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Abstract

In this article, we use the Lewanowicz method with the Fields-Wimp
formula to solve the connection problem between continuous classical
orthogonal polynomials of Gegenbauer and Hermite and the connec-
tion formulas between shifted Laguerre and Jacobi polynomials, and
the known connection coefficients between the Gegenbauer polynomi-
als and the Laguerre polynomials are established.

1 Introduction

The connection problem is to find the coefficients cnk in the expansion of a
polynomial Pn(x) in terms of an arbitrary sequence of orthogonal polynomials
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{Qk(x)} :

Pn(x) =
n
∑

k=0

cnkQk(x). (1.1)

A wide variety of methods have been devised for computing the connection
coefficients cnk, either in closed form or by means of recurrence relations,
usually in k. Lewanowicz [1] has shown that the connection problem (1.1)
can, sometimes be solved by taking advantage of known results from the
theory of generalized hypergeometric functions, derived by Fields and Wimp
[2].

The hypergeometric functions method has been devised to solve the connec-
tion problem, that involving classical orthogonal polynomials . [1, 3, 4, 5, 6].
These methods have also been used by Sánchez-Ruiz [7] to obtain the connec-
tion formulae involving squares of Gegenbauer Polynomials. In [8], authors
seeking for solving (1.1) for a much wider class of polynomials, defined by
terminating hypergeometric series, obtain connection formulae for Wilson
and Racah polynomials with special parameter values. They also solve the
connection problem for the families of generalized Jacobi and Laguerre poly-
nomials defined by Sister Celine.

Linearization and connection problems arise in the calculation of informa-
tion entropies of quantum systems in position and momentum spaces [9].
Other examples of applications of linearization and connection problems to
quantum physics include transformation formulas between wave functions
in different coordinate systems [10], inter-basis expansions for potentials of
equal [11] and different [12] dimensionality, Talmi-Brody-Moshinsky coeffi-
cients in nuclear structure [13], or two-center, two/three-electron integrals in
variational atomic analysis [14].

While in many of these applications we are interested in finding either the ex-
plicit form of the linearization/connection coefficients or recurrence relations
for them. In the harmonic analysis with respect to sequences of orthogonal
polynomials, it is important to know the sign properties, especially if they are
positive or non-negative [15]. Thus, for example, the non-negativity of cer-
tain connection coefficients for Gegenbauer polynomials played a key role in
de Branges’ proof [16] of the Bieberbach conjecture in complex analysis, and
recently sign properties of connection coefficients have been used to study
the behavior of polynomial zeros [17].
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2 Notation and preliminary results

The generalized hypergeometric function is defined by

pFq

(

a1, a2, . . . , ap
b1, b2, . . . , bq

∣

∣

∣

∣

∣

x

)

=

∞
∑

k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

xk

k!
, (2.2)

where (a)n represents the Pochhammer symbol and it used in the theory of
special functions to represent the rising factorial.

(a)n := a(a+ 1)(a+ 2) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)
=

(−1)n Γ(1− a)

Γ(1− a− n)
,

(a)0 = 1,

where ai ∈ C, 1 ≤ i ≤ p, bj ∈ C, 1 ≤ j ≤ q, with bj ∈/N0. Throughout this
article, the letters p, q, r, s, t, u and n stand for nonnegative integers. We call
x the argument of the function, and aj , bj the parameters. To shorten the
notation for the left-hand side of (2.2), we will write it as

pFq

(

[ap]
[bq]

∣

∣

∣

∣

∣

x

)

=
∞
∑

k=0

[ap]k x
k

[bq]k k!
, (2.3)

where [ap] and [bq] represent the sets {a1, a2, ..., ap} and {b1, b2, ..., bq}, re-
spectively. We use the abbreviated notation

[ap]k =

p
∏

i=1

(ai)k, [bq]k =

q
∏

j=1

(bj)k. (2.4)

To prove the theorems in section 3, we use known results from the theory of
generalized hypergeometric functions, derived by Fields and Wimp (See [2],
[3, Vol. II, p. 7]).

p+r+1Fq+s

(

−n, [ap], [cr]
[bq], [ds]

∣

∣

∣

∣

∣

zw

)

=
n
∑

k=0

(

n
k

)

[ap]k [αt]k z
k

[bq]k[βu]k(k + ζ)k

× p+t+1Fq+u+1

(

k − n, [k + ap], [k + αt]
2k + ζ + 1, [k + bq], [k + βu]

∣

∣

∣

∣

∣

z

)

