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Abstract
We establish a new class of uniformly starlike functions by using
a differential operator that was motivated by the authors. Moreover,
we introduce a subclass with negative coefficients by fixing a second
coefficient. Furthermore, we discuss the closure of this subclass under
convex combinations. Finally, we investigate the extreme point values
for the new class.

1 Introduction

Most recently, the researchers were motivated to study the g-calculus because
it has a lot of applications in mathematics and physics. In 1908, Jackson [12],
[13] presented various applications of g-calculus, as well as the g-analogues
of the integral and derivative operators. Later, by applying the g-beta func-
tion, Aral and Gupta [5, 4] defined the ¢g-Baskakov-Durrmeyer operator, and
they developed the g-generalization principle of complex operators, known
as the ¢-Gauss-Weierstrass-Picard singular integral operator. Kanas and Ra-
ducanu [14] The g-analogue of the Ruscheweyh developed and investigated
the differential operator using the convolution of normalized analytic func-
tions. Aldweby and Darus [1] investigated further the applications of the

Key words and phrases: Quantum calculus, g-differential operator,
uniformly starlike.

AMS (MOS) Subject Classifications: 30C45.

The corresponding author is Maslina Darus.

ISSN 1814-0432, 2023, http://ijmes.future-in-tech.net



708 K. Alshammari, M. Darus

Ruscheweyh differential operator. In later years, several researchers have
shown a significant amount of interest in this. For very recent findings con-
cerning uniformly starlike and uniformly convex functions investigated for
many new classes of functions, we refer the reader to [11], [15], [18] . Our
purpose in this paper is to apply the ¢g—Ruscheweyh symmetric operator in-
troduced by Alshammari and Darus [2] and then to provide some exciting
applications of this operator. Let A indicate the class of normalized ana-
lytic functions I'(¢)) in the open unit disc A = {¥ : ¢ € C, |¢p| < 1}, where
I'(0) = 0 and IV(0) = 1. Thus, the functions in A are stated by the Taylor
series expansion as follows:

TW)=v¢+ ) a’, veA (1.1)
k=2

Let S C A and containing of the functions that are univalent in the open
unit disc A. Goodman [7, 8] defined and introduced the following subclasses
of C'V and ST.

Definition 1.1. [7] A function I'(¢)) is said to be uniformly convex in A if
['(v) is in CV and has the property that for every circular arc v contained
in A, with center £ also in A, the arc fI'(y) is a convexr arc with respect to

I'(§).

Definition 1.2. [8] A function I'(¢) is said to be uniformly starlike in A if
() is in ST and has the property that for every circular arc vy contained in
A, with center £ also in A, the arc T'(7y) is starlike with respect to I'(§). We
let UST denote the class of all such functions.

In 2018, Thomas et al. [17] proved
I ()
(¥)

!/

FGUST@' 'gRe{1+wF//(¢)}.

I(4)
Moreover, R¢nning [16] introduced a new class related to UCV stated as
N ' YY)
res, — 1| <Re .
" ' L) N [(4)

Note that I'(¢) is in UCV < ¢I"(¢) belong to S,. In addition, by introducing
the parameter w, where —1 < w < 1, R¢nning generalized the class S,

resiof-o s <)
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The g-number factorial for any positive integer k is

M4={1 Y
1, (21,03l - - - [k, k=1,2,3,...

The details about quantum calculus used in this paper can be found in [6]
and [10].
The Hadamard product of two functions I'(¢)) of the form (1) and g(v) is of
the form

g) =+ > bk, e A
k=2
as

(C*g)() =9+ Z apbr.
k=2

Recently, Aldweby and Darus [1] defined the ¢-Ruscheweyh derivative oper-
ator as follows

Ibrahim and Darus [9] introduced the following symmetric Salagean differ-
ential operator given as

9(@) =+ Y k(v — (1= v) (=) a.

