International Journal of Mathematics and Computer Science, **18**(2023), no. 4, 637–645

(M CS)

m-Polar Fuzzy BRK-ideals and BRK-algebras

Areej Almuhaimeed

Department of Mathematics College of Science Taibah University Madinah, Saudi Arabia

email: aamuhaimeed@taibahu.edu.sa

(Received March 6, 2023, Accepted April 19, 2023, Published May 31, 2023)

Abstract

In this paper, we introduce the concept of an m-polar BRK-algebra and investigate the idea of m-polar fuzzy BRK-subalgebras and its properties. Moreover, we present m-polar fuzzy BRK-ideals with some of their characteristics. Furthermore, we provide some conditions that connect m-polar fuzzy BRK-subalgebras and m-polar fuzzy BRK-ideals.

1 Introduction

Fuzzy sets, defined by Zadeh [1], are generalizations of classical sets. This idea applied on several classes of algebras and developed some fundamental characteristics of these algebras.

In 1965, two new classes of algebras were intoduced; namely, BCK-algebra and BCI-algebra [2]. Many other algebraic classes were then introduced and investigated [8], [9], [11] and [10].

Bandaru [3] introduced a generalization of BCK-algebra and BCI-algebra which is the class of BRK-algebra. Elgendy [4] applied fuzzy sets on BRKalgebras and BRK-ideals and applied the concept of cubic on BRK-algebras

Key words and phrases: Fuzzy BRK-subalgebras, fuzzy BRK-ideals*m*-polar fuzzy sets.

AMS (MOS) Subject Classifications: 08A72, 03B52. ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net and BRK-ideals [5]. In addition, anti fuzzy BRK-ideals was investigated [7]. In [6], the concept of bipolar fuzzy was investigated on BRK-ideals and BRK-algebras.

In this paper, we introduce the concept of an m-polar BRK-algebra. First, we investigate m-polar fuzzy BRK-subalgebras and its properties. In addition, m-polar fuzzy BRK-ideals are presented with its characteristics. Finally, we provide some conditions that connect m-polar fuzzy BRK-subalgebras and m-polar fuzzy BRK-ideals.

2 Preliminaries

In this part, we present the basic notions regarding BRK-algebra which will be used in later sections. The results in this section are taken from [3] and [4].

We first present the class of BRK-algebras.

Definition 2.1. Let $A \neq \phi$. Define a binary operation on the set A, * and consider a constant $0 \in A$. If (A, 0, *) satisfies the following criteria, it is referred to as a BRK-algebra:

- (1) f * 0 = f, for all $f \in A$.
- (2) (f * g) * f = 0 * g, for all $f, g \in A$.

We also define a partial ordered relation on (A, 0, *) by

$$f \le g \Leftrightarrow f \ast g = 0$$

Recall that the following characteristics are true if (A, 0, *) is a BRKalgebra:

- (1) f * f = 0, for all $f \in A$.
- (2) 0 * (f * g) = (0 * f) * (0 * g), for every $f, g \in A$.

Definition 2.2. Suppose that $\phi \neq B \subseteq A$, where A be a BRK-algebra. Then B is referred to as a BRK-subalgebra of A if

$$f * g \in B, \quad \forall f, g \in B.$$

Definition 2.3. Let A be a BRK-algebra. Suppose that $\phi \neq C \subseteq A$. Then C is called a BRK-ideal of A if:

m-Polar Fuzzy BRK-ideals and BRK-algebras

(1)
$$0 \in C$$
.

(2) If
$$0 * (f * g) \in C$$
 and $0 * g \in C$, then $0 * f \in C$, for all $f, g \in A$.

Now, we are ready to apply fuzzy settings on BRK-algebra.

Definition 2.4. Assume that A is a BRK-algebra and ζ a fuzzy subset of A. Then ζ is referred to as a fuzzy BRK-subalgebra of A if

$$\zeta(f * g) \ge \min\{\zeta(f), \zeta(g)\}, \quad \forall f, g \in A$$

Definition 2.5. Let A be a BRK-algebra and ζ a fuzzy subset of A. Then ζ is is referred to as a fuzzy BRK-ideal of A if

(1)
$$\zeta(0) \ge \zeta(f)$$
, for all $f \in A$.

