The set chromatic numbers of the middle graph of tree families

Mark Anthony C. Tolentino ${ }^{1}$, Gerone Russel J. Eugenio ${ }^{2}$
${ }^{1}$ Department of Mathematics
School of Science and Engineering
Ateneo de Manila University
Quezon City, Philippines
${ }^{2}$ Department of Mathematics and Physics
College of Science
Central Luzon State University
Science City of Muñoz, Nueva Ecija, Philippines

email: mtolentino@ateneo.edu, gerone.eugenio@clsu2.edu.ph
(Received November 1, 2022, Accepted February 16, 2023, Published March 31, 2023)

Abstract

The neighborhood color set of each vertex v in a vertex-colored graph G is defined as the collection of the colors of all the neighbors of v. If there are no two adjacent vertices that have equal neighborhood color sets, then the coloring is called a set coloring of G. The set coloring problem on G refers to the problem of determining its set chromatic number, which refers to the fewest colors using which a set coloring of G may be constructed. In this work, we consider the set coloring problem on graphs obtained from applying middle graph, a unary graph operation. The middle graph of G is the graph whose vertex set is the union of $V(G)$ and $E(G)$ and whose edge set is $\{\{u, u v\}: u \in V(G)$ and $u v \in E(G)\} \cup\left\{\left\{u v_{1}, u v_{2}\right\}: u v_{1}, u v_{2} \in\right.$ $E(G)$ and $\left.v_{1} \neq v_{2}\right\}$. We consider the set coloring problem on the middle graph of different tree families such as brooms, double brooms and caterpillars. We construct set colorings of such graphs using algorithms or explicit formulas. By proving the optimality of these set

Key words and phrases: Set coloring, middle graph.
AMS (MOS) Subject Classifications: 05C15, 05C05, 05C76, 05C85.
ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net
colorings, we obtain the set chromatic number for these different graph families.

1 Introduction

We consider the set coloring problem on the middle graph of different tree families such as brooms, double brooms, and caterpillars. We denote by \mathbb{N}_{k}, where k is some positive integer, the set $\{1,2, \ldots, k\}$. We denote by $N_{G}(v)$ the collection of neighbors of v in a graph/subgraph G. We begin by defining set colorings.
Definition 1.1 ([2]). Suppose $c: V(G) \rightarrow \mathbb{N}$ is a coloring of a graph G. For each vertex v in G, the neighborhood color set $N C(v)$ of v is defined to be the collection of all colors of all neighbors of v. If there are no two adjacent vertices that have equal neighborhood color sets ($N C$), we say that c is a set coloring. Moreover, the set chromatic number $\chi_{s}(G)$ of G is defined to be the minimum number of colors using which a set coloring of G may be constructed.

As stated in [2], the set chromatic number of a graph G is at most its chromatic number. There have been different studies focused on set colorings: [6] dealt mainly with perfect graphs while [3] considered random graphs. There have also been studies in which the set coloring problem is studied in the context of different graph operations. For example, previous works have studied set coloring in relation to corona [2], join [5, 11], comb product [5], total graph [14], and middle graph [4].

Thus, in line with these recent works, this paper aims to continue the work done in [4], in particular, by considering the set coloring problem on the middle graph of different tree families. The graph operation middle graph was introduced in [7] and was defined using the notion of intersection graph. In this paper, we adopt the following equivalent definition: Given a graph G, its middle graph $M(G)$ can be obtained by taking the vertex set of $M(G)$ to be the union of $V(G)$ and $E(G)$ and its edge set to be $E(M(G))=\{\{u, u v\}: u \in$ $V(G)$ and $u v \in E(G)\} \cup\left\{\left\{u v_{1}, u v_{2}\right\}: u v_{1}, u v_{2} \in E(G)\right.$ and $\left.v_{1} \neq v_{2}\right\}$. In [10], it was established that $\chi(M(G))=\Delta(G)+1$, where $\Delta(G):=\max \{\operatorname{deg} v$: $v \in V(G)\}$. Consequently, $\Delta(G)+1 \geq \chi_{s}(M(G))$ as well. A lower bound for $\chi_{s}(M(G))$, when G has pendant vertices, has also been obtained previously.
Lemma 1.2 ([4]). Let G be a graph that has at least one vertex with degree 1. For each vertex v in G, set $S(v)=\{w: v w \in E(G)$ and $\operatorname{deg} w=1\}$. Then $\chi_{s}(M(G)) \geq 1+\max \{|S(v)|: v \in V(G)\}$.

