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Abstract

Various characteristics of the algebraic structures can be expressed

by associating it to the graphs of different groups. In an intersection

graph, each vertex conforms to a set wherein two vertices are con-

nected by an edge if and only if their corresponding sets have a non-

empty intersection. For a finite group G, a graph of its subgroups
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can be represented by the vertices that correspond to the subgroups

of G. Based on this factor, we defined the cyclic intersection graph

of the subgroups of a group G. The cyclic intersection graph of the

subgroups of a group G enclosed all the nontrivial subgroups as its

vertices together with two adjacent vertices H and K if and only if H

intersection K corresponded to a non-trivial cyclic subgroup. Further-

more, the general presentation of the graph on the dihedral groups was

obtained. The cyclic intersection graph of the subgroups on dihedral

groups is classified as connected or planar. Additionally, some of the

invariants of the the cyclic intersection graph of the subgroups on the

dihedral groups are given.

1 Introduction

In recent years, numerous approaches have been adopted to study various
characteristics of a group wherein the graphs associated to diverse algebraic
structures were the main focus. In this regard, the concepts of a group and
its geometric properties for defining the graphs were used as one of the most
versatile techniques. This conceptualization became significant to bridge the
gap between the graph and group theory, thus achieving the attributes of
the graphs related to different groups. The notion of groups involving the
graph theory was first introduced by Cayley [1] wherein the graph that inter-
prets the abstract structure of a group generated by a set of generators was
defined. Diverse graphs related to the algebraic structures can be used to
determine their special features. In this perception, the intersection graphs
have extensively been explored over the last few decades. For instance, Bosak
[2] examined the intersection graphs of the semigroups. Csakany and Pollak
[3] studied the intersection graphs of the subgroups of a finite group. Shen
[4] classified the finite groups with disconnected intersection graphs of the
subgroups. In addition, Zelinka [5] obtained the independence number of
the intersection graph of subgroups of a finite abelian group in which it was
acknowledged that two finite abelian groups with isomorphic intersection
graphs can be isomorphic. Uehara [6] investigated the geometrical inter-
section graphs. Later, Kayacan and Yaraneri [7] verified the claim made by
Zelinka [5]. intersection graphs for every group were determined. Meanwhile,
the lower bounds of the isoperimetric numbers of the random intersection
graphs induced by these perturbations were evaluated by Shang [8]. Briefly,
the intersection graphs on diverse algebraic structures including the rings,
vector spaces, and modules were examined in-depth. Based on these revela-
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tions, we proposed a new type of cyclic intersection graph of the subgroups
of finite groups for the first time. The general presentations for the graph on
the dihedral groups were portrayed.

2 Preliminaries

This section describes some basic concepts, notations, and preliminaries re-
lated to this work. We used a type of finite group called dihedral group.

Definition 2.1. [9] Dihedral Group
For n ∈ Z and n ≥ 3, the dihedral group, D2n, is the set of symmetries
of a regular n-gon. Furthermore, the order of D2n is 2n or equivalently
|D2n| = 2n. The dihedral group can be defined in terms of generators and
relations as follows:

D2n = 〈a, b | an = b2 = e, bab = a−1〉.

Herein, simple undirected graphs without loop or multiple edges are con-
sidered. The sets of vertices and edges of a graph Γ can be expressed as V (Γ)
and E(Γ), respectively. The adjacency of vertices a, b is written as a ∼ b,
the number of vertices of the graph Γ is denoted as |V (Γ)|, the degree of the
vertex v is presented as deg(v), and the largest vertex degree (the maximum
degrees of the vertices of a graph) is expressed as ∆(Γ). A graph Γ is said to
be connected if there is a path between every pair of its vertices. Meanwhile,
a graph is said to be complete if there is an edge between every pair of its
vertices. A graph is considered to be planar if it can be drawn in a plane
without edge crossing. A clique is defined as a subset U of the vertices of Γ
such that the induced subgraph of U corresponds to a complete graph. The
maximum size of a clique is referred to as the clique number of Γ that is
denoted as ω(Γ). The girth of a graph Γ represents the length of the shortest
cycle enclosed in the graph. If Γ has no cycle then the girth of the graoh is
infinity. The diameter of a graph represents the maximum distance between
the pair of its vertices. It is ∞ if the graph is disconnected. The vertex
chromatic number of a graph Γ denoted as χ(Γ) characterizes the smallest
number of colors needed to color the vertices of Γ such that no two adjacent
vertices get the same color. The number of colors required to color the edges
of the graph in such a way that no two adjacent edges have the same color is
the edge chromatic number of a graph represented as χe(Γ). The upcoming
section explains some of these graphs belong to the finite groups.
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Definition 2.2. [10] Intersection Graph of a Group
Let, F = {si |i ∈ I} be an arbitrary family of sets. The intersection graph
of F is a graph having the elements of F as its vertices and two vertices si
and sj are adjacent if and only if i 6= j and si ∩ sj 6= ∅.

