broom DBs,t1,t2 is the graph obtained by identi-
fying one endvertex of Ps, where s ≥ 2, to the central vertex of the star
K1,t1 and identifying the other endvertex of Ps to the central vertex of
K1,t2.

3. The caterpillar graph Ps(x1, x2, ..., xs) is the tree obtained by appending,
for each i ∈ {1, 2, ..., s}, xi pendant vertices to the vertex vi of Ps.

2 The set chromatic numbers of the middle

graph of brooms and double brooms

We consider the set coloring problem on the middle graph of brooms and
double brooms. To this end, we will construct optimal set colorings of these
graphs using explicit formulas. Figure 1 and Figure 2 show the middle graph
of the broom Bs,t and of the double broom DBs,t1,t2 , respectively.

Figure 1: M(Bs,t) Figure 2: M(DBs,t1,t2)
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First, we note that optimal set colorings of the middle graph of path
graphs Pn, star graphsK1,m, and double-star graphs St1,t2 , where n,m, t1, t2 ∈
N, have already been constructed in [4]. Thus, we can already set aside
brooms and double brooms that are isomorphic to any of these previously
studied graphs. Since the brooms B1,t, B2,t, and Bs,1 are isomorphic to
K1,t, K1,t+1, Ps+1, respectively, we are left to consider broomsBs,t where s ≥ 3
and t ≥ 2. Similarly, the double brooms DB2,t1,t2 , DBs,1,1, and DBs,t1,1 are
isomorphic to St1,t2 (a double-star graph), Ps+2, and Bs+1,t1 , respectively, so
we only need to consider double broomsDBs,t1,t2 where s ≥ 3 and t1 ≥ t2 ≥ 2.

Our main result on brooms is as follows.

Theorem 2.1. If s ≥ 3 and t ≥ 2, then χs(M(Bs,t)) = t+ 1.

Proof. Refer to Figure 1 for the middle graph of Bs,t and the labels we will
use to refer to the vertices of M(Bs,t). Note also the sets R and Q of vertices
shown in Figure 1. Observe that in Bs,t, the vertex vs has one nonpendant
neighbor vs−1 and |Q| = t pendant neighbors. Hence, by Lemma 1.2, we
have χs(M(Bs,t)) ≥ t+ 1.

We will now prove that the coloring c : V (M(Bs,t)) → Nt+1 defined by
the following procedure is a set coloring.

1. Set c(Q) = Nt+1 r {1}.

2. Set c(R ∪ {vs}) = {1}.
3. (a) If s ≡ 0 (mod 3), set

c(vk) =











3, i ≡ 0 (mod 3) & i < s,

2, i ≡ 2 (mod 3),

1 i ≡ 1 (mod 3),

c(uk) =











3, i ≡ 1 (mod 3),

2, i ≡ 0 (mod 3),

1, i ≡ 2 (mod 3).

(b) If s ≡ 1 (mod 3), set

c(vi) =











3, i ≡ 1 (mod 3) & i < s,

2, i ≡ 0 (mod 3),

1, i ≡ 2 (mod 3),

c(ui) =











3, i ≡ 2 (mod 3),

2, i ≡ 1 (mod 3),

1, i ≡ 0 (mod 3).

(c) If s ≡ 2 (mod 3), set

c(vi) =











3, i ≡ 2 (mod 3) & i < s,

2, i ≡ 1 (mod 3),

1, i ≡ 0 (mod 3),

c(ui) =











3, i ≡ 0 (mod 3),

2, i ≡ 2 (mod 3),

1, i ≡ 1 (mod 3).

It is clear that c uses exactly t + 1 colors. Observe that for any s ≥ 3,
we have c(us−1) = 1, c(vs−1) = 2, and c(us−2) = 3. Moreover, for i ∈
{2, 3, ..., s − 2}, we have c(ui−1) = c(vi+1) while for i ∈ {1, 2, ..., s − 2}, we
have c(vi) = c(ui+1). Using these properties, we construct Table 1, which
presents the NCs of the vertices of M(Bs,t).
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Table 1: The NC of each vertex of M(Bs,t)

Vertex Neighbors NC

v ∈ S r ∈ R w/ vr ∈ E(M(Bs,t)) {1}
r ∈ R v ∈ S w/ vr ∈ E(M(Bs,t)); {c(v), 1}

Rr {r}; vs; us−1

vs us−1;R {1}
us−1 vs−1; us−2; vs;R {1, 2, 3}
vi, i ∈ {2, ..., s− 1} ui−1; ui {c(ui−1), c(ui)}
ui, i ∈ {2, ..., s− 2} ui−1; vi; vi+1; ui+1 {c(vi), c(vi+1)}
u1 v1; v2; u2 {c(v1), c(v2)}
v1 u1 {c(u1)}

From Table 1, we see that there are no two adjacent vetices of M(Bs,t)
that have equal neighborhoood color sets.