Aside from set coloring, there have also been other graph colorings with which middle graph has been studied. For instance, there have been studies on sigma coloring [9], equitable coloring [12], harmonious coloring [1], r dynamic vertex coloring [8], and irregular coloring [13].

In this paper, we will consider the middle graph of different tree families such as brooms, double brooms and caterpillars. As different references may have different formulations and notations for these graph families, our definitions are given hereunder.

Definition 1.3. Let s, t, t_{1}, t_{2} be positive integers and $x_{1}, x_{2}, \ldots, x_{s}$ be nonnegative integers. Let $P_{s}=v_{1} v_{2} \cdots v_{s}$ be a path graph with s vertices.

1. The broom $B_{s, t}$ is the graph obtained by identifiying an endvertex of the P_{s} and the central vertex of the star $K_{1, t}$.
2. For $t_{1} \geq t_{2}$, the double broom $D B_{s, t_{1}, t_{2}}$ is the graph obtained by identifying one endvertex of P_{s}, where $s \geq 2$, to the central vertex of the star $K_{1, t_{1}}$ and identifying the other endvertex of P_{s} to the central vertex of $K_{1, t_{2}}$.
3. The caterpillar graph $P_{s}\left(x_{1}, x_{2}, \ldots, x_{s}\right)$ is the tree obtained by appending, for each $i \in\{1,2, \ldots, s\}, x_{i}$ pendant vertices to the vertex v_{i} of P_{s}.

2 The set chromatic numbers of the middle graph of brooms and double brooms

We consider the set coloring problem on the middle graph of brooms and double brooms. To this end, we will construct optimal set colorings of these graphs using explicit formulas. Figure 1 and Figure 2 show the middle graph of the broom $B_{s, t}$ and of the double broom $D B_{s, t_{1}, t_{2}}$, respectively.

Figure 1: $M\left(B_{s, t}\right)$

Figure 2: $M\left(D B_{s, t_{1}, t_{2}}\right)$

First, we note that optimal set colorings of the middle graph of path graphs P_{n}, star graphs $K_{1, m}$, and double-star graphs $S_{t_{1}, t_{2}}$, where $n, m, t_{1}, t_{2} \in$ \mathbb{N}, have already been constructed in [4]. Thus, we can already set aside brooms and double brooms that are isomorphic to any of these previously studied graphs. Since the brooms $B_{1, t}, B_{2, t}$, and $B_{s, 1}$ are isomorphic to $K_{1, t}, K_{1, t+1}, P_{s+1}$, respectively, we are left to consider brooms $B_{s, t}$ where $s \geq 3$ and $t \geq 2$. Similarly, the double brooms $D B_{2, t_{1}, t_{2}}, D B_{s, 1,1}$, and $D B_{s, t_{1}, 1}$ are isomorphic to $S_{t_{1}, t_{2}}$ (a double-star graph), P_{s+2}, and $B_{s+1, t_{1}}$, respectively, so we only need to consider double brooms $D B_{s, t_{1}, t_{2}}$ where $s \geq 3$ and $t_{1} \geq t_{2} \geq 2$.

Our main result on brooms is as follows.
Theorem 2.1. If $s \geq 3$ and $t \geq 2$, then $\chi_{s}\left(M\left(B_{s, t}\right)\right)=t+1$.
Proof. Refer to Figure 1 for the middle graph of $B_{s, t}$ and the labels we will use to refer to the vertices of $M\left(B_{s, t}\right)$. Note also the sets R and Q of vertices shown in Figure 1. Observe that in $B_{s, t}$, the vertex v_{s} has one nonpendant neighbor v_{s-1} and $|Q|=t$ pendant neighbors. Hence, by Lemma 1.2, we have $\chi_{s}\left(M\left(B_{s, t}\right)\right) \geq t+1$.

We will now prove that the coloring $c: V\left(M\left(B_{s, t}\right)\right) \rightarrow \mathbb{N}_{t+1}$ defined by the following procedure is a set coloring.