Definition 2.3. [3] The Intersection Graph of Subgroups of a Group
Let G be a group. The intersection graph of subgroups of G, denoted by J (G)
is a graph with all proper subgroups of G as its vertices and two distinct
vertices in J (G) are adjacent if and only if the corresponding subgroups have
a non-trivial intersection in G.

3 Results

In this study, firstly the cyclic intersection graph of subgroups of a group
is introduced and the graph for the dihedral groups is constructed. Next,
the general presentation of the graphs is examined using the earlier defini-
tions and results. The formal definition of the cyclic intersection graph of
subgroups of a group is given as in Definition 3.1.

Definition 3.1. The Cyclic Intersection Graph of Subgroups of Finite Groups
Let G be a group. The cyclic intersection graph of subgroups of G denoted
by Γc

∩
(G) represents a graph having all non-trivial subgroups as its vertices

and two vertices H and K are adjacent iff H intersection K is a non-trivial
cyclic subgroup.

3.1 General Presentations of Cyclic Intersection Graph

of Subgroups of Dihedral Groups

The general presentations of the cyclic intersection graph of subgroups of
dihedral groups are given as follows.

Theorem 3.2. Let G be a group, then the improper subgroup of G in Γc
∩
(G)

is adjacent to all cyclic subgroups of G.

Proof. Since G itself is the improper subgroup of G then the intersection of
the improper subgroup G with all the cyclic subgroups of G becomes equal
to those cyclic subgroups. Thus, there are edges linking the vertex G that is
an improper subgroup with all the cyclic subgroups of the group G.

The general presentation of the cyclic intersection graph of subgroups of
D2p for prime p is given in Theorem 3.3.
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Theorem 3.3. Let D2p be the dihedral group of order 2p where p is a prime
number. Then Γc

∩
(D2p) = K1,p+1.

Proof. Let D2p be a dihedral group where p is a prime number, then D2p =
〈a, b|ap = b2 = e, bab = a−1〉 = {e, a, a2, a3, ..., ap−1, b, ab, a2b, ..., ap−1b}.

Therefore, O(ai) =
O(a)

gcd(i, O(a))
=

p

gcd(i, p)
= p, and O(aib) = 2 for all

i = 0, 1, 2, ..., p− 1. Meanwhile, all the subgroups of D2p take the form:
〈e〉 = {e}, Hi = 〈aib〉 = {e, aib} ∼= Z2 , and Hp = 〈ai〉 = {e, a, a2, ..., ap−1} ∼=
Zp for all i = 0, 1, 2, ..., p−1. Explicitly, the subgroups ofD2p are {〈e〉, H0, H1,

..., Hp−1, Hp, D2n}. Therefore, the number of subgroups of D2p is p+ 3
Let the vertex set, V (Γ(G)) = {H0, H1, ..., Hp−1, Hp, D2n}. Then
Fact 1: D2p is adjacent to all the subgroups H0, H1, ..., Hp−1, Hp, since D2n ∩
Hi = Hi

∼= Z2 for i = 0, 1, 2, ..., p− 1 and D2n ∩ Hp = Hp
∼= Zp. Here, all

Hi, 0 ≤ i ≤ p are the cyclic subgroups.
Fact 2: Hi ∩ Hj = {e, aib} ∩ {e, ajb} = {e}. Also, Hi ∩ Hp = {e, aib} ∩
{e, a, a2, a3, ..., ap−1} = {e}. Hence, the edges between Hi and Hj as well as
between Hi and Hp for all 0 ≤ i ≤ p − 1 and 0 ≤ j ≤ p− 1 are completely
absent, indicating that Γc

∩
(D2p) is K1,n+1.