In 2020, the authors introduced a new ¢ derivative operator by taking the
convolution between the g-Ruscheweyh derivative and symmetric Salagean
differential operator as follows:

Tigaun D) =9+ 2o Hq[!/{]]{;(gk_—(h_' AEDIE e, (12)
k=2 q: q*

where A > -1, 0<v<1,0<g<1,and p=0,1,2,....

Remark 1.3. From (1.2), we can see that:

e When yt =0, Ygxu,I'(¥) becomes the g-Ruscheweyh operator.
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e Whenp=0andg =1, Y .,)I(¢) becomes the Ruscheweyh operator.
e Whenpu=0and A =1 T(gx,I(¢) becomes the g-Salagean operator.
e Whenpu=0,A=1,andqg =1,  TgrI'(¥) becomes the Salagean operator.

This operator has recently been used to study the second Hankel deter-
minant by the authors [3].
In this paper, we will use the differential operator that was introduced by Al
Shammari and Darus [2] in our main results.

Definition 1.4. Let S(q, A\, v, u, @, €) indicate the subclass of S containing
functions I'(1)) of the form (1.1) and satisfying

@D@ ( (g, A\,v,1) F(,lvb)) } waq(T(q,A,V,u)F(¢))
R _
{ T(q,A,V,u)F(w) wyoe T(q,)\,u,u)r(w>

Moreover, we assume TS*(q, \,v, u,w,€) = S(q,\, v, u,w,€) NT, where T
represents the subclass of S containing functions of the form

—1f.

=¢—Zak¢k> a, >0, V k>2. (1.3)
k=2

Our main objective in this paper is to obtain the necessary and sufficient
conditions for the functions I'(v) € T'S*(q, \, v, u, w, €). Moreover, by fizing
the second coefficient, we get the extreme points for the function T'(¢) €
TS*(q, A\, v, i, @, €).

2 Main results

2.1 The Class S(q,\, v, pu, @, €)

In this part of the article, we will get a condition that is both necessary and
sufficient for the function I'(¢)) in the classes T'S*(q, A, v, u, @, €).

Theorem 2.1. LetT'(¢)) be a function of the form (1.1) belonging to S(q, \, v, i, @, €).
If is true only if
i [+ X — 1! k(v — (1 —v)(=1)"*
|

J(14€) — (w+e) lEA]q T

\ak|§1—w

(2.4)
where —1 < w <1 and € > 0.



Applications of Q-Ruscheweyh Symmetric Differential Operator... 711

Proof.
To reach our result, we only need to show that

?/)0 ( (g, v,10) F(?/))) i 1‘ R {waq(T(q’A7y’u)F(¢)) B 1} -
6 TarvnL(¥) T g (¥) sl-w

Starting from the left hand side, we get
@D@ T(qkuur(@b))_l‘ %{wa( unuF(w))_l}

q/\vu)r(w) T(q/\vu)r(qb)
‘W quuF(¢)) 1'+ ¢8( q/\vur(qﬁ))_l‘.
(g,A vu)r(w) T(q,%u,u F(Q/’)
Thus
YOy (Y (grwml' (V) ‘ {waqmq,w,uw(w)) } YO0y (Y (g oL (¥))
1 =R -1 <(1 -1
‘ q)\u,u)r(w) T(q,A,u,u)F(¢) - ( * 6) T(q)\z/u (?/))
<(1+ )Zk 2([H, — D= I]q[k[i('y[l;(lu P o
il L X, e e
and

,lvba T(q)\uur(,lvb))_ly %{wa( unpF(w))_l}
(g A,V,M)F(w> T(q,A,V,u)F(w)
T W1+ 9~ (1+4) Ay e G g, |

k+A—1]g![k(v—(1—v)(=1)k]~
I_Zk 2[ )[\]q([k(l]q J(=1)*] |ay|

The last formula is bounded above by (1 — w), if

[k + A= 1 lk(v — (1 = v)(=D""
[Alg![F = 11!

NE

[Klg(1+€) = (w +¢)] ] <1—w

e
[|

2

and the proof is complete.