(2)
$$\zeta(0*f) \ge \min\{\zeta(0*(f*g)), \zeta(0*g)\}, \text{ for all } f, g \in A$$

In [12], the notation *m*-polar fuzzy set is explained. Assume that $A \neq \phi$. Then the function

$$\zeta: A \longrightarrow [0,1]^m$$

is referred to as an m-polar fuzzy set of A,

$$\zeta(f) := \{(\xi_1 \circ \zeta)(f), (\xi_2 \circ \zeta)(f), \cdots, (\xi_m \circ \zeta)(f)\}$$

where

$$\xi_k: [0,1]^m \longrightarrow [0,1]$$

is the k^{th} projection for all $k \in \{1, \cdots, m\}$.

3 *m*-polar fuzzy BRK-subalgebras

Definition 3.1. Assume that A is a BRK-algebra. If an m-polar fuzzy subset zeta of A fulfills the criteria:

$$\zeta(f * g) \ge \min\{\zeta(f), \zeta(g)\}, \quad \forall f, g \in A,$$

then ζ is an m-polar fuzzy BRK-algebra:

Example 1. Let $A = \{0, f, g, h\}$ be a BRK-algebra presented by the following table:

A. Almuhaimeed

	*	0	f	g	h	
	0	0	f	0	f	
	f	f	0	f	0	
	g	g	f	0	f	
	h	h	g	h	0	
BRK-algebra in example 1						

Consider the 2-polar fuzzy set $\zeta : A \longrightarrow [0,1]^2$ described as:

 $\begin{aligned} \zeta(0) &= (0.5, 0.8) \\ \zeta(f) &= (0.4, 0.6) \\ \zeta(g) &= (0.3, 0.7) \\ \zeta(h) &= (0.4, 0.5) \end{aligned}$

Then ζ is a 2-polar fuzzy BRK-subalgebra of A.

Now, we introduce some propositions regarding properties of m-polar fuzzy BRK-subalgebras.

Proposition 3.2. If A is a BRK-algebra, then any m-polar fuzzy subalgebra of A satisfies;

 $\zeta(0) \ge \zeta(f) \quad \forall f \in A.$

Proof. Since A is a BRK-algebra, then f * f = 0. Thus, for all $f \in A$, we have

$$\begin{aligned} \zeta(0) &= \zeta(f * f) \\ &\geq \min\{\zeta(f) * \zeta(f)\} \\ &= \zeta(f) \end{aligned}$$

Proposition 3.3. Let A be a BRK-algebra. Suppose that for any m-polar fuzzy subalgebra ζ of A,

$$\zeta(f * g) \ge \zeta(g) \quad \forall f, g \in A.$$

Then $\zeta(f) = \zeta(0)$.

Proof. Since A is a BRK-algebra, then a * 0 = a. Thus, for all $a \in A$, we obtain

$$\begin{aligned} \zeta(f) &= \zeta(f * 0) \\ &\geq \zeta(0) \end{aligned} (By assumption) \end{aligned}$$

By proposition 3.2, $\zeta(0) \ge \zeta(f)$. Hence $\zeta(f) = \zeta(0)$.

4 *m*-polar fuzzy BRK-ideals

The *m*-polar fuzzy BRK-ideals and its properties are presented in this section. In addition, we provide some conditions that connect *m*-polar fuzzy BRK-subalgebras and *m*-polar fuzzy BRK-ideals

Definition 4.1. Assume that A is a BRK-algebra and ζ an m-polar fuzzy subset of A. Then ζ is said to be an m-polar fuzzy BRK-ideal of A if

- (1) $\zeta(0) \ge \zeta(f)$, for all $f \in A$.
- (2) $\zeta(0*f) \ge \min\{\zeta(0*(f*g)), \zeta(0*g)\}, \text{ for all } f, g \in A.$

Now, we prove some propositions regarding several properties of m-polar fuzzy BRK-ideals.