Our main result on double brooms is as follows.

Theorem 2.2. If s ≥ 3 and t1 ≥ t2 ≥ 2 such that t1 ≥ 3, then

χs(M(DBs,t1,t2)) = t1 + 1.

Proof. Refer to Figure 2 for the middle graph of DBs,t1,t2 and the labels we
will use to refer to the vertices of M(DBs,t1,t2). Note also the sets R1, R2, Q1,
and Q2 of vertices shown in Figure 2. Observe that in DBs,t1,t2, the vertex
v1 has one nonpendant neighbor v2 and |Q1| = t1 pendant neighbors. Hence,
by Lemma 1.2, we have χs(M(DBs,t1,t2)) ≥ t1 + 1.

To complete the proof, we will show that the coloring c : V (M(DBs,t1,t2))
→ Nt1+1 defined by the following procedure is a set coloring.

1. Set c(Q2) = N|S2|+1 r {1}.

2. Set c(R2 ∪ {vs}) = {1}.
3. (a) If s ≡ 0 (mod 3), set

c(vi) =











3, i ≡ 0 (mod 3) & i < s,

2, i ≡ 2 (mod 3),

1, i ≡ 1 (mod 3) & i > 1,

c(ui) =











3, i ≡ 1 (mod 3) & i > 1,

2, i ≡ 0 (mod 3),

1, i ≡ 2 (mod 3).

(b) If s ≡ 1 (mod 3), set

c(vi) =











3, i ≡ 1 (mod 3) & 1 < i < s,

2, i ≡ 0 (mod 3),

1, i ≡ 2 (mod 3),

c(ui) =











3, i ≡ 2 (mod 3),

2, i ≡ 1 (mod 3) & i > 1,

1, i ≡ 0 (mod 3).
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(c) If s ≡ 2 (mod 3), set

c(vi) =











3, i ≡ 2 (mod 3) & i < s,

2, i ≡ 1 (mod 3) & i > 1,

1, i ≡ 0 (mod 3),

c(ui) =











3, i ≡ 0 (mod 3),

2, i ≡ 2 (mod 3),

1, i ≡ 1 (mod 3) & i > 1.

4. Set c({v1, u1}) = {t1 + 1}.

5. Fix one vertex y ∈ R1 and set c(y) = t1. Set c(R1 r {y}) = {t1 + 1}.

6. For z ∈ Q1 such that yz ∈ E(M(DBs,t1,t2)), set c(z) = 1. Then set
c(Q1 r {z}) = Nt1−1.

It is clear that c uses exactly t1 + 1 colors. Moreover, observe that
c(us−1) = 1 for all s ≥ 3, that c(ui−1) = c(vi+1) for all i ∈ {3, 4, ..., s − 2},
and that c(vi) = c(ui+1) for all i ∈ {2, 3, ..., s− 2}. Using these properties,
we construct Table 2, which presents the NCs of the vertices of M(DBs,t1,t2).
From Table 2, we see that there are no two adjacent vetices of M(DBs,t1,t2)

Table 2: The NC of each vertex of M(DBs,t1,t2)

Vertex Neighbors NC

v ∈ S2 r ∈ R2 w/ vr ∈ E(M(DBs,t1,t2)) {1}
r ∈ R2 v ∈ S2 w/ vr ∈ E(M(DBs,t1,t2)); {c(v), 1}

R2 r {r}; vs;us−1

vs R2;us−1 {1}
us−1 us−2; vs−1; vs;R2 {1, 2, 3}
vi, i ∈ {2, ..., s− 1} ui−1;ui {c(ui−1), c(ui)}
ui, i ∈ {3, ..., s− 2} ui−1; vi; vi+1;ui+1 {c(vi), c(vi+1)}
u2 u1; v2; v3;u3 {t1 + 1, c(v2), c(v3)}
v1 R1;u1 {t1, t1 + 1}
u1 R1; v1; v2;u2 {t1, t1 + 1, c(v2), c(u2)}
y z;R1 r {y}; v1;u1 {1, t1 + 1}
z y {t1}
r′ ∈ R1 r {y} v′ ∈ S1 r {z} {t1, t1 + 1, c(v′)}

w/ r′v′ ∈ E(M(DBs,t1,t2));
R1 r {r

′}; v1;u1

v′ ∈ S1 r {z} r′ ∈ R1 r {y} {c(r′)}
w/ r′v′ ∈ E(M(DBs,t1,t2))

that have equal neighborhoood color sets.