1. Set $c(Q)=\mathbb{N}_{t+1} \backslash\{1\}$.
2. Set $c\left(R \cup\left\{v_{s}\right\}\right)=\{1\}$.
3. (a) If $s \equiv 0(\bmod 3)$, set

$$
c\left(v_{k}\right)=\left\{\begin{array}{ll}
3, & i \equiv 0(\bmod 3) \& i<s, \\
2, & i \equiv 2(\bmod 3), \\
1 & i \equiv 1(\bmod 3),
\end{array} \quad c\left(u_{k}\right)= \begin{cases}3, & i \equiv 1(\bmod 3), \\
2, & i \equiv 0(\bmod 3), \\
1, & i \equiv 2(\bmod 3) .\end{cases}\right.
$$

(b) If $s \equiv 1(\bmod 3)$, set

$$
c\left(v_{i}\right)=\left\{\begin{array}{ll}
3, & i \equiv 1(\bmod 3) \& i<s, \\
2, & i \equiv 0(\bmod 3), \\
1, & i \equiv 2(\bmod 3),
\end{array} \quad c\left(u_{i}\right)= \begin{cases}3, & i \equiv 2(\bmod 3), \\
2, & i \equiv 1(\bmod 3), \\
1, & i \equiv 0(\bmod 3) .\end{cases}\right.
$$

(c) If $s \equiv 2(\bmod 3)$, set

$$
c\left(v_{i}\right)=\left\{\begin{array}{ll}
3, & i \equiv 2(\bmod 3) \& i<s, \\
2, & i \equiv 1(\bmod 3), \\
1, & i \equiv 0(\bmod 3),
\end{array} \quad c\left(u_{i}\right)= \begin{cases}3, & i \equiv 0(\bmod 3), \\
2, & i \equiv 2(\bmod 3), \\
1, & i \equiv 1(\bmod 3) .\end{cases}\right.
$$

It is clear that c uses exactly $t+1$ colors. Observe that for any $s \geq 3$, we have $c\left(u_{s-1}\right)=1, c\left(v_{s-1}\right)=2$, and $c\left(u_{s-2}\right)=3$. Moreover, for $i \in$ $\{2,3, \ldots, s-2\}$, we have $c\left(u_{i-1}\right)=c\left(v_{i+1}\right)$ while for $i \in\{1,2, \ldots, s-2\}$, we have $c\left(v_{i}\right)=c\left(u_{i+1}\right)$. Using these properties, we construct Table 1, which presents the NCs of the vertices of $M\left(B_{s, t}\right)$.

Table 1: The NC of each vertex of $M\left(B_{s, t}\right)$

Vertex	Neighbors	NC
$v \in S$	$r \in R \mathrm{w} /$ vr $\in E\left(M\left(B_{s, t}\right)\right)$	$\{1\}$
$r \in R$	$v \in S \mathrm{w} / v r \in E\left(M\left(B_{s, t}\right)\right) ;$	$\{c(v), 1\}$
	$R \backslash\{r\} ; v_{s} ; u_{s-1}$	
v_{s}	$u_{s-1} ; R$	$\{1\}$
u_{s-1}	$v_{s-1} ; u_{s-2} ; v_{s} ; R$	$\{1,2,3\}$
$v_{i}, i \in\{2, \ldots, s-1\}$	$u_{i-1} ; u_{i}$	$\left\{c\left(u_{i-1}\right), c\left(u_{i}\right)\right\}$
$u_{i}, i \in\{2, \ldots, s-2\}$	$u_{i-1} ; v_{i} ; v_{i+1} ; u_{i+1}$	$\left\{c\left(v_{i}\right), c\left(v_{i+1}\right)\right\}$
u_{1}	$v_{1} ; v_{2} ; u_{2}$	$\left\{c\left(v_{1}\right), c\left(v_{2}\right)\right\}$
v_{1}	u_{1}	$\left\{c\left(u_{1}\right)\right\}$

From Table 1, we see that there are no two adjacent vetices of $M\left(B_{s, t}\right)$ that have equal neighborhoood color sets.

Our main result on double brooms is as follows.
Theorem 2.2. If $s \geq 3$ and $t_{1} \geq t_{2} \geq 2$ such that $t_{1} \geq 3$, then

$$
\chi_{s}\left(M\left(D B_{s, t_{1}, t_{2}}\right)\right)=t_{1}+1
$$

Proof. Refer to Figure 2 for the middle graph of $D B_{s, t_{1}, t_{2}}$ and the labels we will use to refer to the vertices of $M\left(D B_{s, t_{1}, t_{2}}\right)$. Note also the sets R_{1}, R_{2}, Q_{1}, and Q_{2} of vertices shown in Figure 2. Observe that in $D B_{s, t_{1}, t_{2}}$, the vertex v_{1} has one nonpendant neighbor v_{2} and $\left|Q_{1}\right|=t_{1}$ pendant neighbors. Hence, by Lemma 1.2, we have $\chi_{s}\left(M\left(D B_{s, t_{1}, t_{2}}\right)\right) \geq t_{1}+1$.

