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Abstract

In this paper, we characterize the generalized continuous functions

in bigeneralized topological spaces.

1 Introduction

The idea of bigeneralized topological space was first introduced by Boonpok
[5] in 2011. On the other hand, Benchalli et al. [3] introduced the generalized
star ωα-sets (briefly g∗ωα-sets) in topological spaces in 2015.
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In this paper, we introduce the generalized star continuity of functions in
bigeneralized topological spaces as an extension of the work of Benchalli et
al. [3]. Moreover, we explore some properties and characterizations of this
topological concept.

For standard terminologies and notations in topology, the readers may
refer to [6]. Let X be a nonempty set. A subset µ of P(X) is said to be a
generalized topology (briefly GT) on X if ∅ ∈ µ and the arbitrary union of
elements of µ belongs to µ.

If µ is a GT on X , then (X, µ) is said to be a generalized topological space

(briefly GTS), and the elements of µ are called µ-open sets. The complement
of a µ-open set is called µ-closed set. If A ⊆ X , then the µ-closure of A,
denoted by cµ(A), is the intersection of all µ-closed sets containing A. The
µ-interior of A, denoted by iµ(A), is the union of all µ-open sets contained
in A.

The following definitions were introduced by Benchalli et al. [1] in 2009.
A set A of a GTS (X, µ) is said to be µ-α-closed if cµ(iµ(cµ(A)) ⊆ A and µ-
ωα-closed if αcµ(A) ⊆ U whenever A ⊆ U is µ-ω-open inX . The complement
of a µ-ωα-closed set is µ-ωα-open set.

A subset A of X is said to be µ-generalized star ωα-closed (briefly µ-
g∗ωα-closed) set if cµ(A) ⊆ U whenever A ⊆ U and U is µ-ωα-open in X .
The complement of µ-g∗ωα-closed set is said to be µ-g∗ωα-open set. If A is
both µ-g∗ωα-closed set and µ-g∗ωα-open set, then A is said to be µ-g∗ωα-
clopen set. The union of all the µ-g∗ωα-open sets contained in A is called
the µ-g∗ωα-interior of A, denoted by g∗ωαiµ(A). The intersection of all the
µ-g∗ωα-closed sets containing A is called the µ-g∗ωα-closure of A denoted
by g∗ωαcµ(A).

If µ1 and µ2 are generalized topologies on X , then the triple (X, µ1, µ2) is
said to be a bigeneralized topological space (briefly BGTS). Throughout this
paper, m and n take values from the set {1, 2} where m 6= n.

The following definition is due to Boonpok et al. [4].

Definition 1.1. [4] Let f : (X, µ1
X , µ

2
X) → (Y, µ1

Y , µ
2
Y ) be a function. Then

f is µ(m,n)-continuous at a point x ∈ X if for each µm
Y -open set V containing

f(x), there exists a µn
X-open set U containing x such that f(U) ⊆ V . If f is

µ(m,n)-continuous at every point x ∈ X , then f is µ(m,n)-continuous.
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2 Main Results

In this section, we introduce different forms of µ(m,n)-g∗ωα continuous func-
tions in a BGTS, investigate some of their properties, and establish their
relationships. Finally, we characterize the generalized star continuous func-
tions in a bigeneralized topological space.

Definition 2.1. A function f : (X, µ1
X , µ

2
X) → (Y, µ1

Y , µ
2
Y ) is said to be:

(i) µ(m,n)-g∗ωα continuous at a point x ∈ X if for each µm
Y -open set V

containing f(x), there exists a µn
X-g

∗ωα open set U containing x such
that f(U) ⊆ V .

(ii) µ(m,n)-g∗ωα continuous if f is µ(m,n)-g∗ωα continuous at every point
x ∈ X .

(iii) pairwise µ-g∗ωα continuous if f is µ(1,2)-g∗ωα continuous and µ(2,1)-
g∗ωα continuous.

Lemma 2.2. Every µ-closed set is µ-g∗ωα-closed.

The next corollary is immediate from Lemma 2.2.

Corollary 2.3. Every µ-open set is µ-g∗ωα-open.

The next result establishes a relationship between continuity and gener-
alized star continuity in a bigeneralized topological space.

Theorem 2.4. Every µ(m,n)-continuous function is µ(m,n)-g∗ωα-continuous.

Proof. Let x ∈ X . Since f is µ(m,n)-continuous function, by Definition 1.1,
for µm

Y -open set V containing f(x), there exists a µn
X-open set U containing

x such that f(U) ⊆ V . By Corollary 2.3, there exists a µn
X-g

∗ωα open set U
containing x such that f(U) ⊆ V . Therefore, the conclusion holds.

The following lemma establishes the interior and closure properties with
respect to the generalized star open sets.

Lemma 2.5. Let (X, µ) be a GTS and A, B and F be subsets of X .

(i) If A is µ-g∗ωα-open, then A = g∗ωαiµ(A) = g∗ωαiµ (g∗ωαiµ(A));

(ii) x ∈ g∗ωαiµ(A) if and only if there exist a µ-g∗ωα-open set U with
x ∈ U ⊆ A; and
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(iii) If A ⊆ B, then g∗ωαiµ(A) ⊆ g∗ωαiµ(B).

(iii) y ∈ g∗ωαcµ(A) if and only if for every µ-g∗ωα open set U with y ∈ U ,
U ∩ A 6= ∅;

The following result characterizes the generalized star continuous func-
tions in bigeneralized topological space.