Figures 3 and 4 show examples of the set colorings constructed in the
proofs of Theorems 2.1 and 2.2, respectively.
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Figure 3: M(B4,5) with a set coloring constructed as in the proof of Theorem
2.1

Figure 4: M(DB4,5,5) with a set coloring constructed as in the proof of
Theorem 2.2

3 The set chromatic numbers of the middle

graph of caterpillar graphs P4(x1, x2, x3, x4)

We now consider caterpillar graphs G = P4(x1, x2, x3, x4). We first discuss
some special cases. If x2 = x3 = 0 and x1, x4 ∈ {0, 1}, then G is isomorphic
to a path graph. If x1 = x4 = 0, x2 ≥ 1, and x3 ≥ 1, then G is isomorphic to
a double-star graph. If x1 = x2 = x3 = 0 and x4 ≥ 2, then G is a broom that
is not a path. If x2 = x3 = 0 and x1 ≥ x4 ≥ 2, then G is a double-broom that
is neither a broom nor a path. We now state our main result for a general
family of caterpillar graphs P4(x1, x2, x3, x4).

Theorem 3.1. Let G = P4(x1, x2, x3, x4). Let i ∈ N4 such that xi =
max{x1, x2, x3, x4}. If x1 ≥ 1, x4 ≥ 1, xi > xj for all j 6= i, and xi ≥ 4,
then χs(M(G)) = xi + 1.

Proof. Let S(v) be as introduced in Lemma 1.2. Clearly, |S(vj)| = xj for
each j ∈ {1, 2, 3, 4}. By Lemma 1.2, we must have χs(M(G)) ≥ xi + 1.



516 M. Tolentino, G. Eugenio

We now show that χs(M(G)) ≤ xi + 1 by algorithmically constructing
a set coloring of M(G) for which the number of colors used is xi + 1. We
present two algorithms, one each for two of the following cases. For Case 1,
we may verify that c is indeed a set coloring using the NCs given in Table 3.
A similar table may be constructed for Case 2. In either case, the colorings
constructed are set colorings that use xi + 1 colors.

Therefore, we must have χs(M(G)) = xi + 1.

Case 1. Suppose i ∈ {2, 3}. We may
assume that i = 2. We define c1 :
V (M(G)) → Nx2+1 using the following al-
gorithm:

1: c1(v1)← 2; c1(v1v2)← 1
2: c1(v1v1,1)← 1; c1(v1,1)← x2 + 1
3: for j ∈ Nx1

r {1} do
4: c(v1v1,j)← j + 1; c(v1,j)← 1
5: end for

6: c1(v2)← 1; c1(v2v3)← 1
7: for j ∈ Nx2

do

8: c(v2v2,j)← 1; c(v2,j)← j + 1
9: end for

10: c1(v3)← 2
11: if x3 > 0 then

12: c1(v3v4) ← 1; c1(v3v3,1) ← x2;
c1(v3,1)← 1

13: Set Nx2+1 r {1, 2, x2} =
{α1, α2, ..., αx2−2}.

14: for j ∈ Nx3
r {1} do

15: c1(v3, v3,j) ← 1; c1(v3,j) ←
αj−1

16: end for

17: else

18: c1(v3v4)← x2 + 1
19: end if

20: c1(v4) ← x2 + 1; c1(v4v4,1) ← x2 − 1;
c1(v4,1)← 1

21: Set Nx2+1 r {2, x2 ± 1} =
{β1, β2, ..., βx2−2}.

