International Journal of Mathematics and Computer Science, **18**(2023), no. 3, 409–414

$\binom{M}{CS}$

Ideal Structure of Kumjian-Pask Algebras

Rizky Rosjanuardi

Mathematics Study Program Faculty of Mathematics and Natural Sciences Education Universitas Pendidikan Indonesia Bandung, Indonesia

email: rizky@upi.edu

(Received January 4, 2023, Accepted February 7, 2023, Published March 31, 2023)

Abstract

Let R be a unital commutative ring and let Λ be a finitely aligned k-graph which has no cycle with $|\Lambda| < \infty$. Through a purely matrix approach, we show that the ideal structure of R implies the ideal structure of the Kumjian-Pask algebra $KP_R(\Lambda)$.

1 Introduction

Suppose Λ is a k-graph without sources and R is a commutative unital ring R. Pino, Clark, Huef and Raeburn [1] introduced the Kumjian-Pask algebra $KP_R(\Lambda)$, which is a higher-rank analogues of the Leavitt path algebras $L_K(E)$ of directed graph E over a field K [2].

Many researchers were interested to investigate deeper properties of this algebra or to make generalizations; for example, [3, 4, 5, 6, 7, 9, 8, 10]. Recently, Clark and Pangalela [6] generalized the theory of Kumjian-Pask algebra for finitely aligned k-graphs and then proved the graded-invariant uniqueness theorem.

Rosjanuardi and Gozali [10] described the Kumjian-Pask algebra of a finitely aligned k-graph Λ with $|\Lambda| < \infty$ which has no cycle. Theorem 5.2 of

Key words and phrases: Graph algebra, Kumjian-Pask algebra, ideal structure, k-graph.

AMS (MOS) Subject Classifications: 16W50, 46L05. ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net [11] implies that the Kumjian-Pask algebra $KP_R(\Lambda)$ is nothing but a direct sum of matrix algebras. When Λ has a single pure source [10, Proposition 3.4], an ideal I of R induced a short exact sequence of R-algebras

$$0 \to IKP_R(\Lambda) \to KP_R(\Lambda) \to KP_{R/I}(\Lambda) \to 0.$$

We extend the results in [10] to a more general case. When Λ has many pure sources, we obtain a similar result to [10, Proposition 3.4]. In Theorem 3.4 we prove that if Λ is a finitely aligned k-graph with $|\Lambda| < \infty$ which has no cycle, then an ideal J of R induced a short exact sequence of R-algebras.

2 Preliminaries on Kumjian-Pask Algebras

For any k-graph Λ and $n \in \mathbb{N}^k$ the notation Λ^n stands for the set of paths of degree n and the notation $\Lambda^{\neq 0}$ is reserved for the set of paths of nonzero degree $\{\lambda \in \Lambda : d(\lambda) \neq 0\}$. For $v \in \Lambda^0$ and $n \in \mathbb{N}^k$, the set of degree npaths with range v is denoted by $v\Lambda^n$. The graph Λ is called *row-finite* if for every $v \in \Lambda^0$ and $m \in \mathbb{N}^k$, the set $v\Lambda^m$ is finite. For $v \in \Lambda^0$, we define $v\Lambda := \{\lambda \in \Lambda : r(\lambda) = v\}$ and $\Lambda v := \{\lambda \in \Lambda : s(\lambda) = v\}$. A vertex $v \in \Lambda^0$ is called a *source* if there is $n \in \mathbb{N}^k$ such that $v\Lambda^n = \emptyset$. When there is no edge going to v, we write $\{v\} = v\Lambda$ and this vertex is called a *pure source*. The k-graph Λ is said to have no sources if $v\Lambda^m \neq \emptyset$, for all $v \in \Lambda^0$ and $m \in \mathbb{N}^k$.

