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Abstract

We study the distribution of temperatures for the radiative MHD
Ekman layer on a porous flat plate by including Joule’s dissipation
function for the following cases:
(i) A steady temperature is preserved on the plate.
(ii) The plate is insulated.
We obtain exact solutions in the two instances of sucking and blowing
(such a solution does not exist in the event that there is no radiative
heat emission present and blowing is taking place).

1 Introduction

In recent years, several studies have been carried out specifically concerned
with elucidating the influence of various mechanisms of transmission of heat
through the Ekman layer of a plate with pores that are located in the vicin-
ity of a magnetic field and involving a fluid that is capable of conducting
electricity. These investigations have applications in many astrophysical and
astronautical problems.
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Recently Gupta [1], Erdoğan [2], Murthy and Ram [3], Das et al. [4]
have considered the boundary layer due to rotations that are not coaxial of a
porous disc and a fluid at infinity, yet they did not consider the consequences
of the radiative heat transfer. Nagara et al. [5], Aziz [6] have discussed the
effect of radiation in the MHD Ekman layer but did not consider Joule’s
dissipation function in the energy equation that arises in the MHD heat
transfer analysis [7]. The purpose of this paper is to investigate the same
problem, including Joule’s dissipation function representing the conversion
of magnetic energy into heat.

2 Mathematical Formulation

Consider a coordinate system based on the Cartesian transform that rotates
continuously at angular velocity Ω that is constant concerning the z-axis,
with a positive sign indicating movement vertically upward, with the plate
having the same level of porosity throughout and coinciding with the plane
z = 0.

A magnetic field B0 that is constant and uniform is applied in the direc-
tion of the z-axis. The basic equations of motion for such a configuration are
well established and are given by:
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where u, v, w = w0 are the components of the fluid velocity and ρ is the fluid
density.

Assuming horizontal uniformity everywhere, the equation for continuity
yields w = w0 which is a constant.

w0 > 0 is representative of suction and w0 < 0 is indicative of blowing.
Since the magnetic Reynolds number is extremely low, the induced magnetic
field is considered to be insignificant in relation to the magnetic field that is
being applied.

The energy equation describing the transport of thermal energy in the
presence of the magnetic field can be written as:
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where cp is the specific heat at a pressure that is held constant, K is the
coefficient of thermal conductivity, µ is the viscosity, µe the magnetic per-
meability, σ the electrical conductivity, and qR the radiative flux. The fluid
is assumed to move with constant velocity ∪ in the x-direction outside the
frictional region.

The boundary conditions are:
For velocity

u = v = 0 as z = 0
u → ∪, v → 0 as z = ∞

} (2.4)

For case (i)
T = T0 at z = 0
T = T

∞
as z = ∞

} (2.5)

For case (ii)
dT
dz

= 0 at z = 0
T = T

∞
as z = ∞

} (2.6)

We olve the equations of motion 2.1 and 2.2, with the boundary conditions
taken into account 2.4. Accordingly, the velocity field is given by:

u = ∪[1 − exp(−aη)]cosβη

v = ∪[exp(−aη)]sinβη

where
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Denote the parameter related to magnetism, the Taylor number, as the

suction parameter in their respective forms, η = ( Ω
2v)

1

2z being a non-dimensional
coordinate.
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3 Solution of the problem

Under approximation that is extremely thin and optically clear, Radiation
with a mean free path is significantly greater than the typical duration of
the flow field along the length. Sometimes, the situation can be summarized
as being similar to radiation, in which there is almost no self-absorption, to
the point when the Planck coefficient of the mean absorption Kp =

1
LR

is not
particularly large, where LR is the typical length of the radiation’s mean free
path. There is no radiative interaction between the different components of
the fluid because all the components of the fluid exchange radiation directly
with the boundary surface.