22: if x4 ≥ 2 then

23: for j ∈ Nx4
r {1} do

24: c1(v4v4,j)← 1; c1(v4,j)← βj−1

25: end for

26: end if

Case 2. Suppose i ∈ {1, 4}. We may
assume that i = 1. We define c2 :
V (M(G)) → Nx1+1 using the following al-
gorithm:

1: c2(v1)← 1; c2(v1v2)← 1
2: c2(v1v1,1)← 1; c2(v1,1)← x1 + 1
3: c2(v1v1,2)← 1; c2(v1,2)← x1

4: for j ∈ Nx1
r {1, 2} do

5: c2(v1v1,j)← j − 1; c2(v1,j)← 1
6: end for

7: c2(v2)← x1; c2(v2v3)← x1 + 1
8: for j ∈ Nx2

do

9: c2(v2v2,j)← 1; c2(v2,j)← j + 1
10: end for

11: c2(v3)← 1; c2(v3v4)← 1
12: for j ∈ Nx3

do

13: c2(v3v3,j)← 1; c3(v3,j)← j + 1
14: end for

15: c2(v4)← x1

16: c2(v4v4,1)← x1 − 1; c2(v4,1)← 1
17: for j ∈ Nx4

r {1} do
18: c2(v4v4,j)← 1; c2(v4,j)← j − 1
19: end for

Figure 5 shows a set coloring generated as in Case 1 under Theorem 3.1.
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Table 3: The NC of each vertex of M(G), under the coloring c1 in Case 1

Vertex Neighbors NC

v1 v1v2; v1v1,j ∀j ∈ Nx1
Nx1+1 r {2}

v1v2 v1; v2; v1v1,j ∀j ∈ Nx1
; Nx1+1

v2v2,j ∀j ∈ Nx2
; v2v3

v1v1,j
If j = 1: v1; v1,1; v1v1,h ∀h 6= 1; v1v2 Nx1+1 ∪ {x2 + 1}
If j > 1: v1; v1,j ; v1v1,h ∀h 6= j; v1v2 Nx1+1 r {j + 1}

v1,j
If j = 1: v1v1,1 {1}
If j > 1: v1v1,j {j + 1}

v2 v1v2; v2v3; v2v2,j ∀j ∈ Nx2
{1}

v2v3 v2; v3; v1v2; v3v4; x3 > 0 : {1, 2, x2};
v2v2,j ∀j ∈ Nx2

; v2v3,h ∀h ∈ Nx3
x3 = 0 : {1, 2, x2 + 1}

v2v2,j v2; v2,j ; v1v2; v2v3; v2v2,h∀h 6= j {1, j + 1}

v2,j v2v2,j {1}

v3 v2v3; v3v4; x3 = 0 : {1, x2 + 1};
v3v3,j ∀j ∈ Nx3

x3 > 0 : {1, x2}

v3v4 v3; v4; v2v3; x3 = 0 : {1, 2, x2 ± 1};
v3v3,j ∀j ∈ Nx3

; v4v4,h ∀h ∈ Nx4
x3 > 0 : {1, 2, x2 ± 1, x2}

v3v3,j

If j = 1: v3; v3v3,h ∀h; v2v3; v3v4 Needs x3 ≥ 1 : {1, 2}
If j > 1: v3; v3,j ; Needs x3 ≥ 2 : {1, 2, x2, αj−1},
v3v3,h ∀h 6= j; v2v3; v3v4 where αj−1 6∈ {1, 2, x2}

v3,j
If j = 1: v3v3,1 Needs x3 ≥ 1 : {x2}
If j > 1: v3v3,j Needs x3 ≥ 2 : {1}

v4 v3v4; v4v4,j ∀j ∈ Nx4

If x3 = 0 : {x2 ± 1} if x4 = 1
or {1, x2 ± 1} if x4 ≥ 2
If x3 > 0 : {1, x2 − 1}

v4v4,j

If j = 1: v4; v4,1; v4v4,h ∀h 6= 1; v3v4 {1, x2 + 1}
If j > 1: v4; v4,j ; {1, x2 ± 1, βj−1}, where
v4v4,h ∀h 6= j; v3v4 βj−1 ∈ Nx2+1 r {2, x2 ± 1}

v4,j
If j = 1: v4v4,1 {x2 − 1}
If j > 1: v4v4,j {1}

4 Conclusion

As a continuation of previous works, this paper focused on the set coloring
problem on the middle graph of different tree families such as brooms, dou-
ble brooms, and caterpillars. We constructed set colorings of such graphs
using algorithms or explicit formulas. By proving the optimality of these set
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Figure 5: A set 5-coloring of M(P4(2, 4, 3, 3))

colorings, we obtained the set chromatic number for these different graph
families.
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