Proposition 4.2. Assume that A is a BRK-algebra and ζ is an m-polar fuzzy BRK-ideal. Now,

$$0 * f \le 0 * g$$
 implies that $\zeta(0 * f) \ge \zeta(0 * g), \quad f, g \in A.$

Proof. Suppose that $0 * f \le 0 * g$. Then

$$(0*f)*(0*g) = 0.$$

From the properties of BRK-algebras, we obtain

$$0*(f*g)=0.$$

That * is an *m*-polar fuzzy BRK-ideal, implies

$$\begin{aligned} \zeta(0*f) &\geq \min\{\zeta(0*(f*g)), \zeta(0*g)\} \\ &= \min\{\zeta(0), \zeta(0*g)\} \\ &= \zeta(0*g) \end{aligned}$$

Therefore, $\zeta(0 * f) \ge \zeta(0 * g)$ as required.

Proposition 4.3. Assume that A is a BRK-algebra and ζ an m-polar fuzzy BRK-ideal. Then

$$f * g \le h$$
 implies that $\zeta(0 * (f * g)) \ge \zeta(0 * h), \quad f, g, h \in A.$

Proof. Assume that $af * g \leq h$. Then

$$(f * g) * h = 0.$$

By assumption, we obtain

$$\begin{aligned} \zeta(0*(f*g)) &\geq \min\{\zeta(0*((f*g)*h), \zeta(0*h)\} \\ &= \min\{\zeta(0*0), \zeta(0*h)\} \\ &= \min\{\zeta(0), \zeta(0*h)\} \\ &= \zeta(0*h) \end{aligned}$$

Therefore,

$$\zeta(0*(f*g)) \ge \zeta(0*h)$$

as required.

Theorem 4.4. Assume that A is a BRK-algebra and ζ is an m-polar fuzzy BRK-ideal of A. If

$$0*f=f, \quad \forall f\in A,$$

 ζ is an m-polar fuzzy BRK-subalgebra of A

Proof. Suppose that

$$0 * f = f, \quad \forall f \in A.$$

Then we obtain

$$\begin{aligned} \zeta(f*g) &= \zeta(0*(f*g)) \\ &\geq \min\{\zeta(0*((f*g)*h)), \zeta(0*h)\} \quad (\zeta \text{ is an } m\text{-polar fuzzy BRK-ideal}) \\ &= \min\{\zeta((f*g)*h), \zeta(h)\} \qquad (By \text{ assumption}) \\ &= \min\{\zeta((f*g)*f), \zeta(f)\} \qquad (Set h = f) \\ &\geq \min\{\zeta(0*g), \zeta(f)\} \\ &= \min\{\zeta(g), \zeta(f)\} \qquad (By \text{ assumption}) \\ &= \min\{\zeta(f), \zeta(g)\} \end{aligned}$$

Therefore, ζ is an *m*-polar fuzzy BRK-subalgebra of A

Theorem 4.5. Assume that A is a BRK-algebra and ζ is an m-polar fuzzy BRK-subalgebra of A. If

$$(f * g) * f = f, \quad \forall f, g \in A,$$

 ζ is an m-polar fuzzy BRK-ideal of A.

Proof. Suppose that

$$(f * g) * f = f, \quad \forall f, g \in A,$$

Then

(1)

$$\begin{aligned} \zeta(0) &= \zeta(f * f) \\ &\geq \min\{\zeta(f), \zeta(f)\} \\ &= \zeta(f) \end{aligned}$$

(2) That A is a BRK-algebra, implies

$$(f * g) * f = 0 * g.$$

By assumption,

$$(f * g) * f = f.$$

Thus f = 0 * g. Now, we have

$$\begin{split} \zeta(0*f) &\geq \min\{\zeta(0), \zeta(f)\} \\ &\geq \min\{\zeta(0*(f*g)), \zeta(f)\} \\ &= \min\{\zeta(0*(f*g)), \zeta(0*g)\} \end{split}$$

Therefore, ζ is an *m*-polar fuzzy BRK-ideal of *A*.

Theorem 4.6. Assume that A is a BRK-algebra. If

$$0 * f = 0, \quad \forall f \in A,$$

then any m-polar fuzzy subset of A is an m-polar fuzzy BRK-ideal of A.