Vogler et al. [8], Travgott [9], Aeronautics and Astronautics [10] have
demonstrated that the equation for radiative heat transfer for a non-grey gas
that is approaching equilibrium and under the optically thin limit has the
simple form:

dqr

dz
= 4ρkpσ̃T

4} (3.7)

where σ̃ is the Stefan Boltzmann constant.
In the situation of optically exceedingly thin kp → 0 as LR → ∞ accord-

ingly the radiative heat flux will be constant as has been shown by Liu et
al. [11]. Considering the temperature T0 at the porous disc is the greatest
and the temperature of liquids at infinity, denoted by T

∞
, is the lowest. It is

reasonable to suppose that the liquid will reach an isothermal state of equi-
librium when it reaches infinity, whereas the overall flow field’s variation in
temperature is minimal. In certain circumstances, the equation 3.7 can be
linearized as discussed by Aziz [6]. In the present circumstance, the most
appropriate illustration of a linear approximation of the equation 3.7 can be
found in the form using curve fitting and the principle of least squares of:
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The liquid is in equilibrium and can be described as isothermal. It is possible
to rewrite the boundary conditions 2.5 and 2.6 that need to be accomplished
via the temperature profile as:

T →
1

5
T0 as z → ∞} (3.9)
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For both cases (i) and (ii) T = T0 at z = 0 and dT
dz

= 0 at z = 0 for
case (ii). This means that the porous plate is kept at a fixed temperature
T0 for case (i) and insulated for case (ii). Assuming the temperature of the
fluid at infinity has a constant value of 1

5
T0 , these are some dimensionless

parameters that we present:

θ =
T − T0

T
∞
− T0

, Pr =
2ρvc

k
p, Ec =

∪2

2(T0 − T )cp

where Pr referred to as a Prandtl number and the number Ec is referred to
as an Eckert number.

Transforming equation 2.3 into dimensionless from, we get:
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The boundary condition 3.10 gives:

θ (0) = 0, θ (∞) = 1, for case(i)} (3.11)

dθ

dη
|=0
η=0, θ(∞) = 1, for case(ii) } (3.12)

Case (i)
The solution of equation 3.10 satisfying 3.11 is given by:
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where

λ =
1
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1

2

√
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Case (ii)
The solution of equation 3.10 satisfying 3.12 is given by:

θ(η) = 1 +
5prEc(a

2 + β2 + 8
5
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λ
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For
4a2 − 2aprs− F = 0

θ(η) = 1 +
5prEc(σ

2 + β2 + 8
5
N)

4(4σ − prS)
e−2ση (3.16)

For
4a2 − 2aprs− F = 0

Since F and λ are greater than zero in both of these instances of suction S
being more than zero and blowing S being less than zero respectively, the
asymptotic solutions 3.13, 3.14, 3.15, and 3.16 are legitimate throughout the
entirety of the flow field, whereas there would be no asymptotic solution in
the absence of radiative heat transfer exists on the possibility of exceeding
the limit case when it comes to blowing, when F=0, this solution is reduced
to that obtained by Steven and Ellingson [3] for N=0 the solution is reduced
to that obtained by Das et al. [4].

4 Conclusion

In this study, we analyzed the distribution of temperatures in radiative MHD
Ekman layer on a porous flat. By considering Joules’s dissipation function,
we obtained exact solutions in the distinct cases:
(i) when a steady temperature was maintained on the plate, and
(ii) when the plate was insulated.
The analysis included both sucking and blowing which are common in many
practical applications. The obtained solutions provided valuable information
into the behavior of temperature distribution in these scenarios which can
help in the design and optimization of thermal management systems. How-
ever, it is worth nothing that a solution couldn’t be found when radiative
heat emission is absent and blowing is taking place which highlights the com-
plexity of the problems and the need for further investigation. Over all, this
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study contributed to our understanding of radiative MHD Ekman layer on
a porous flat plate and demonstrated the importance of considering Joule’s
dissipation function when analyzing such a system.
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