The general presentations of the cyclic intersection graph of subgroups of
dihedral groups, for n = pr is given in the Theorem 3.4.

Theorem 3.4. Let D2n be the dihedral group of order 2n with n = pr where
p is a prime number, r ∈ N, and r > 1. Then ΓC

∩
(D2pr) has subgraphs

isomorphic to Kr+ pr−1, K1 + Kpr and Kr ∪ Kpr .

Proof. Let D2n be the dihedral group of order 2n, for n = pr where p is a
prime number, r ∈ N, and r > 1. Let A = 〈at〉 be the set of subgroups gen-
erated by the rotation elements of D2n where t | n, t = 1, p, p2, p3, ..., pr−1.
In addition, let B = 〈aib〉 with 0 ≤ i ≤ n − 1 be the set of the subgroups
generated by the reflection elements of D2n. Let C = 〈ap

j

, aib〉 where
0 ≤ i ≤ (pj) and 1 ≤ j ≤ r − 1.
To prove that Γ C

∩
(D2prq) has a subgraph isomorphic to Kr+pr−1, assume

the subgroups A = 〈at〉 of D2n be a clique of size r. Furthermore, con-
sider C1 = 〈ap

r−1

, aib〉 ∈ C , 0 ≤ i < pr−1 and pick arbitrary vertices
〈ap

r−1

, akb〉, 〈ap
r−1

, amb〉 ∈ C1 for 0 ≤ k < pr−1and 0 ≤ m < pr−1. Then
〈ap

r−1

, akb〉 ∩ 〈ap
r−1

, amb〉 = 〈ap
r−1

〉 is a cyclic subgroup of order pr−1. Con-
versely, C1 ∩ 〈at〉 = 〈ap

r−1

〉 is the cyclic subgroup. Therefore, ΓC
∩
(D2pr)

contains the subgraph Kr+pr−1. Next, the order of each B takes the form
|〈aib〉| = 2 for 0 ≤ i ≤ pr−1. Thus, D2pr ∩ 〈aib〉 = 〈aib〉 indicates that
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|D2pr ∩ 〈aib〉| = 2 ∼= Z2, displaying that the intersection is a cyclic subgroup.
In short, Theorem 3.2 implies that there exists an edge joining D2pr to each
〈aib〉. Thus, the intersection of each subgroup in B is a trivial subgroup, af-
firming that 〈aib〉 form an independent set of order pr. In essence, the graph
contains K1+Kpr . Assume that the subgroup A is a clique of size r and the
subgroup B form an independent set of order pr. Thus, the graph contains
Kr ∪ Kpr since there are no edges between the set A and B.

Before providing the general presentations of the cyclic intersection graph
of subgroups of the dihedral groups, D2n for n = pq, Example 3.5 is given
first.

Example 3.5. Consider the dihedral group of order 12, D12 = {e, a, a2, a3, a4,
a5, b, ab, a2b, a3b, a4b, a5b}. The subgroups of D12 are 〈e〉, 〈a〉, 〈a2〉, 〈a3〉,
〈a2, b〉, 〈a2, ab〉, 〈a3, b〉, 〈a3, ab〉, 〈a3, a2b〉, 〈b〉, 〈ab〉, 〈a2b〉, 〈a3b〉, 〈a4b〉, 〈a5b〉
and D12. The vertex set is given as V (Γ(D12)) = {〈a〉, 〈a2〉, 〈a2, b〉, 〈a2, ab〉,
〈a3, b〉, 〈a3, ab〉, 〈a3, a2b〉, 〈b〉, 〈ab〉, 〈a2b〉, 〈a3b〉, 〈a4b〉, 〈a5b〉, D12}. The cyclic
intersection graph of subgroups of D12 has subgraphs isomorphic to K1 +
(K2 ∪K6) and K6 as shown in Figure 1 . Figure 2 illustrates the structure
of Γ C

∩
(D12).

Figure 1: Subgraphs of the cyclic intersection graph of subgroups of D12

Theorem 3.6. Let D2n be the dihedral group of order 2n, for n = pq

where p and q are distinct prime numbers. Then ΓC
∩
(D2pq) has the subgraphs

isomorphic to K1 + (K2 ∪Kn) and Kp+q+1.