To complete the proof, we will show that the coloring $c: V\left(M\left(D B_{s, t_{1}, t_{2}}\right)\right)$ $\rightarrow \mathbb{N}_{t_{1}+1}$ defined by the following procedure is a set coloring.

1. Set $c\left(Q_{2}\right)=\mathbb{N}_{\left|S_{2}\right|+1} \backslash\{1\}$.
2. Set $c\left(R_{2} \cup\left\{v_{s}\right\}\right)=\{1\}$.
3. (a) If $s \equiv 0(\bmod 3)$, set
$c\left(v_{i}\right)=\left\{\begin{array}{ll}3, & i \equiv 0(\bmod 3) \& i<s, \\ 2, & i \equiv 2(\bmod 3), \\ 1, & i \equiv 1(\bmod 3) \& i>1,\end{array} \quad c\left(u_{i}\right)= \begin{cases}3, & i \equiv 1(\bmod 3) \& i>1, \\ 2, & i \equiv 0(\bmod 3), \\ 1, & i \equiv 2(\bmod 3) .\end{cases}\right.$
(b) If $s \equiv 1(\bmod 3)$, set
$c\left(v_{i}\right)=\left\{\begin{array}{ll}3, & i \equiv 1(\bmod 3) \& 1<i<s, \\ 2, & i \equiv 0(\bmod 3), \\ 1, & i \equiv 2(\bmod 3),\end{array} \quad c\left(u_{i}\right)= \begin{cases}3, & i \equiv 2(\bmod 3), \\ 2, & i \equiv 1(\bmod 3) \& i>1, \\ 1, & i \equiv 0(\bmod 3) .\end{cases}\right.$
(c) If $s \equiv 2(\bmod 3)$, set

$$
c\left(v_{i}\right)=\left\{\begin{array}{ll}
3, & i \equiv 2(\bmod 3) \& i<s, \\
2, & i \equiv 1(\bmod 3) \& i>1, \\
1, & i \equiv 0(\bmod 3),
\end{array} \quad c\left(u_{i}\right)= \begin{cases}3, & i \equiv 0(\bmod 3), \\
2, & i \equiv 2(\bmod 3), \\
1, & i \equiv 1(\bmod 3) \& i>1 .\end{cases}\right.
$$

4. Set $c\left(\left\{v_{1}, u_{1}\right\}\right)=\left\{t_{1}+1\right\}$.
5. Fix one vertex $y \in R_{1}$ and set $c(y)=t_{1}$. Set $c\left(R_{1} \backslash\{y\}\right)=\left\{t_{1}+1\right\}$.
6. For $z \in Q_{1}$ such that $y z \in E\left(M\left(D B_{s, t_{1}, t_{2}}\right)\right)$, set $c(z)=1$. Then set $c\left(Q_{1} \backslash\{z\}\right)=\mathbb{N}_{t_{1}-1}$.

It is clear that c uses exactly $t_{1}+1$ colors. Moreover, observe that $c\left(u_{s-1}\right)=1$ for all $s \geq 3$, that $c\left(u_{i-1}\right)=c\left(v_{i+1}\right)$ for all $i \in\{3,4, \ldots, s-2\}$, and that $c\left(v_{i}\right)=c\left(u_{i+1}\right)$ for all $i \in\{2,3, \ldots, s-2\}$. Using these properties, we construct Table 2, which presents the NCs of the vertices of $M\left(D B_{s, t_{1}, t_{2}}\right)$. From Table 2, we see that there are no two adjacent vetices of $M\left(D B_{s, t_{1}, t_{2}}\right)$