Theorem 2.2. The function I'(¢) is said to be a subset of class T'S*(q, \, v, i, @, €),
if it satisfies the necessary and sufficient conditions as follows:

[k + A = 1]g![k(v — (1 — v)(=D)*)"
[Alg! [k = 1!

NE

[Kg(1+€) = (w +€)] lag| <1 —w

B
||

2
(2.5)
where —1 < w <1 and € > 0.
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Proof.
In Theorem 2.1, we simply have to show the necessary condition. Without
loss of generality, let I' € T'S*(q, A\, v, u, @, €) and let 1 be a real number.
Then

?/)5 ( (g,\,v,10) F(?/)))
T(q,)\,u,u W)

aq(T(q,A,u,,u)F(w))

—1
T(q,A,V,u)F(w)

—w}>e€

Y

[eS) [k+A—1] ! [k(v—(1—v 1
= 30, ]q[)[\]q('[k (1} L ayt
0o [k+A-1]g![k(v—(1—v)(—1)k]r
w - Zk:2 [Aq![k—1]q! wk
o) k+A—1]4![k(v—(1—v 1
v — Zk:2[ ] [ le [)[\]q(v[k (1} )= a ¢k

> € -1
0o [k+A-1] ! [k(v—(1—v
P — Zk:2 ]qi} ( I (1]q ak@Dk

— w

Letting v — 1, we obtain the required inequality

2 W1+ - w”)][kﬂ_l]tf;[]]zn([yk (]. N <1

k=2

Corollary 2.3. We assume that the function I'(y) be of the form (1.3) €
TS*(q, \, v, p,w,€). Then

(1 — @) ATk — 1],
[Klo(1+€) = (@ + e)][k + A = gl k(v — (1 =) (=1’

Corollary 2.4.

k> 2.

ap <

(1-w)
[214(1 +€) — (@ + )] [A + 1g[4v — 2]

az <

2.2 The Class T'S(q, A\, v, 1, @, €)

By setting the second coefficient € T'S*(q, A\, v, i, @, €), we establish a new
subclass, called T'S%(q, A\, v, u, @, €), as follows:

Definition 2.5. Let 0 < d < 1 including I'(v)) € T'S*(q, \,v, u, @, €). Then
L(y) € TSi(q, A\, v, u, @, €), which has the following form

B i1~ ) .
A R (s iy sy WU Z ai. (26)
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Theorem 2.6. Let the function I'(¢)) be established by (2.6). Subsequently,
D) € TS3(g, A, vy, ) if and only if

i _ _ k
Z J1+€) — (w+e) [k + A 1][E;\[]k$[k <1] ¥)(=1) ]Mak < (1-d)(1—-w).
- (2.7)
Proof. Substituting
_ d(1 - @)
PR+~ (] [ 1, [ — 2
in (2.5) with a simple calculation will give the result. O

Corollary 2.7. Let the function I'(¢) be defined by (2.6) is in T'S}(q, A\, v, j1, @, €).
Then

(1 = ) = @)k = 1!
[Fla(1+€) = (@ + ][k + A = 1! k(v — (1 =) (=1)*]*’

k> 3.
(2.8)

ay <

Theorem 2.8. The class T'S}(q, N\, v, 1, @, €) is closed under a convex linear
combination.

Proof.
Assume the functions I'(¢)) and g(v) € T'Si(q, A\, v, i, w,€). Let I'(¢) be
stated by (2.6) and

B d(l —w)
S Y sy s s g v ZW (2.9)

where pp > 0. It suffices to show that, for 0 < w < 1, the function
() = wl'(¥) + (1 —w)g(), (2.10)
also belongs to T'S}(q, \, v, u, @, €). From (2.6), (2.9) and (2.10), we have

d(l — w)
[2],(1 +€) — (w + )] [N + 1], [4v — 2]»

I() = ¢ Z{waw (1—w)pe o™

(2.11)
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Since I'(¢)) and g(v) € TSi(q, A\, v, p,w,€) and 0 < w < 1, by applying
Theorem 2.6, we get

- [k + A = 1 k(v = (1 = v)(=1)"*
Z J1+€) — (w+e) L= 1

k=3

(2.12)
Once more, based on Theorem 2.6 and (2.12), we obtain I(¢) € T'S5(q, \, v, 1, @, €).