× r+u+2Fs+t

(

−k, k + ζ, [cr], [βu]
[ds], [αt]

∣

∣

∣

∣

∣

w

)

, (2.5)
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p+r+1Fq+s

(

−n, [ap], [cr]
[bq], [ds]

∣

∣

∣

∣

∣

zw

)

=

n
∑

k=0

(

n
k

)

[ap]k [αt]k z
k

[bq]k[βu]k

× p+t+1Fq+u

(

k − n, [k + ap], [k + αt]
[k + bq], [k + βu]

∣

∣

∣

∣

∣

z

)

× r+u+1Fs+t

(

−k, [cr], [βu]
[ds], [αt]

∣

∣

∣

∣

∣

w

)

. (2.6)

2.1 Classical orthogonal polynomials of continuous vari-
able

Hermite polynomials [18]

Hn(x) = (2x)n 2F0

(

−n
2
, 1

2
− n

2

−

∣

∣

∣

∣

∣

− 1

x2

)

.

Laguerre polynomials [18]

L(α)
n (x) =

(α + 1)n
n!

1F1

(

−n
α + 1

∣

∣

∣

∣

∣

x

)

.

Jacobi polynomials [3, Vol. I, p.274]

P (α,β)
n (x) = (−1)n

(β + 1)n
n!

2F1

(

−n, n + α + β + 1
β + 1

∣

∣

∣

∣

∣

1 + x

2

)

.

=
(α + 1)n

n!
2F1

(

−n, n + α + β + 1
α+ 1

∣

∣

∣

∣

∣

1− x

2

)

.

In many problems it is more convenient to work with shifted Jacobi polyno-
mials, defined as [3, Vol. I, p.273]

R(α,β)
n (x) := P (α,β)

n (2x− 1) = (−1)n
(β + 1)n

n!
2F1

(

−n, n + α + β + 1
β + 1

∣

∣

∣

∣

∣

x

)

.

The Gegenbauer polynomials C
(α)
n (x) are essentially the symmetric Jacobi

polynomials P
(α,α)
n , and they have the hypergeometric representation [15,

p.77].

C(α)
n (x) =

(2α)n
n!

2F1

(

−n
2
, n

2
+ α

α + 1
2

∣

∣

∣

∣

∣

1− x2

)

.
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3 Results

In this section, we use the equations (2.5), (2.6) and the different hypergeo-
metric series representation the classical continuous orthogonal polynomials
to solve the connection problem among them.

3.1 Theorem (Connection formula for Hermite Poly-

nomials in series of Gegenbauer Polynomials)

HN (x) =

[N
2
]

∑

r=0

N !λ
N

2

r!(λ)N−2r(N − 2r + λ+ 1)r
2F0

(

−r,−N + r − λ

−

∣

∣

∣

∣

− 1

λ

)

C
(λ)
N−2r

(

x√
λ

)

Proof: Some of the hypergeometric representations of Hermite and
Gegenbauer polynomials for ǫ = 0, 1 are given by:

H2n+ǫ(x) = (−1)n 22n+ǫ xǫ

(

1

2
+ ǫ

)

n

1F1

(

−n
1
2
+ ǫ

∣

∣

∣

∣

x2

)

(3.7)

C
(λ)
2k+ǫ

(

x√
λ

)

=
(2λ)2k+ǫ(−1)k

(

1
2 + ǫ

)

k

(λ+ 1
2)k(2k + ǫ)!

(

x√
λ

)ǫ

2F1

(

−k, k + λ+ ǫ
1
2 + ǫ

∣

∣

∣

∣

x2√
λ

)

(3.8)

Using formula (2.6) with the following identification

[ds] =

{

1

2
+ ǫ

}

, s = 1 t = 0, r = 0, u = 0,

ω =

(

x2

λ

)

, q = 0, p = 0, z = λ, ζ = λ+ ǫ

it is obtained

1F1

(

−n
1
2
+ ǫ

∣

∣

∣

∣

x2

)

=
n
∑

k=0

(

n
k

)

λk

(k + λ+ ǫ)k
1F1

(

k − n
2k + λ+ ǫ+ 1

∣

∣

∣

∣

λ

)

2F1

(

−k, k + λ+ ǫ
1
2
+ ǫ

∣

∣

∣

∣

x2

λ

)

(3.9)

We multiply (3.9), by convenient terms that to the left of the equality lead
to (3.7), and the last part on the right of equality arriving at (3.8); getting

H2n+ǫ(x) =
n
∑

k=0

(

n
k

)