Table 2: The NC of each vertex of $M\left(D B_{s, t_{1}, t_{2}}\right)$

Vertex	Neighbors	NC
$v \in S_{2}$	$r \in R_{2} \mathrm{w} / v r \in E\left(M\left(D B_{s, t_{1}, t_{2}}\right)\right)$	$\{1\}$
$r \in R_{2}$	$v \in S_{2} \mathrm{w} / v r \in E\left(M\left(D B_{s, t_{1}, t_{2}}\right)\right) ;$	$\{c(v), 1\}$
	$R_{2} \backslash\{r\} ; v_{s} ; u_{s-1}$	
v_{s}	$R_{2} ; u_{s-1}$	$\{1\}$
u_{s-1}	$u_{s-2} ; v_{s-1} ; v_{s} ; R_{2}$	$\{1,2,3\}$
$v_{i}, i \in\{2, \ldots, s-1\}$	$u_{i-1} ; u_{i}$	$\left\{c\left(u_{i-1}\right), c\left(u_{i}\right)\right\}$
$u_{i}, i \in\{3, \ldots, s-2\}$	$u_{i-1} ; v_{i} ; v_{i+1} ; u_{i+1}$	$\left.\left\{c v_{i}\right), c\left(v_{i+1}\right)\right\}$
u_{2}	$u_{1} ; v_{2} ; v_{3} ; u_{3}$	$\left\{t_{1}+1, c\left(v_{2}\right), c\left(v_{3}\right)\right\}$
v_{1}	$R_{1} ; u_{1}$	$\left\{t_{1}, t_{1}+1\right\}$
u_{1}	$R_{1} ; v_{1} ; v_{2} ; u_{2}$	$\left\{t_{1}, t_{1}+1, c\left(v_{2}\right), c\left(u_{2}\right)\right\}$
y	$z ; R_{1} \backslash\{y\} ; v_{1} ; u_{1}$	$\left\{1, t_{1}+1\right\}$
z	y	$\left\{t_{1}\right\}$
$r^{\prime} \in R_{1} \backslash\{y\}$	$v^{\prime} \in S_{1} \backslash\{z\}$	$\left\{t_{1}, t_{1}+1, c\left(v^{\prime}\right)\right\}$
	$\mathrm{w} / r^{\prime} v^{\prime} \in E\left(M\left(D B_{\left.s, t_{1}, t_{2}\right)}\right) ;\right.$	
$v^{\prime} \in S_{1} \backslash\{z\}$	$r_{1} \backslash\left\{r^{\prime}\right\} ; v_{1} ; u_{1}$	

that have equal neighborhoood color sets.
Figures 3 and 4 show examples of the set colorings constructed in the proofs of Theorems 2.1 and 2.2, respectively.

Figure 3: $M\left(B_{4,5}\right)$ with a set coloring constructed as in the proof of Theorem 2.1

Figure 4: $M\left(D B_{4,5,5}\right)$ with a set coloring constructed as in the proof of Theorem 2.2

3 The set chromatic numbers of the middle graph of caterpillar graphs $P_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$

We now consider caterpillar graphs $G=P_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. We first discuss some special cases. If $x_{2}=x_{3}=0$ and $x_{1}, x_{4} \in\{0,1\}$, then G is isomorphic to a path graph. If $x_{1}=x_{4}=0, x_{2} \geq 1$, and $x_{3} \geq 1$, then G is isomorphic to a double-star graph. If $x_{1}=x_{2}=x_{3}=0$ and $x_{4} \geq 2$, then G is a broom that is not a path. If $x_{2}=x_{3}=0$ and $x_{1} \geq x_{4} \geq 2$, then G is a double-broom that is neither a broom nor a path. We now state our main result for a general family of caterpillar graphs $P_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.

Theorem 3.1. Let $G=P_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. Let $i \in \mathbb{N}_{4}$ such that $x_{i}=$ $\max \left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. If $x_{1} \geq 1, x_{4} \geq 1, x_{i}>x_{j}$ for all $j \neq i$, and $x_{i} \geq 4$, then $\chi_{s}(M(G))=x_{i}+1$.

Proof. Let $S(v)$ be as introduced in Lemma 1.2. Clearly, $\left|S\left(v_{j}\right)\right|=x_{j}$ for each $j \in\{1,2,3,4\}$. By Lemma 1.2, we must have $\chi_{s}(M(G)) \geq x_{i}+1$.

We now show that $\chi_{s}(M(G)) \leq x_{i}+1$ by algorithmically constructing a set coloring of $M(G)$ for which the number of colors used is $x_{i}+1$. We present two algorithms, one each for two of the following cases. For Case 1, we may verify that c is indeed a set coloring using the NCs given in Table 3. A similar table may be constructed for Case 2. In either case, the colorings constructed are set colorings that use $x_{i}+1$ colors.