Proof. Suppose D2n is the dihedral group of order 2n for n = pq. Let
A = 〈at〉 be the set of subgroups generated by the rotation elements of D2n

where t < n and t | n. In addition, let B = 〈aib〉 where 0 ≤ i ≤ n − 1 be
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Figure 2: The cyclic intersection graph of subgroups of D12

the set of the subgroups generated by the reflection elements of D2n. Assume
that C = 〈at, aib〉 where 0 ≤ i ≤ t and 1 < t < n. To prove that ΓC

∩
(D2pq)

has a subgraph isomorphic to K1 + (K2 ∪Kn). Consider a subset Aα of A

such that Aα = 〈aα〉 where α | p. Then Aα is a clique of size 2. Because
Aα ∩ D2n = Aα is a cyclic subgroup and thus 〈aib〉 ∩ D2n = 〈aib〉 is also a
cyclic subgroup, indicating that the edges linking D2n with both Aα and 〈aib〉
exist. Therefore, ΓC

∩
(D2pq) has a subgraph isomorphic to K1 + (K 2 ∪Kn).

To further verify that the graph has a subgraph isomorphic to Kp+q+1, let
us consider the non-cyclic subgroups C1 = 〈ap, aib〉, C2 = 〈aq, ajb〉 of C

and A1 = 〈a〉 of A (for 0 ≤ i ≤ (p − 1), 0 ≤ j ≤ q − 1). Then both
C1 ∩ C2 ∈ B and C1 ∩ A1 = 〈ap〉 are the cyclic subgroup, demonstrating
that C2 ∩ A1 = 〈aq〉 is also a cyclic subgroup. Thus, C1, C2 and A1 with
{〈ap, aib〉, 〈aq, ajb〉, 〈a〉} is a clique of size p + q + 1. This reaffirms that
ΓC
∩
(D2prq) contains the subgraph Kp+q+1.

The general presentations of the cyclic intersection graph of subgroups of
dihedral groups, for n = prq is given in the Theorem 3.7.

Theorem 3.7. Let D2n be the dihedral group of order 2n, for n = prq

where p and q are distinct prime numbers and r > 1 for r ∈ N. Then
ΓC
∩
(D2prq) encloses the subgraphs isomorphic to K1+(Kα∪Kn) where α are

the positive divisors of pr and

{

Kβ+γ if p = 2,
Kpr+q+r if p 6= 2,

where β is the greatest proper divisor of n and γ is the positive divisor of β.
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Proof. Suppose D2n is the dihedral group of order 2n for n = prq. Let
A = 〈at〉 be the set of subgroups generated by the rotation elements of D2n

where t < n, and t | n. In addition, let B = 〈aib〉, 0 ≤ i ≤ n − 1
be the set of subgroups generated by the reflection elements of D2n. To
prove that ΓC

∩
(D2prq) where r > 1 for r ∈ N has a subgraph isomorphic

to K1 + (Kα ∪ Kn) consider a subset Aα of A such that Aα = 〈aα〉 where
α | pr. Then Aα is a clique of size α. Now, because Aα ∩ D2n = Aα is a
cyclic subgroup, then 〈aib〉∩D2n = 〈aib〉 is also a cyclic subgroup. Therefore,
the edges linking D2n with both Aα and 〈aib〉 exist. Accordingly, ΓC

∩
(D2prq)

contains a subgraph isomorphic to K1 + (Kα ∪ Kn) . To show that the
graph has a subgraph isomorphic to Kβ+γ if p = 2, consider the non-cyclic
subgroups C = 〈aβ, aib〉 where β is the greatest proper divisor of n and
0 ≤ i ≤ (β − 1) and select some arbitrary C1 = 〈aβ, ai1b〉 and C2 = 〈aβ, ai2b〉
in C = 〈aβ, aib〉. Then C1 ∩ C2 = 〈aβ〉 is a cyclic subgroup of order
|β|. Let A1 = 〈aγ〉 ∈ A. Because γ is the positive divisor of β, therefore,
〈aγ〉 ∩ C = 〈aβ〉, indicating that the edges linking C with A1 exist. Hence,
ΓC
∩
(D2prq) contains the subgraph Kβ+γ when p = 2. If p 6= 2 and the

graph encloses a subgraph isomorphic to Kpr+q+r, then consider the non-
cyclic subgroups C1 = 〈ap