Let Λ be a k-graph and suppose $\mu, \nu \in \Lambda$. A minimal common extension (MCE) of μ and ν is a path $\lambda \in \Lambda$ in which $d(\lambda) = d(\mu) \vee d(\nu)$ and $\lambda(0, d(\mu)) = \mu, \lambda(0, d(\nu)) = \nu$. The set MCE (μ, ν) consists of all of MCEs of μ and ν and we use the notation $\Lambda^{\min}(\mu, \nu) = \{(\alpha, \beta) \in \Lambda \times \Lambda : \mu\alpha = \nu\beta \in \text{MCE}(\mu, \nu)\}$. A k-graph Λ is called finitely aligned if $|\Lambda^{\min}(\mu, \nu)| < \infty$, for every $\mu, \nu \in \Lambda$. For $\nu \in \Lambda^0$, a set $E \subset \nu\Lambda$ is called exhaustive if for every $\mu \in \nu\Lambda$, there is $\lambda \in E$ such that $\Lambda^{\min}(\lambda, \mu) \neq \emptyset$. We define FE $(\Lambda) = \bigcup_{\nu \in \Lambda^0} \{E \subseteq \nu\Lambda \setminus \{v\} : E$ finite and exhaustive}. For any $\lambda \in \Lambda$, the ghost path is denoted by λ^* with degree $d(\lambda^*) = -d(\lambda)$, source $s(\lambda^*) = r(\lambda)$, and range $r(\lambda^*) = s(\lambda)$. The set of all ghost paths is denoted by $G(\Lambda)$ and when the vertices are excluded we denote it by $G(\Lambda^{\neq 0})$. The composition on $G(\Lambda)$ is defined by setting $\lambda^*\mu^* = (\mu\lambda)^*$ for $\lambda, \mu \in \Lambda^{\neq 0}$ with $r(\mu^*) = s(\lambda^*)$.

Definition 2.1. [6] Suppose Λ is a finitely aligned k-graph and R is a unital commutative ring. A Kumjian-Pask Λ family $\{S_{\lambda}, S_{\mu^*} : \lambda, \mu \in \Lambda\}$ in an R-algebra A consists of a function $S : \Lambda \cup G(\Lambda^{\neq 0}) \to A$ satisfying

(KP1) $\{S_v : v \in \Lambda^0\}$ is a family of mutually orthogonal idempotents,

410

Ideal Structure of Kumjian-Pask Algebras

(KP2) for all
$$\lambda, \mu \in \Lambda$$
 with $s(\lambda) = r(\mu)$, we have $S_{\lambda}S_{\mu} = S_{\lambda\mu}, S_{\mu^*}S_{\lambda^*} = S_{(\lambda\mu)^*},$

(KP3)
$$S_{\lambda^*}S_{\mu} = \sum_{(\rho,\tau)\in\Lambda^{\min}(\lambda,\mu)} S_{\rho}S_{\tau^*}, \text{ for all } \lambda, \mu \in \Lambda,$$

(KP4)
$$\prod_{\lambda \in E} (S_{r(E)} - S_{\lambda}S_{\lambda^*}) = 0$$
 for all $E \in FE(\Lambda)$.

Suppose Λ is a finitely aligned k-graph and R is a unital ring. Theorem 3.7 of [6] assures us that there is an R-algebra $KP_R(\Lambda)$ generated by the Kumjian-Pask family $\{s_{\lambda}, s_{\mu^*} : \lambda, \mu \in \Lambda\}$ which is universal for the Kumjian-Pask family.

3 Kumjian-Pask algebras of finitely aligned k-graphs with many pure sources

When there are many pure sources, we will be dealing with the direct sum of matrices algebras $\bigoplus_{v\Lambda=\{v\}} M_{|\Lambda v|}(R)$ as in [11]. Hence the ideal $IKP_R(\Lambda)$ will be also identified as the direct sum $I(\bigoplus_{v\Lambda=\{v\}} M_{|\Lambda v|}(R))$. For a unital algebra R and natural numbers $1 \leq k, l \leq n$, the notation ${}_{n}E_{kl}$ is reserved for the unit matrix in $M_n(R)$. For $n \in \mathbb{N}$, we use the notation ${}_{n}O_R$ for the zero matrix in the algebra $M_n(R)$.

Lemma 3.1. Let R be a unital commutative ring. If J is an ideal of R, then $J(\bigoplus_{i=1}^{n} M_{n_i}(R)) = \bigoplus_{i=1}^{n} M_{n_i}(J)$ is an ideal of the R-algebra $\bigoplus_{i=1}^{n} M_{n_i}(R)$.

Proof. Any element of $J(\bigoplus_{i=1}^{n} M_{n_i}(R))$ can be written as a finite linear combination $\sum_{k \in F} \gamma_k \alpha_k$ where F is a finite subset of \mathbb{N} , $\gamma_k \in J$ and $\alpha_k = (\alpha_{k_i})_{i=1}^n \in \bigoplus_{i=1}^n M_{n_i}(R)$. Therefore, $J(\bigoplus_{i=1}^n M_{n_i}(R)) \subset \bigoplus_{i=1}^n M_{n_i}(J)$, because $\gamma_k \alpha_{k_i} \in J$ and $\sum_{k \in F} \gamma_k \alpha_k = \sum_{k \in F} \gamma_k (\alpha_{k_i})_{i=1}^n = \sum_{k \in F} (\gamma_k \alpha_{k_i})_{i=1}^n = (\sum_{k \in F} \gamma_k \alpha_{k_i})_{i=1}^n$.