Therefore, we must have $\chi_{s}(M(G))=x_{i}+1$.
Case 1. Suppose $i \in\{2,3\}$. We may Case 2. Suppose $i \in\{1,4\}$. We may assume that $i=2$. We define c_{1} : $V(M(G)) \rightarrow \mathbb{N}_{x_{2}+1}$ using the following algorithm:

```
\(c_{1}\left(v_{1}\right) \leftarrow 2 ; c_{1}\left(v_{1} v_{2}\right) \leftarrow 1\)
2: \(c_{1}\left(v_{1} v_{1,1}\right) \leftarrow 1 ; c_{1}\left(v_{1,1}\right) \leftarrow x_{2}+1\)
for \(j \in \mathbb{N}_{x_{1}} \backslash\{1\}\) do
4: \(\quad c\left(v_{1} v_{1, j}\right) \leftarrow j+1 ; c\left(v_{1, j}\right) \leftarrow 1\)
5: end for
6: \(c_{1}\left(v_{2}\right) \leftarrow 1 ; c_{1}\left(v_{2} v_{3}\right) \leftarrow 1\)
7: for \(j \in \mathbb{N}_{x_{2}}\) do
8: \(\quad c\left(v_{2} v_{2, j}\right) \leftarrow 1 ; c\left(v_{2, j}\right) \leftarrow j+1\)
    9: end for
10: \(c_{1}\left(v_{3}\right) \leftarrow 2\)
    11: if \(x_{3}>0\) then
        \(c_{1}\left(v_{3} v_{4}\right) \leftarrow 1 ; c_{1}\left(v_{3} v_{3,1}\right) \leftarrow x_{2} ;\)
    \(c_{1}\left(v_{3,1}\right) \leftarrow 1\)
    1: \(c_{2}\left(v_{1}\right) \leftarrow 1 ; c_{2}\left(v_{1} v_{2}\right) \leftarrow 1\)
2: \(c_{2}\left(v_{1} v_{1,1}\right) \leftarrow 1 ; c_{2}\left(v_{1,1}\right) \leftarrow x_{1}+1\)
3: \(c_{2}\left(v_{1} v_{1,2}\right) \leftarrow 1 ; c_{2}\left(v_{1,2}\right) \leftarrow x_{1}\)
4: for \(j \in \mathbb{N}_{x_{1}} \backslash\{1,2\}\) do
    \(c_{1}\left(v_{3,1}\right) \leftarrow 1 \quad 13:\)
13: Set \(\mathbb{N}_{x_{2}+1} \backslash\left\{1,2, x_{2}\right\}=\)
    \(\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{x_{2}-2}\right\}\).
        for \(j \in \mathbb{N}_{x_{3}} \backslash\{1\}\) do
        \(c_{1}\left(v_{3}, v_{3, j}\right) \leftarrow 1 ; c_{1}\left(v_{3, j}\right) \leftarrow\)
    \(\alpha_{j-1}\)
        end for
    else
        \(c_{1}\left(v_{3} v_{4}\right) \leftarrow x_{2}+1\)
    end if
19: end if
\(20: c_{1}\left(v_{4}\right) \leftarrow x_{2}+1 ; c_{1}\left(v_{4} v_{4,1}\right) \leftarrow x_{2}-1 ;\)
    \(c_{1}\left(v_{4,1}\right) \leftarrow 1\)
21: Set \(\mathbb{N}_{x_{2}+1} \backslash\left\{2, x_{2} \pm 1\right\}=\)
    \(\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{x_{2}-2}\right\}\).
22: if \(x_{4} \geq 2\) then
23: \(\quad\) for \(j \in \mathbb{N}_{x_{4}} \backslash\{1\}\) do
        \(c_{1}\left(v_{4} v_{4, j}\right) \leftarrow 1 ; c_{1}\left(v_{4, j}\right) \leftarrow \beta_{j-1}\)
        end for
    end if
```

 assume that \(i=1\). We define \(c_{2}\) :
 \(V(M(G)) \rightarrow \mathbb{N}_{x_{1}+1}\) using the following al-
 gorithm:
 Figure 5 shows a set coloring generated as in Case 1 under Theorem 3.1.

