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Abstract

In this paper, we use the Stein-Chen method and w-functions to

determine a non-uniform bounds on Poisson approximation to the

cumulative distribution function of a sum of independent non-negative

integer-valued random variables. The obtained bound is more suitable

for measuring the accuracy of this approximation.

1 Introduction

In the past few decades, mathematicians and statisticians have studied many
research related to the context of Poisson approximation. These studies
have yielded useful results that can be applied to probability and statistics.
The most useful results are concerned with the Poisson approximation for
sums of Bernoulli random variables and for sums of non-negative integer-
valued random variables. From which, many authors have tried to obtain
some good bounds for this approximation. In particular, many accurate
results were created by the well-know Stein-Chen method, which was in-
troduced by Chen[3]. The Stein-Chen method is a powerful and efficient
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technique for finding uniform and non-uniform bounds on the Poisson ap-
proximation. In addition, this study also uses the method to determine
a non-uniform bound on Poisson approximation for a sum of non-negative
integer-valued random variables. Let S =

∑n

i=1Xi, where X1, X2..., Xn are
independent non-negative integer-valued random variables, each with the
probability pXi

(x) = P (Xi = x) > 0 for every x in the space of Xi, Xi,
and have mean µi, finite variance σ2

i > 0 and w-function associated with
Xi, wi(Xi), where σ2

iwi(x)pXi
(x) =

∑x

j=0(µi − j)pX(j) for every x ∈ Xi.
Let Z =

∑n

i=1 Zi, where Z1, Z2..., Zn are independent Poisson random vari-
ables with mean λ1, λ2, ..., λn, respectively and µ =

∑n

i=1 µi. In this case,
Teerapabolarn[6] used the Stein-Chen method and w-functions to give a uni-
form bound for approximating the distribution of S, P (S ∈ A), by a Poisson
distribution, P (Z ∈ A), with mean λ =

∑n

i=1 λi in the form of

dA(S, Z) ≤
1− e−λ

λ

n
∑

i=1

E
∣

∣λi − σ2
iwi(Xi)

∣

∣+

√

2

λe
|λ− µ| (1− pS(0)) , (1.1)

and if λ = µ, then

dA (S, Z) ≤
1− e−λ

λ

n
∑

i=1

E
∣

∣λi − σ2
iwi(Xi)

∣

∣ (1.2)

for A ⊆ N ∪ {0}, where dA(S, Z) = |P (S ∈ A) − P (Z ∈ A)|. It is noted
that the result gives a good approximation when λ = µ and for A = Cx0

=
{0, ..., x0} as x0 ∈ S, where S is the space of S. Thus, (1.2) becomes

dCx0
(S, Z) ≤

1− e−λ

λ

n
∑

i=1

E
∣

∣λi − σ2
iwi(Xi)

∣

∣ , (1.3)

where dCx0
(S, Z) = |P (S ≤ x0) − P (Z ≤ x0)|. In this paper, we focus on

improving the uniform bound in (1.3) to be a non-uniform bound, which is
a better bound for measuring the accuracy of this approximation.

2 Method

The method of this study consists of the Stein-Chen method and w-functions.
For w-functions that are satisfying to X1, X2, ..., Xn, it can be applied the
result in Cacoullos and Papathanasiou [2] to define a function wi associated
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with non-negative integer-valued random variable Xi in the relation

σ2
iwi(x)pXi

(x) =

x
∑

j=0

(µi − j)pXi
(j), x ∈ Xi (2.4)

and according to [2], it yields

Cov
(

Xi, g(Xi)
)

= σ2
i E

[

wi(Xi)∆g(Xi)
]

, (2.5)

for any function g : N ∪ {0} → R for which E |wi(Xi)∆g(Xi)| < ∞, where
∆g(Xi) = g(Xi + 1)− g(Xi).

For the stein-Chen method, we first need to consider Stein’s equation for
the Poisson distribution with parameter λ > 0 is, for given h, of the form

h(x)− Pλ(h) = λg(x+ 1)− xg(x), (2.6)

where Pλ(h) = E[h(X)] and g and h are bounded real valued functions
defined on N ∪ {0}. For A ⊆ N ∪ {0}, let function hA : N ∪ {0} → R be
defined by

hA(x) =

{

1 if x ∈ A,

0 if x /∈ A.

Following Barbour et al. [1], the solution gA of (2.6) is of the form

gA(x) =

{

(x− 1)!λ−xeλ[Pλ(hA∩Cx−1
)− Pλ(hA)Pλ(hCx−1

)] if x ≥ 1,

0 if x = 0.
(2.7)

Similarly, for A = Cx0
= {0, ..., x0} where x0 ∈ N∪{0}, gCx0

can be expressed
as

gCx0
(x) =











(x− 1)!λ−xeλ[Pλ(hCx−1
)Pλ(1− hCx0

)] if x ≤ x0,

(x− 1)!λ−xeλ[Pλ(hCx0
)Pλ(1− hCx−1

)] if x > x0.

0 if x = 0.

(2.8)

For x0 ∈ N ∪ {0}, let ∆gCx0
(x) = gCx0

(x + 1) − gCx0
(w). The following

lemmas are also need to prove the main result.