We write $A_i \in M_{n_i}(J)$ in term of entries as $[a_{i_{kl}}]_i$. Hence, $(A_i)_{i=1}^n \in \bigoplus_{i=1}^n M_{n_i}(J)$ can be written as $([a_{i_{kl}}]_i)_{i=1}^n$, which is nothing but

R. Rosjanuardi

$$\sum_{k=1}^{n_i} \sum_{l=1}^{n_i} a_{i_{kl}}(a_i E_{kl})_i)_{i=1}^n$$

$$= \sum_{m=1}^n (B_{m,i})_{i=1}^n \text{ where } B_{m,i} = \begin{cases} \sum_{k=1}^{n_i} \sum_{l=1}^{n_i} a_{i_{kl}}(E_{kl})_i, & \text{if } i = m \\ n_{m+1}O_J, & \text{if } i = m+1 \\ \vdots & \vdots \\ n_nO_J, & \text{if } i = n, \end{cases}$$

$$= \sum_{m=1}^n \sum_{k=1}^{n_i} \sum_{l=1}^{n_i} a_{m_{kl}}(C_{m,i})_{i=1}^n \text{ where } C_{m,i} = \begin{cases} (a_i E_{kl}), & \text{if } i = m \\ n_{m+1}O_R, & \text{if } i = m+1 \\ \vdots & \vdots \\ n_nO_R, & \text{if } i = n. \end{cases}$$

Hence $(A_i)_{i=1}^n \in \bigoplus_{i=1}^n M_{n_i}(J)$ can be written as a linear combination of elements in $\bigoplus_{i=1}^n M_{n_i}(R)$ with scalars in J which implies that $\bigoplus_{i=1}^n M_{n_i}(J) \subset J(\bigoplus_{i=1}^n M_{n_i}(R))$. Therefore, the equality holds.

Finally, for each $i \in \mathbb{N}$, $M_{n_i}(J)$ is an ideal of the algebra $M_{n_i}(R)$ and hence $\bigoplus_{i=1}^n M_{n_i}(J)$ is an ideal of $\bigoplus_{i=1}^n M_{n_i}(R)$. Consequently, $J(\bigoplus_{i=1}^n M_{n_i}(R))$ is an ideal of $\bigoplus_{i=1}^n M_{n_i}(R)$.

Theorem 3.2. Let R be a unital commutative ring. Suppose Λ is a finitely aligned k-graph with $|\Lambda| < \infty$, $\{v_1, v_2, ..., v_n\} \subset \Lambda^0$ such that $v_i\Lambda = \{v_i\}$ and contains no cycle. If J is an ideal of R, then $JKP_R(\Lambda)$ is an ideal of $KP_R(\Lambda)$.

Proof. Theorem 5.2 of [11] implies that $KP_R(\Lambda) = \bigoplus_{i=1}^n M_{|\Lambda v_i|}(R)$. Therefore, $\bigoplus_{i=1}^n M_{|\Lambda v_i|}(J)$ is an ideal of $\bigoplus_{i=1}^n M_{|\Lambda v_i|}(R)$, which is nothing but $JKP_R(\Lambda)$ by Lemma 3.1.

Theorem 3.3. Let R be a unital commutative ring. If J is an ideal of R, then there is a short exact sequence

$$0 \to \bigoplus_{i=1}^{n} M_{n_i}(J) \to \bigoplus_{i=1}^{n} M_{n_i}(R) \to \bigoplus_{i=1}^{n} M_{n_i}(R/J) \to 0.$$

Proof. Since J and R can be viewed as R-modules, J, R and R/J are Ralgebras. Now consider the canonical injection $\psi : J \to R$ and the canonical quotient map $\phi : R \to R/J$. Then $0 \to J \stackrel{\psi}{\to} R \stackrel{\phi}{\to} R/J \to 0$. Define $\bar{\psi} : \bigoplus_{i=1}^{n} M_{n_i}(J) \to \bigoplus_{i=1}^{n} M_{n_i}(R)$ by $\bar{\psi}(([a_{i_{kl}}]_i)_{i=1}^n) = ([\psi(a_{i_{kl}})]_i)_{i=1}^n)$. Then $\bar{\psi}$ is an R-algebra homomorphism, because ψ is. Injectivity of ψ implies that $\bar{\psi}$ is injective, because

$$\ker \bar{\psi} = \{ ([a_{i_{kl}}]_i)_{i=1}^n \in \bigoplus_{i=1}^n M_{n_i}(J) | [\psi(a_{i_{kl}})]_i = {}_{n_i} O_J \text{ for } i = 1, ..., n \}.$$