Table 3: The NC of each vertex of $M(G)$, under the coloring c_{1} in Case 1

Vertex	Neighbors	NC
v_{1}	$v_{1} v_{2} ; v_{1} v_{1, j} \forall j \in \mathbb{N}_{x_{1}}$	$\begin{aligned} & \hline \hline \mathbb{N}_{x_{1}+1} \backslash\{2\} \\ & \mathbb{N}_{x_{1}+1} \end{aligned}$
$v_{1} v_{2}$	$v_{1} ; v_{2} ; v_{1} v_{1, j} \forall j \in \mathbb{N}_{x_{1}}$;	
	$v_{2} v_{2, j} \forall j \in \mathbb{N}_{x_{2}} ; v_{2} v_{3}$	
$v_{1} v_{1, j}$	If $j=1: v_{1} ; v_{1,1} ; v_{1} v_{1, h} \forall h \neq 1 ; v_{1} v_{2}$	$\mathbb{N}_{x_{1}+1} \cup\left\{x_{2}+1\right\}$
	If $j>1: v_{1} ; v_{1, j} ; v_{1} v_{1, h} \forall h \neq j ; v_{1} v_{2}$	$\mathbb{N}_{x_{1}+1} \backslash\{j+1\}$
$v_{1, j}$	If $j=1: v_{1} v_{1,1}$	\{1\}
	If $j>1: v_{1} v_{1, j}$	$\{j+1\}$
v_{2}	$v_{1} v_{2} ; v_{2} v_{3} ; v_{2} v_{2, j} \forall j \in \mathbb{N}_{x_{2}}$	\{1\}
$v_{2} v_{3}$	$v_{2} ; v_{3} ; v_{1} v_{2} ; v_{3} v_{4}$;	$x_{3}>0:\left\{1,2, x_{2}\right\}$;
	$v_{2} v_{2, j} \forall j \in \mathbb{N}_{x_{2}} ; v_{2} v_{3, h} \forall h \in \mathbb{N}_{x_{3}}$	$x_{3}=0:\left\{1,2, x_{2}+1\right\}$
$v_{2} v_{2, j}$	$v_{2} ; v_{2, j} ; v_{1} v_{2} ; v_{2} v_{3} ; v_{2} v_{2, h} \forall h \neq j$	\{1, $j+1\}$
$v_{2, j}$	$v_{2} v_{2, j}$	\{1\}
v_{3}	$v_{2} v_{3} ; v_{3} v_{4}$;	$x_{3}=0:\left\{1, x_{2}+1\right\} ;$
	$v_{3} v_{3, j} \forall j \in \mathbb{N}_{x_{3}}$	$x_{3}>0:\left\{1, x_{2}\right\}$
$v_{3} v_{4}$	$v_{3} ; v_{4} ; v_{2} v_{3}$;	$x_{3}=0:\left\{1,2, x_{2} \pm 1\right\} ;$
	$v_{3} v_{3, j} \forall j \in \mathbb{N}_{x_{3}} ; v_{4} v_{4, h} \forall h \in \mathbb{N}_{x_{4}}$	$x_{3}>0:\left\{1,2, x_{2} \pm 1, x_{2}\right\}$
$v_{3} v_{3, j}$	If $j=1: v_{3} ; v_{3} v_{3, h} \forall h ; v_{2} v_{3} ; v_{3} v_{4}$	Needs $x_{3} \geq 1:\{1,2\}$
	$\begin{aligned} & \text { If } j>1: v_{3} ; v_{3, j} ; \\ & v_{3} v_{3, h} \forall h \neq j ; v_{2} v_{3} ; v_{3} v_{4} \end{aligned}$	Needs $x_{3} \geq 2:\left\{1,2, x_{2}, \alpha_{j-1}\right\}$, where $\alpha_{j-1} \notin\left\{1,2, x_{2}\right\}$
$v_{3, j}$	If $j=1: v_{3} v_{3,1}$	Needs $x_{3} \geq 1:\left\{x_{2}\right\}$
	If $j>1: v_{3} v_{3, j}$	Needs $x_{3} \geq 2:\{1\}$
v_{4}	$v_{3} v_{4} ; v_{4} v_{4, j} \forall j \in \mathbb{N}_{x_{4}}$	$\begin{aligned} & \text { If } x_{3}=0:\left\{x_{2} \pm 1\right\} \text { if } x_{4}=1 \\ & \text { or }\left\{1, x_{2} \pm 1\right\} \text { if } x_{4} \geq 2 \end{aligned}$
		If $x_{3}>0:\left\{1, x_{2}-1\right\}$
$v_{4} v_{4, j}$	If $j=1: v_{4} ; v_{4,1} ; v_{4} v_{4, h} \forall h \neq 1 ; v_{3} v_{4}$	\{1, $\left.x_{2}+1\right\}$
	If $j>1: v_{4} ; v_{4, j}$;	$\left\{1, x_{2} \pm 1, \beta_{j-1}\right\}$, where
	$v_{4} v_{4, h} \forall h \neq j ; v_{3} v_{4}$	$\beta_{j-1} \in \mathbb{N}_{x_{2}+1} \backslash\left\{2, x_{2} \pm 1\right\}$
$v_{4, j}$	If $j=1: v_{4} v_{4,1}$	$\left\{x_{2}-1\right\}$
	If $j>1: v_{4} v_{4, j}$	\{1\}