r

, aib〉, C2 = 〈aq, ajb〉 and A1 = 〈ay〉 where y is
proper divisors of pr for 0 ≤ i ≤ (pr − 1), 0 ≤ j ≤ q − 1 and 1 ≤ y ≤ r.
Then, C1 ∩ C2 ∈ B, C1 ∩ A1 = 〈ap

r

〉 and C2 ∩ A1 = 〈aqy〉 are the cyclic
subgroup. Consequently, C1, C2 and A1 with {〈ap

r

, aib〉, 〈aq, ajb〉, 〈ay〉} is a
clique of size pr+q+r. Briefly, ΓC

∩
(D2prq) contains the subgraph Kpr+q+r.

The general presentations of the cyclic intersection graph of subgroups of
dihedral groups, for n = pqh is given in the Theorem 3.8.

Theorem 3.8. Let D2n be the dihedral group of order 2n, for n = pqh where
p, q and h are distinct prime numbers and p is the smallest prime number
between them. Then ΓC

∩
(D2pqh) contains the subgraphs isomorphic to K1 +

(K4 ∪Kn) and Kn
p
+4.

Proof. Let 〈ai〉 and 〈aib〉 be the subgroups generated by the rotation elements
and reflection elements of D2n where n = pqh. According to Lagrange’s
Theorem p, q and h divide |D2n|. Thus, the subgroups 〈ap〉, 〈aq〉 and 〈ah〉 in
D2n, such that 〈ap〉 ∩ 〈aq〉 = 〈apq〉, 〈ap〉 ∩ 〈ah〉 = 〈aph〉, 〈aq〉 ∩ 〈ah〉 = 〈aqh〉,
〈ap〉 ∩ 〈a〉 = 〈ap〉, 〈aq〉 ∩ 〈a〉 = 〈aq〉, and 〈ah〉 ∩ 〈a〉 = 〈ah〉 exist. Hence,
{〈a〉, 〈ap〉, 〈aq〉, 〈ah〉} is a clique of size 4. Moreover, 〈ap〉 ∩ 〈D2n〉 = 〈ap〉,
〈aq〉 ∩ 〈D2n〉 = 〈aq〉, 〈ah〉 ∩ 〈D2n〉 = 〈ah〉 and 〈a〉 ∩ 〈D2n〉 = 〈a〉. Thus, the
edges linking D2n with {〈a〉, 〈ap〉, 〈aq〉, 〈ah〉} exist thereby forming K1 +K4.
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Now, because 〈aib〉 is an independent set, thus it forms a cyclic subgroup Kn.
However, 〈aib〉 ∩ 〈D2n〉 = 〈aib〉 being a cyclic subgroup it can form K1 +Kn.
By combining K1 +K4 and K1 +Kn one gets the subgraph K1 + (K4 ∪Kn).
In order to show that Kn

p
+3 is also a subgraph of ΓC

∩
(D2pqh) consider the

non-cyclic subgroup 〈aqh, aib〉 for 0 ≤ i ≤ (qh − 1) generated by the joint
elements of the rotations and reflections of D2n. Then 〈aqh, aib〉∩〈a〉 = 〈aqh〉,
〈aqh, aib〉∩〈aq〉 = 〈aqh〉, 〈aqh, aib〉∩〈ah〉 = 〈aqh〉 and 〈aqh, aib〉∩〈aqh〉 = 〈aqh〉.
As a result, {〈aqh, aib〉, 〈a〉, 〈aq〉, 〈ah〉, 〈aqh〉} is a clique of size qh+ 4. Hence,
the graph contains Kn

p
+4 as a subgraph.

3.2 Classification of Cyclic Intersection Graph of Sub-

groups of Dihedral Groups

The classifications of the cyclic intersection graph of subgroups of dihedral
groups are given in Proposition 3.9 and Proposition 3.10.

Proposition 3.9. Let D2n be the dihedral group of order 2n. Then the cyclic
intersection graph of subgroups of dihedral groups is connected.