Proof. Suppose that

$$0 * f = 0, \quad \forall f \in A,$$

Then

(1) We have

$$\begin{aligned} \zeta(0) &= \zeta(f * f) \\ &\geq \min\{\zeta(f), \zeta(f)\} \\ &= \zeta(f). \end{aligned}$$

(2) Note that

$$\begin{aligned} \zeta(0*f) &= \zeta(0) \\ &= \min\{\zeta(0), \zeta(0)\} \\ &= \min\{\zeta(0*(f*g)), \zeta(0*g)\} \end{aligned}$$
(By assumption)

Therefore, ζ is an *m*-polar fuzzy BRK-ideal of *A*.

Theorem 4.7. Assume that A is a BRK-algebra, ζ is an m-polar fuzzy BRK-ideal of A and

$$D = \{ f \in A : \zeta(f) = \zeta(0) \}.$$

Then D is an m-polar BRK-ideal.

Proof. Assume that

$$0 * (f * g) \in D$$
 and $0 * g \in D$.

By the definition of D, we obtain

$$\begin{aligned} \zeta(0*(f*g)) &= \zeta(0), \\ \zeta(0*g) &= \zeta(0). \end{aligned}$$

Now, we have

$$\zeta(0*f) \ge \min\{\zeta(0*(f*g)), \zeta(0*g)\} \\= \min\{\zeta(0), \zeta(0)\} \\= \zeta(0)$$

But $\zeta(0) \ge \zeta(0 * f)$. Thus

$$\zeta(0*f) = \zeta(0).$$

Hence $f \in D$, and therefore, D is an m-polar BRK-ideal.

5 Conclusion

In this paper, we introduced the aspect of an m-polar BRK-algebra. First, we investigated m-polar fuzzy BRK-subalgebras and its properties. Secondly, we presented m-polar fuzzy BRK-ideals with their characteristics. Finally, we provided some conditions that connect m-polar fuzzy BRK-subalgebras and m-polar fuzzy BRK-ideals

References

- Lotfi A. Zadeh, Fuzzy sets, Information and control, 8, no. 3, (1965), 338–353.
- Yasuyuki Imai, Kiyoshi Iséki, On axiom systems of propositional calculi.
 I, Proceedings of the Japan Academy, 41, no. 6, (1965), 436–439.
- [3] Ravi Kumar Bandaru, On BRK-algebras, International Journal of Mathematics and Mathematical Sciences, 2012.
- [4] Osama Rashad Elgendy, Fuzzy BRK-ideal of BRK-algebra, JP Journal Algebra and Number Theory and Applications, 36, no. 3, (2015), 231– 240.
- [5] Osama Rashad Elgendy, Cubic BRK-ideal of BRK-algebra, Ann. Fuzzy Math. Inf., 11, (2016), 1–9.
- [6] Khizar Hayat, Xiao-Chu Liu, Bing-Yuan Cao, Bipolar fuzzy BRK-ideals in BRK-algebras, Fuzzy Information and Engineering and Decision, (2018), 3–15.
- [7] Osama Rashad Elgendy, Anti fuzzy BRK-ideal of BRK-algebra, British J. math. Comp. Sci., 10, no. 6, (2015), 1–9.
- [8] Chang Bum Kim, Hee Sik Kim On BG-algebras, Demonstratio Mathematica, 41, no. 3, (2008), 497–506.
- [9] Joseph Neggers, Kim Sik, On B-algebras, Matematički vesnik, 54, nos. 1-2, (2002), 21–29.
- [10] Joseph Neggers, Sun Shin Ahn, Hee Sik Kim, On Qalgebras, International Journal of Mathematics and Mathematical Sciences, 27, no. 12, (2001), 749–757.
- [11] Andrzej Walendziak, On BF-algebras, Mathematica Slovaca, 57, (2007), 119–128.
- [12] Juanjuan Chen, Shenggang Li, Shengquan Ma, Xueping Wang, Polar fuzzy sets: an extension of bipolar fuzzy sets, The scientific world journal, (2014).