4 Conclusion

As a continuation of previous works, this paper focused on the set coloring problem on the middle graph of different tree families such as brooms, double brooms, and caterpillars. We constructed set colorings of such graphs using algorithms or explicit formulas. By proving the optimality of these set

Figure 5: A set 5-coloring of $M\left(P_{4}(2,4,3,3)\right)$
colorings, we obtained the set chromatic number for these different graph families.

Acknowledgment. The first author thanks the Ateneo de Manila University, especially for its support via the Early Career Publication Support Grant. Moreover, the authors thank the reviewers for their valuable comments that improved this paper. Finally, the authors thank the organizers and committees of MathTech 2022.

References

[1] J. Aruldoss, S. Mary, Harmonious coloring of middle and central graph of some special graphs, Int. J. Math. Appl., 4, (2016), 187-191.
[2] G. Chartrand, F. Okamoto, C. W. Rasmussen, P. Zhang, The set chromatic number of a graph, Discuss. Math. Graph Theory, 29, (2009), 545-561.
[3] A. Dudek, D. Mitsche, P. Praat, The set chromatic number of random graphs, Discrete Appl. Math., 215, (2016), 61-70.
[4] G. R. J. Eugenio, M. J. P. Ruiz, M. A. C. Tolentino, The set chromatic numbers of the middle graph of graphs, J. Phys. Conf. Ser., 1836, (2021), https://doi.org/10.1088/1742-6596/1836/1/012014.
[5] B. C. Felipe, A. Garciano, M. A. C. Tolentino, On the set chromatic number of the join and comb product of graphs, J. Phys. Conf. Ser., 1538, (2019), https://doi.org/10.1088/1742-6596/1538/1/012009.
[6] R. Gera, F. Okamoto, C. Rasmussen, P. Zhang, Set colorings in perfect graphs, Math. Bohem., 136, (2011), 61-68.
[7] T. Hamada, I. Yoshimura, Traversability and connectivity of the middle graph of a graph, Discrete Math., 14, (1976), 247-255.
[8] L. Harjito, Dafik, A. Kristiana, R. Alfarisi, R. Prihandini, On r-dynamic vertex coloring of line, middle, total of lobster graph, J. Phys. Conf. Ser., 1465, (2020).
[9] J. A. Manamtam, A. D. Garciano, M. A. C. Tolentino, Sigma chromatic numbers of the middle graph of some families of graphs, J. Phys. Conf. Ser., 2157, (2022), https://doi.org/10.1088/1742-6596/2157/1/012001.
[10] M. Nihei, On the chromatic number of middle graph of a graph, Pi Mu Epsilon Journal, 10, (1998), 704-708.
[11] F. Okamoto, C. W. Rasmussen, P. Zhang, Set vertex colorings and joins of graphs, Czechoslov. Math. J., 59, (2009), 929-941.
[12] K. Praveena, M. Venkatachalam, A. Rohini, Dafik, Equitable coloring of prism graph and its central, middle, total and line graph, Int. J. Sci. Res., 8, (2019), 706-710.
[13] A. Rohini, M. Venkatachalam, On irregular coloring of triple star graph families, J. Discrete Math. Sci. Cryptogr., 6, (2019), 983-988.
[14] M. A. C. Tolentino, G. R. J. Eugenio, M. J. P. Ruiz, On the total set chromatic number of graphs, Theory Appl. Graphs, 9, (2022), https://doi.org/10.20429/tag.2022.090205.