Proof. According to Theorem 3.2, the subgroup D2n is adjacent with all
cyclic subgroups in D2n. Now, consider the non-cyclic subgroup 〈at, aib〉,
where t | n, and 0 ≤ i ≤ t is connected. Pick arbitrary non-trivial ele-
ments 〈at1 , ai1b〉, 〈at1 , ai2b〉 ∈ 〈at, aib〉, then 〈at1 , ai1b〉 ∩ 〈at1 , ai2b〉 = 〈at1〉.
Furthermore, 〈at1 , ai1b〉 ∼ 〈at1 , ai2b〉. Since 〈at〉 ∩ 〈at, aib〉 = 〈at〉 then
〈at〉 ∼ 〈at, aib〉.

Proposition 3.10. Let D2n be the dihedral group where n = pr then Γ C
∩
(D2pr)

is planar if r = 1 for any prime p and if r = 2 for p = 2.

Proof. Suppose D2n is the dihedral group of order 2n, for n = pr and r = 1.
Then according to Theorem 3.3, ΓC

∩
(D2pr) is the star graph. Thus, it does

not have a subdivision of K5 or K3,3 that is planar. According to Theorem
3.4, ΓC

∩
(D2pr) has a subgraph isomorphic to Kr+pr−1 that is the maximal

subgraph of the graph. Now, if r = 2, and p = 2, then the maximal
subgraph K4 is still planar.

3.3 Properties of Cyclic Intersection Graph of Sub-

groups of Dihedral Groups

This subsection presents the results on the maximum degrees, clique number,
girth, diameter, chromatic numbers, and the edge chromatic numbers of the
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cyclic intersection graph of subgroups on the dihedral groups.

In Proposition 3.11, the maximum degrees of the vertices of the cyclic
intersection graph of subgroups on dihedral groups are found.

Proposition 3.11. Let D2n be the dihedral group of order 2n. Then the
maximum degrees of the vertices of the cyclic intersection graph of subgroups
of D2n where n = p, pr, prq and pqh can be expressed as:

∆(ΓC
∩
(D2n)) =

{

n+ d if n = pr or n = pq,

(Σt) + d if n = prq or n = pqh, and r > 1

where p, q and h are the distinct prime numbers, r ∈ N, d is the number
of proper positive divisors of n and Σt is the sum of the non-trivial proper
divisors of n.

Proof. Suppose D2n is the dihedral group of order 2n. Then D2n has d

subgroups of type 〈at〉 where t 6= n and t | n. Also, D2n has n subgroups of
type 〈aib〉 for 0 ≤ i ≤ n and Σt subgroups of type 〈at, ajb〉 for 0 ≤ j ≤ t−1.
Now if n = pr or n = pq, then by Theorem 3.2, D2n is adjacent with all
the cyclic subgroups, indicating the existence of edges linking D2n with 〈at〉
and 〈aib〉. However, 〈at, ajb〉 ∩ D2n = 〈at, ajb〉 being a non-cyclic subgroup
the edges between 〈at, ajb〉 and D2n are absent. Thus, most of the vertices
of the graph are reachable to one another through D2n. Consequently, the
maximum degree is |〈at〉|+ |〈aib〉| = d + n. If n = prq or n = pqh, r > 1.
Then 〈a〉 ∼ D2n, 〈a〉 ∼ 〈at〉 for 1 < t < n, and 〈a〉 ∼ 〈at, ajb〉. Thus, the
vertices D2n, 〈a

t〉 and 〈at, ajb〉 are reachable to one another through 〈a〉. This
demonstrates that the maximum degree occurs at the vertex 〈a〉 and hence
〈a〉 excludes from |〈at〉| . As a result, ∆(ΓC

∩
(D2n)) = |〈at〉|+|〈at, ajb〉|+D2n =

(d− 1) + Σt + 1 = d+ Σt.

Now it is customary to present the clique number of the cyclic intersection
graph of subgroups on dihedral groups using the Proposition 3.12 and 3.13.

Proposition 3.12. Let D2n be the dihedral group of order 2n for n = pr

where p is a prime number and r > 1 for r ∈ N. Then the clique numbers
of the cyclic intersection graph of subgroups on the dihedral groups can be
written as:

ω(ΓC
∩
(D2n)) =

{

2 if n = p,

r + pr−1 if n = pr.
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Proof. If n = p, then by Theorem 3.3, ΓC
∩
(D2p) is the star graph. Thus, the

edges betweenD2p and every cyclic subgroup are present. Hence ω(ΓC
∩
(D2n)) =

2. If n = pr, then by Theorem 3.4, the size of the maximum clique is r + pr−1.
Therefore, ω(ΓC

∩
(D2n)) = r + pr−1.