Theorem 2.6. For a function f : (X, µ1
X , µ

2
X) → (Y, µ1

Y , µ
2
Y ), the following

properties are equivalent:

(i) f is µ(m,n)-g∗ωα continuous at a ∈ X ;

(ii) x ∈ g∗ωαiµn

X
(f−1(V )) for every V ∈ µm

Y containing f(x);

(iii) x ∈ g∗ωαiµn

X
(f−1(B)) for every B ⊆ Y with x ∈ f−1(iµm

Y
(B));

(iv) x ∈ f−1(F ) for every µm
Y -closed subset F of Y such that x ∈ g∗ωαcµn

X
(f−1(F ))

Proof. Let f : X → Y be a function and let x ∈ X .
(i) ⇔ (ii): Let V ∈ µm

Y containing f(x). Since f is µ(m,n)-g∗ωα continuous
at x, there exists a µn

X-g
∗ωα open set U containing x such that f(U) ⊆ V .

Hence, x ∈ U ⊆ f−1(V ). This implies that x ∈ g∗ωαiµn

X
(f−1(V )).

Conversely, let V ∈ µm
Y with f(x) ∈ V . By (ii), x ∈ g∗ωαiµn

X
(f−1(V )).

Hence, there exists a µn
X -g

∗ωα open set U with x ∈ U ⊆ f−1(V ). Thus,
f(U) ⊆ V . Therefore, f is µ(m,n)-g∗ωα continuous at x ∈ X .

(ii) ⇒ (iii): Let B ⊆ Y with x ∈ f−1(iµm

Y
(B)). Then f(x) ∈ iµm

Y
(B). Since

iµm

Y
(B) ∈ µm

Y , by (ii) we have, x ∈ g∗ωαiµn

X
(f−1(iµm

Y
B)) ⊆ g∗ωαiµn

X
(f−1(B).

Thus, x ∈ g∗ωαiµn

X
(f−1(B)).

(iii) ⇒ (iv): Let F be a µm
Y -closed subset of Y such that x /∈ f−1(F ).

Then x ∈ X \ f−1(F ) = f−1(Y \ F ) = f−1(iµm

Y
(Y \ F )) since Y \ F is

µm
Y open. By (iii), x ∈ g∗ωαiµn

X
(f−1(Y \ F )) = g∗ωαiµn

X
(X \ f−1(F )) =

X \ g∗ωαcµn

X
(f−1(F )). Hence, x /∈ g∗ωαcµn

X
(f−1(F ).

(iv) ⇒ (ii): Let V ∈ µm
Y with f(x) ∈ V . Suppose that x /∈ g∗ωαiµn

X
(f−1(V )).

Then x ∈ X \ g∗ωαiµn

X
(f−1(V ) = g∗ωαcµn

X
(X \ f−1(V )) = g∗ωαcµn

X
(f−1(Y \

V )). By (iv), x ∈ f−1(Y \ V ) = X \ f−1(V ). This implies that x /∈ f−1(V )
which is a contradiction since f(x) ∈ V . Therefore, x ∈ g∗ωαiµn

X
(f−1(V )).

The following result gives a sufficient condition for a function to be gen-
eralized star continuous in a bigeneralized topological space.
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Theorem 2.7. For a function f : (X, µ1
X , µ

2
X) → (Y, µ1

Y , µ
2
Y ), the following

properties are equivalent:

(i) f is µ(m,n)-g∗ωα continuous;

(ii) f−1(V ) = g∗ωαiµn

X
(f−1(V )) for every V ∈ µm

Y ;

(iii) f−1(iµm

Y
(B)) ⊆ g∗ωαiµn

X
(f−1(B)) for every B ⊆ Y ;

(iv) g∗ωαcµn

X
(f−1(F )) = f−1(F ) for every µm

Y -closed subset F of Y .

Proof. Let f : X → Y be a function and let x ∈ X .
(i) ⇒ (ii): Let V ∈ µm

Y and x ∈ f−1(V ). Then f(x) ∈ V . By Theorem 2.7
(ii), x ∈ iµn

X
(f−1(V )). Since g∗ωαiµn

X
(f−1(V )) ⊆ f−1(V ), we have f−1(V ) =

g∗ωαiµn

X
(f−1(V )).

(ii) ⇒ (iii): Let B ⊆ Y . Since iµm

Y
(B) ∈ µm

Y , by (ii) we have f−1(iµm

Y
(B)) =

g∗ωαiµn

X
(f−1(iµm

Y
(B))⊆ g∗ωαiµn

X
(f−1(B)). Thus, f−1(iµm

Y
(B))⊆ g∗ωαiµn

X
(f−1(B)).

(iii) ⇒ (iv): Let F be a µm
Y -closed subset of Y . Then by (iii), f−1(Y \ F )

= f−1(iµm

Y
(Y \ F )) ⊆ g∗ωαiµn

X
(f−1(Y \ F )) = g∗ωαiµn

X
(X \ f−1(F )) = X \

g∗ωαcµn

X
(f−1(F )). Thus, g∗ωαcµn

X
(f−1(F ))⊆ f−1(F ). Hence, g∗ωαcµn

X
(f−1(F ))

= f−1(F ).

(iv) ⇒ (i): Let x ∈ X and F be a µm
Y -closed subset of Y with x ∈

g∗ωαcµn

X
(f−1(F ). By (iv), x ∈ f−1(F ). Thus by Theorem 2.7 (iv), f is

µ(m,n)-g∗ωα continuous at x. Since x is arbitrary, f is µ(m,n)-g∗ωα continu-
ous.
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