Lemma 2.1. With the above definitions of w-function and for each i ∈
{1, ..., n}, we then have the following:

Cov
[

Xi, g(S)
]

= σ2
i E

[

wi(Xi)∆g(S)
]

. (2.9)
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Proof. It suffices to show (2.9) for n = 2. Following the fact that

Cov
[

X1, g(X1 +X2)
]

= E
[

Cov
(

X1, g(X1 +X2)
)

|X2

]

= E
{

σ2
1E

[(

w1(X1)∆g(X1 +X2)
)

|X2

]}

(by (2.5))

= σ2
1E

[

w1(X1)∆g(X1 +X2)
]

,

this implies (2.9). �

Because Cov
[

S, g(S)
]

=
∑n

i=1Cov
[

Xi, g(S)
]

and by applying (2.9), we
have

Cov
[

S, g(S)
]

=

n
∑

i=1

σ2
iE

[

wi(xi)∆g(S)
]

. (2.10)

Lemma 2.2. For x0 ∈ N ∪ {0} and x ∈ N, then the following inequality

holds:

∣

∣∆gCx0
(x)

∣

∣ ≤







λ−2(e−λ − λ− 1) if x0 = 0,

min

{

λ−1(1− e−λ),
1

x0 + 1

}

if x0 > 0.

Proof. For x0 = 0, it is directly obtained from Lemma 2.1 in Teerapabo-

larn and Neammanee [8]. Thus, we have to show that
∣

∣∆gCx0
(x)

∣

∣ ≤
1

x0 + 1
for x0 > 0. For x ≤ x0, Teerapabolarn [7] showed that 0 < ∆gCx0

(x) ≤
∆gCx0

(x0) = ∆gCx0−1
(x0) + ∆g{x0}(x0), where ∆g{x0}(x) = g{x0}(x + 1) −

g{x0}(x). Using (2.8) and combining Teerapabolarn [7] and Stein [4], we have
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that

∣

∣∆gCx0
(x)

∣

∣ ≤ (x0 − 1)!Pλ(hCx0−1
)

[

∞
∑

k=x0+1

(x0 − k)
λk−(x0+1)

k!

]

+ e−λ

[

1

λ

∞
∑

k=x0+1

λk

k!
+

1

x0

x0−1
∑

k=0

λk

k!

]

= −
Pλ(hCx0−1

)

x0

[

1

x0 + 1
+

2λ

(x0 + 2)(x0 + 1)
+ . . .

]

+
Pλ(hCx0−1

)

x0

+
e−λ

λ

∞
∑

k=x0+1

λk

k!

≤

(

1−
1

x0 + 1

)

P(hCx0−1
)

x0
+

e−λ

λ

∞
∑

k=x0+1

λk

k!

≤
1

x0 + 1
P(hCx0−1

) +
1

x0 + 1
P(1− hCx0−1

)

=
1

x0 + 1
. (2.11)

For x > x0, Teerapabolarn [7] and Barbour et al. [1] showed that

0 > ∆gCx0
(x) > −∆g{x}(x) ≥ −min

{

1− e−λ

λ
,

1

x+ 1

}

,

which yields

∣

∣∆gCx0
(x)

∣

∣ ≤ min

{

1− e−λ

λ
,

1

x0 + 1

}

. (2.12)

Hence, from (2.11) and (2.12), the inequality in Lemma 2.2 holds. �

3 Main Result

The following theorem presents the our main result of this study.

Theorem 3.1. For λ = µ, the following inequality holds:

dCx0
(S, Z) ≤ δ(x0)

n
∑

i=1

E
∣

∣λi − σ2
iwi(Xi)

∣

∣ , (3.13)
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where δ(x0) =







λ−2(e−λ − λ− 1) if x0 = 0,

min

{

λ−1(1− e−λ),
1

x0 + 1

}

if x0 > 0.

Proof. We shall show that (3.13) holds. By following (2.6) and using Teer-
apabolarn [5] and setting g = gCx0

, we have

dCx0
(S, Z) = |λE[g(S + 1)]− E[Sg(S)]|

= |λE[∆g(S)]− Cov(S, g(S)) + (λ− µ)E[Sg(S)]|

=

∣

∣

∣

∣

∣

n
∑

i=1

λiE[∆g(S)]−
n

∑

i=1

σ2
i E[wi(xi)∆g(S)]

∣

∣

∣

∣

∣

(by (2.10))

≤ sup
s∈S

|∆g(s)|

n
∑

i=1

E
∣

∣λi − σ2
iwi(Xi)

∣

∣

≤ δ(x0)
n

∑

i=1

E
∣

∣λi − σ2
iwi(Xi)

∣

∣ (by Lemma 2.2).

Therefore, the inequality (3.13) holds. �

4 Conclusion

In this study, a non-uniform bound for the distance between the cumulative
distribution of a sum of independent non-negative integer-valued random
variables and a Poisson cumulative distribution function was obtained by
using the Stein-Chen method and w-functions. By comparing the two related
bounds, the bound of this study is sharper than that reported in (1.3). From
which, the obtained bound is more suitable for measuring the accuracy of
this approximation.
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