Proposition 3.13. Let D2n be the dihedral group of order 2n. Then the
clique numbers of the cyclic intersection graph of subgroups on the dihedral
groups takes the form:

ω(ΓC
∩
(D2n)) =















p+ q + 1 if n = pq,

β + γ if n = 2rq r > 1 for r ∈ N

p+ q + r if n = prq, p 6= 2
n
p
+ 4 if n = pqh,

where p, q and h are the prime numbers, β is the greatest proper divisor of
n and γ is the positive divisors of β.

Proof. If n = pq, then by Theorem 3.6, the size of the maximum clique is
p+q+1. Therefore, ω(ΓC

∩
(D2n)) = p+q+1. If n = 2rq, then by Theorem 3.7,

the size of the maximum clique is β+ γ. Consequently, ω(ΓC
∩
(D2n)) = β+ γ.

If n = prq and n 6= 2, then by Theorem 3.7, the size of the maximum clique
is p + q + r. Thus, ω(ΓC

∩
(D2n)) = p + q + r. If n = pqh, then by Theorem

3.8, the size of the maximum clique is n
2
+4. Thus, ω(ΓC

∩
(D2n)) =

n
2
+4.

The girth of the cyclic intersection graph of subgroups of the dihedral
groups is given by Proposition 3.14.

Proposition 3.14. Let D2n be the dihedral group of order 2n. Then the
girth of the cyclic intersection graph of subgroups on the dihedral groups can
be written as:

girth(ΓC
∩
(D2n)) =

{

∞ if n = p where p is a prime number,

3 otherwise.

Proof. If n = p, then by Theorem 3.3, ΓC
∩
(D2p) = K1,p+1 is the star graph.

Specifically, the graph contains no cycle. Hence, girth(ΓC
∩
(D2p)) = ∞ .

If n 6= p, then ΓC
∩
(D2pr), Γ

C
∩
(D2pq), Γ

C
∩
(D2(2rq)), Γ

C
∩
(D2prq) and ΓC

∩
(D2pqh)

have subgraphs isomorphic to Kr+pr−1, Kpr+q+1, Kβ+γ , Kpr+q+r and Kn
2
+4,

respectively. Each of the above subgraphs contain the vertices
{〈a〉, 〈at〉, 〈at, aib〉}, 1 ≤ t < n and 0 ≤ i ≤ t − 1 where t | n. Then by the
vertex adjacency rule {〈a〉, 〈at〉, 〈at, aib〉} is a triangle clique. Consequently,
girth(ΓC

∩
(D2n)) = 3.
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The diameter of the cyclic intersection graph of subgroups of the dihedral
groups is given by Proposition 3.15.

Proposition 3.15. Let D2n be the dihedral group of order 2n. Then

diam(ΓC
∩
(D2n)) = 2, for all n.

Proof. If n = p, then by Theorem 3.3, Γ C
∩
(D2p) = K1,p+1 is the star graph.

Explicitly, the eccentricity of all the vertices is 2. Thus, diam(Γ C
∩
(D2n)) = 2.

If n 6= p, then by Theorem 3.2, D2n is adjacent to all the cyclic subgroups.
Select an arbitrary x1, x2 ∈ Γ C

∩
(D2n) such that x1 ∈ 〈at, aib〉 is a non-cyclic

subgroup. However, x2 ∈ 〈at〉 is a cyclic subgroup, then 〈at, aib〉∩〈at〉 = 〈at〉.
Accordingly, the distance d(x1, x2) = d(x2, x1) = 1. Since x1 ≁ D2n and
x1 ∼ x2 ∼ D2n, then d(x1, D2n) = 2. In addition, the maximum eccentricity
is max(ecc(Γ C

∩
(D2n))) = 2. Therefore, diam(Γ C

∩
(D2n)) = 2.

In the following propositions, the chromatic numbers, χ(ΓC
∩
(D2n)), of the

cyclic intersection graph of subgroups of the dihedral groups D2n is obtained.

Proposition 3.16. Let D2n be the dihedral group of order 2n. Then the
chromatic number, χ(ΓC

∩
), of the cyclic intersection graph of subgroups of the

dihedral groups D2n for n = p and n = pr takes the form:

χ(ΓC
∩
(D2n)) =

{

2 if n = p,

r + pr−1 if n = pr,

where p is a prime number, and r > 1 for n ∈ N.