(−1)n−k22n+ǫ
(

1
2
+ ǫ
)

n
(λ+ 1

2
)k(2k + ǫ)!λk+ ǫ

2

(k + λ+ ǫ)k (2λ)2k+ǫ

(

1
2
+ ǫ
)

k

×1F1

(

k − n
2k + λ + ǫ+ 1

∣

∣

∣

∣

λ

)

C
(λ)
2k+ǫ

(

x√
λ

)

, (3.10)
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using the well-known relationship

1F1

(

k − n

2k + λ+ ǫ+ 1

∣

∣

∣

∣

λ

)

=
(−1)n−k(λ)n−k

(2k + λ+ ǫ+ 1)n−k
2F0

(

k − n,−n− k − λ− ǫ

−

∣

∣

∣

∣

− 1

λ

)

,

(3.11)

we replace this transformation in (3.10)

H2n+ǫ(x) =
n
∑

k=0

n!22n+ǫ
(

1
2
+ ǫ
)

n
(λ+ 1

2
)k(2k + ǫ)!(λ)n+

ǫ

2

(n− k)!k!(k + λ+ ǫ)k (2λ)2k+ǫ

(

1
2
+ ǫ
)

k
(2k + λ+ ǫ+ 1)n−k

2F0

(

k − n,−n− k − λ− ǫ
−

∣

∣

∣

∣

− 1

λ

)

C
(λ)
2k+ǫ

(

x√
λ

)

. (3.12)

Using properties of the Pochhammer symbol (for ǫ = 0, 1), we get:

(

1
2
+ ǫ
)

n
(2k + ǫ)!

(

1
2
+ ǫ
)

k

=
22kk!(2n + ǫ)!

22nn!
. (3.13)

Substituting (3.13) into (3.12)

H2n+ǫ(x) =

n
∑

k=0

(2n+ ǫ)!(λ)n+
ǫ

2

(n− k)!(λ)2k+ǫ(2k + λ+ ǫ+ 1)n−k

2F0

(

k − n,−n− k − λ− ǫ
−

∣

∣

∣

∣

− 1

λ

)

C
(λ)
2k+ǫ

(

x√
λ

)

, (3.14)

where: 2n+ǫ = N ; 2k+ǫ = N−2r; 2n+ǫ = 2k+ǫ+2r; n = k+r; −r = k−n,
the above expression can be written as:

HN (x) =
n
∑

r=0

N !λ
N

2

r!(λ)N−2r(N − 2r + λ+ 1)r
2F0

(

−r,−N + r − λ

−

∣

∣

∣

∣

−
1

λ

)

C
(λ)
N−2r

(

x
√
λ

)

(3.15)

If we analyze the substitutions, we see that if ǫ = 0, N = 2n, and n = N
2
. If

ǫ = 1, N = 2n + 1, and n = N−1
2

. from where in the sum we can replace n

by [N
2
] from where (3.15) we are left with:

HN (x) =

[N
2
]

∑

r=0

N !λ
N

2

r!(λ)N−2r(N − 2r + λ+ 1)r
2F0

(

−r,−N + r − λ

−

∣

∣

∣

∣

− 1

λ

)

C
(λ)
N−2r

(

x√
λ

)

.
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3.2 Theorem (Connection formula for Gegenbauer poly-

nomials in series of Hermite Polynomials)

C
(λ)
N

(

x√
λ

)

=

[N
2
]

∑

k=0

(−1)r(λ)N−r

(r)!λ
N−2r

2 (N − 2r)!
2F0

(

−r,N − r + λ
−

∣

∣

∣

∣

1

λ

)

HN−2r(x)

Proof: Using the hypergeometric representations of Hermite and Gegen-
bauer polynomials for ǫ = 0, 1 given is (3.7), (3.8), and using formula (2.6)
with the following identification

[ds] =

{

1

2
+ ǫ

}

, s = 1 t = 0 r = 0, u = 0,

ω = x2, q = 0, p = 1, [ap] = {n + λ+ ǫ} , z =
1

λ

it is obtained

2F1

(

−n, n + λ+ ǫ
1
2
+ ǫ

∣

∣

∣

∣

x2

λ

)

=

n
∑

k=0

(

n
k

)

(n+ λ+ ǫ)k
λk

2F0

(

k − n, k + n+ λ+ ǫ
−

∣

∣

∣

∣

1

λ

)

1F1

(

−k
1
2
+ ǫ

∣

∣

∣

∣

x2

)

. (3.16)

We multiply this identity by terms that suit us to which to the left of the
equality gives us (3.8), and the last part on the right of equality gives us
(3.7), us gives