412

Ideal Structure of Kumjian-Pask Algebras

Define $\bar{\phi} : \bigoplus_{i=1}^{n} M_{n_i}(R) \to \bigoplus_{i=1}^{n} M_{n_i}(R/J)$ by $\bar{\phi}(([b_{i_{kl}}]_i)_{i=1}^n) = ([\phi(b_{i_{kl}})]_i)_{i=1}^n$. Then $\bar{\phi}$ is a surjective *R*-algebra homomorphism, because ϕ is. Since

$$\ker \phi = \{ ([a_{i_{kl}}]_i)_{i=1}^n \in \bigoplus_{i=1}^n M_{n_i}(R) | a_{i_{kl}} \in \ker \phi = \operatorname{Im} \psi \}$$

= $\{ ([\psi(b_{i_{kl}}]_i)_{i=1}^n \in \bigoplus_{i=1}^n M_{n_i}(R) | b_{i_{kl}} \in J \}$
= $\{ \bar{\psi}(([b_{i_{kl}}]_i)_{i=1}^n) \in \bigoplus_{i=1}^n M_{n_i}(R) | b_{i_{kl}} \in J \} = \operatorname{Im} \bar{\psi},$

we get the short exact sequence.

Theorem 3.4. Let R be a unital commutative ring. Suppose Λ is a finitely aligned k-graph with $|\Lambda| < \infty$ and $\{v_1, v_2, ..., v_n\} \subset \Lambda^0$ such that $v_i\Lambda = \{v_i\}$ and contains no cycle. If J is an ideal of R, then there is a short exact sequence

$$0 \to JKP_R(\Lambda) \to KP_R(\Lambda) \to KP_{R/J}(\Lambda) \to 0.$$

Proof. Applying [11, Theorem 5.2] to the rings R and R/J we get

$$KP_R(\Lambda) = \bigoplus_{i=1}^n M_{|\Lambda v_i|}(R)$$
 and $KP_{R/J}(\Lambda) = \bigoplus_{i=1}^n M_{|\Lambda v_i|}(R/J).$

By Lemma 3.1, we get $JKP_R(\Lambda) = J(\bigoplus_{i=1}^n M_{n_i}(R)) = \bigoplus_{i=1}^n M_{n_i}(J)$. Theorem 3.3 implies that $0 \to JKP_R(\Lambda) \to KP_R(\Lambda) \to KP_{R/J}(\Lambda) \to 0$ is a short exact sequence.

Acknowledgment. The research is supported by Direktorat Jenderal Penguatan Riset dan Pengembangan Kementerian Riset dan Teknologi.

References

- G. Aranda Pino, J. Clark, A. an Huef, I. Raeburn, *Kumjian-Pask Al-gebras of Higher Rank Graphs*, Trans. Amer. Math. Soc., **365**, no. 7, (2013), 3613–3641.
- [2] G. Abrams, G. Aranda Pino, The Leavitt Path Algebra of a Graph, J. Algebra, 293, no. 2, (2005), 319–334.
- [3] R. Rosjanuardi, Complex Kumjian-Pask Algebras, Acta. Math. Sin., 29, no. 11, (2013), 2073–2078.
- [4] R. Rosjanuardi, Kumjian-Pask Algebras of Desourcification, AIP Conference Proceedings, 1708, 060006, (2016), 1–6.

- [5] I. Yusnitha, R. Rosjanuardi, Complex Kumjian-Pask Algebras of 2-Graphs, AIP Conference Proceedings, 1708,060010, (2016), 1–4.
- [6] L. O. Clark, Y. E. P. Pangalela, Kumjian-Pask Algebras of Finitely Aligned Higher-Rank Graphs, J. Algebra, 482, (2017), 364–397.
- [7] R. Rosjanuardi, Some Notes on Complex Kumjian-Pask Algebras of Finitely Aligned k-Graphs, AIP Conference Proceedings, 1830, 070027, (2017), 1–5.
- [8] R. Rosjanuardi, Representing k-graphs as Matrix Algebras, in IOP Conf. Series: Journal of Physics, 1013, 012207, (2018), 1–6.
- [9] S. M. Gozali, I. Yushnitha, R. Rosjanuardi, On the Center of Kumjian-Pask Algebras Associated to Finitely Aligned k-Graph, AIP Conference Proceedings, 1830, 070029, (2017), 1–5.
- [10] R. Rosjanuardi, S. M. Gozali, Ideals in Kumjian-Pask Algebras of Finitek-Graphs, Far East J. Math. Sci., 103, no. 4, (2018), 757–766.
- [11] D. Gwion Evans, Aidan Sims, When is the Cuntz-Krieger Algebra of a Higher-Rank Graph Approximately Finite-Dimensional?, Journal of Functional Analysis, 263, no. 1, (2012), 183–215.