Proof. If n = p, then by Theorem 3.3, Γ C
∩
(D2n)) is a star graph. Thus,

the chromatic number of this graph can be written as χ(ΓC
∩
(D2n)) = 2.

Conversely, according to Proposition 3.12, the size of the maximum clique
in ΓC

∩
(D2n), when n = pr and r > 1 ∈ N becomes r + pr−1. In addition, for

proper coloring, each vertex must be assigned to a distinct color. Thus, in
this case χ(ΓC

∩
(D2n)) = r + pr−1.

Proposition 3.17. Let D2n be the dihedral group of order 2n. Then the
chromatic number ,χ(ΓC

∩
), of the cyclic intersection graph of subgroups of the

dihedral groups D2n for n = prq is given by:

χ(ΓC
∩
(D2n)) =







pr + q + 1 if n = pq,

β + γ if n = 2rq,
pr + q + r if n = prq, p 6= 2,

where p and q are prime numbers and r > 1 for r ∈ N.
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Proof. Suppose D2n is a dihedral group of order 2n, then by Proposition 3.13,
ω(ΓC

∩
(D2n)) = pr + q+1, ω(ΓC

∩
(D2n)) = β+ γ and ω(ΓC

∩
(D2n)) = pr + q+ r

if n = pq, n = 2rq and n = prq, respectively. Thus, each vertex must be
assigned to a distinct color. Hence χ(ΓC

∩
(D2n)) = pr + q + 1, χ(ΓC

∩
(D2n)) =

β + γ and χ(ΓC
∩
(D2n)) = pr + q + r.

Proposition 3.18. Let D2n be the dihedral group of order 2n, for n = pqh

where p, q and h are the prime numbers and p is the smallest prime number
between them. Then χ(ΓC

∩
(D2n)) =

n
p
+ 4.

Proof. LetD2n is a dihedral group of order 2n. Then according to Proposition
3.13, ω(ΓC

∩
(D2n)) =

n
p
+4 if n = n = pqh. Thus, each vertex must be assigned

to a distinct color. Hence, χ(ΓC
∩
(D2n)) =

n
p
+ 4.

The edge chromatic numbers, χe(ΓC
∩
), for the cyclic intersection graph of

subgroups of the dihedral groups D2n is given as follows proposition.

Proposition 3.19. Let D2n be the dihedral group of order 2n. Then the edge
chromatic number of the dihedral group is written as:

χe(ΓC
∩
(D2n)) =







n + 1 if n = p,

n + d if n = p r or n = pq,

d+ Σt if n = prq or n = pqh

where d is the number of positive divisors of n and Σt is the sum of the
non-trivial proper divisors of n.

Proof. Let D2n is the dihedral group of order 2n. Assume that, 〈at〉, 〈aib〉
and 〈at, ajb〉 where t 6= n t | n, 0 ≤ i ≤ n, 1 ≤ t ≤ n, and 0 ≤ j ≤ t − 1
be the subgroups generated by the elements of rotation, reflection as well as
combination of the rotations and reflections, respectively. Then 〈at〉∩D2n =
〈at〉, 〈aib〉 ∩ D2n = 〈aib〉 are all cyclic subgroups, indicating that the edges
between D2n and 〈at〉, 〈aib〉 exist. However, 〈at, ajb〉 ∩ D2n = 〈at, ajb〉 is a
non-cyclic group. Then by definition there is no edge linking 〈at, ajb〉 and
D2n. Consequently, the color for the edges 〈at, ajb〉 can be used to color
D2n. Nevertheless, each edge of the vertex with maximum degree must have
a distinct color. As a result, there is a need of (ΓC

∩
(D2n)) colors to color

the entire edges of the graph. In short, χe(ΓC
∩
(D2n)) = ∆(ΓC

∩
(D2n)). Then

by Proposition 3.11, χe(ΓC
∩
(D2p)) = χe(ΓC

∩
(D2pq)) = n + 1, χe(ΓC

∩
(D2pr)) =

χe(ΓC
∩
(D2pq)) = n+ d and χe(ΓC

∩
(D2prq)) = χe(ΓC

∩
(D2pqh)) = d+ Σt
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