C
(λ)
2n+ǫ

(

x√
λ

)

=

n
∑

k=0

(

n
k

)

(−1)n−k
(

1
2
+ ǫ
)

n
(n + λ+ ǫ)k(2λ)2n+ǫ

(λ+ 1
2
)n (2n+ ǫ)!λ

ǫ

2
+k22k+ǫ(1

2
+ ǫ)k

×2F0

(

k − n, k + n+ λ+ ǫ
−

∣

∣

∣

∣

1

λ

)

H2k+ǫ(x). (3.17)

From (3.17), using properties of the Gamma function, the formula for dupli-
cating the Pochhammer symbol, it results that:

C
(λ)
2n+ǫ

(

x
√
λ

)

=
n
∑

k=0

(−1)n−k(λ)n+k+ǫ

(n− k)!λ
ǫ

2
+k(2k + ǫ)!

×2 F0

(

k − n, k + n+ λ+ ǫ

−

∣

∣

∣

∣

1

λ

)

H2k+ǫ(x), (3.18)

with the substitution

2n+ ǫ = N, 2k + ǫ = N − 2r, 2n+ ǫ = 2k + ǫ+ 2r, n = k + r, −r = k − n
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the above expression can be written as:

C
(λ)
N

(

x
√
λ

)

=
n
∑

k=0

(−1)r(λ)N−r

(r)!λ
N−2r

2 (N − 2r)!
×2 F0

(

−r,N − r + λ

−

∣

∣

∣

∣

1

λ

)

HN−2r(x), (3.19)

with a procedure similar to that of Theorem 3.1, the sum we can replace n
by [N

2
] from where (3.19) we are left with:

C
(λ)
N

(

x√
λ

)

=

[N
2
]

∑

k=0

(−1)r(λ)N−r

(r)!λ
N−2r

2 (N − 2r)!
2F0

(

−r,N − r + λ
−

∣

∣

∣

∣

1

λ

)

HN−2r(x)

3.3 Theorem (Connection formulas between shifted La-
guerre and Jacobi polynomials)

Using (2.5) with [ds] = ∅, s = 0, [αt] = {γ + 1}, t = 1, [cr] = ∅,
r = 0, [βu] = ∅, u = 0, [ap] = ∅, p = 0, [bq] = {α + 1}, q = 1,
w = x, z = 1 ζ = β + γ + 1, obtaining:

L(α)
n (x) =

n
∑

k=0

(α + 1)n(−1)k(β + γ + 1)k
(n− k)!(α + 1)k(β + γ + 1)2k

× 2F2

(

k − n, k + γ + 1
2k + β + γ + 2, k + α + 1

∣

∣

∣

∣

∣

1

)

R
(β,γ)
k (x).

Using (2.6) with [ds] = ∅, s = 0, [αt] = {γ + 1}, t = 1, [cr] = ∅,
r = 0, [βu] = ∅, u = 0, [ap] = {n + α + β + 1}, p = 1, [bq] =
{β + 1}, q = 1, w = x, z = 1, obtaining:

R(α,β)
n (x) =

n
∑

k=0

(−1)n(β + 1)n(n + α+ β + 1)k
(n− k)!(β + 1)k

× 3F1

(

k − n, k + n+ α + β + 1, k + γ + 1
k + β + 1

∣

∣

∣

∣

∣

1

)

L
(γ)
k (x).

3.4 Note

Following a similar procedure as in Theorem 3.3 leads to the connection
between Laguerre and Gegenbauer.

L(b)
n (x) =

n
∑

k=0

(b+ 1)n(−n)k
(b+ 1)kn!2k(ν)k

2F3

(

△(2, m− n)
△(2, b+ k + 1), ν + k + 1

∣

∣

∣

∣

∣

1

4

)

Gν
k(x).
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Gω
n(x) =

n
∑

k=0

(−n)k2n(a+ 1)n(ω)n

(a+ 1)kn!
2F3

(

△(2, m− n)
△(2,−a− n), 1− ω − n

∣

∣

∣

∣

∣

1

4

)

La
k(x).

The notation △(r, λ), is used to abbreviate the array of r parameters (λ+j−1)
r

,
j = 1, 2, ··, r.

4 Summary and continuity of the work

In this work, we presented the connections between the Gegenbauer polyno-
mials and the Hermite polynomials, and formulas of connection between the
Laguerre polynomials and the shifted Jacobi polynomials. In a later work,
the authors hope to present the connection between the Bessel polynomials
and the Hermite polynomials.
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