Theorem 2.9. Assume the function

o a1 - =) o
) = o g G g A g i o 20
(2.13)

be in the class T'S;(q, \, v, u,w,€), for every (r = 1,2,3,...;s). Thus the
function G(¢) established by

=S, 214
is also € T'S}(q, \, v, u, @, €), where
iﬁr —1. (2.15)
Proof. From (2.13), (2.14) and (2.15), we get
o d(1 — @) a k
PO = a9 — @+l - Uyl =2 §:(§)9kq¢

Since I'(v) € T'Sh(q,\, v, pu,w,¢) for every r = 1,2,3,...,s Theorem 2.6
denotes
o [k + A =1 ![k(r — (1 — v)(=1)*]"

Hk]Q(l +€) - <w+€)] [)\]q'[k ]

ar, < (1—d)(1—w).

(2.16)
Now, we show that G(v) fulfills the condition of (2.8) that will lead us to
F(,l/)) 6 TS;(q’ A? V’ ILL? w? E)

= k4 X — 1],k 1—v)(
Z J1+€) — w+e)][ i ][)\[]qf[k (] <Zi9akr>

k=3

{war+(1-w)pey < (1-d)(1-

w).
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[k + X — k(v — (1 —v)(=1)"]"
= Zﬁ (Z (14 ¢€) — (w+€)] BRI ak,r) .

= (2.17)

Using (2.15), (2.16) in (2.17), we obtain

> (a1 +0) - (e + ) A el = G (Zﬁ o )

k=3

Thus G(¢) € TSi(q, A\, v, 1, @, €). O
Theorem 2.10. Let

d(l — w)
[2]4(1 +€) = (@ + )] [A+ 1[4 — 2]»

La(y) =¢ — Y? (2.18)

d(l —w)
B+ 6 — (@ + I+ 1, — 2
(1 —d)(1 = @) [A![F = 1],

T A G Al A~ k- - 320

fork=3,4,.... Then I'(¢p) € TSi(q, N\, v, 1, @, €) < can be written as

)? (2.19)

V) = Oefu(®), (2.21)
o

where, ¥ > 0 and > 7, V) = 1.
Proof.

Suppose that T'(¢)) is in the form (2.21). Substituting (2.18) and (2.19) in

(2.21), we have

== Al (2.22)
where " : |
A= BT (= r I DT i =2 (223
and

_ (1 =d)(1 — @) [N [k — 1!
A= [Kl,(1+€) — (w+ ][k + A — 1 ![k(v — (1 — v)(=1)k]~ k=3
(2.24)

—d)(1—w).
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In order to establish that I'(¢) is in the class T'S};(q, A\, v, i, @, €), it is enough

to show that it satisfies the condition of Theorem 2.10. Consider

[+ X = 1] ![k(v — (1 —v)(=1)"*
A [k — 1],

K

[Klg(1+€) = (@ + €] Ay

e
[|

2

:dﬂ—aﬂ+§3mﬂ—dxr—w)

Since Y77, Uk = 1, we can write the above equation as
E+X—1), k(v — (1 —v)(—1)*
[Ag! [k — 1!
=(1l-wd+(1—-19)(1—-4d)] <(1—w).

6,1+ 0) — (@ + o))

WE

Ak

B
||

2

Thus I'(¢)) € T'S}(q, A\, v, p, @, €). On the other hand, we assume that ['()),
defined by (2.6), belong to the class T'S}(q, A\, v, u, w,€). Then, by using
(2.8), we get

(1 = )1 = @)[A![F — 1!

B ¥ e [y 1y T e Tl
(2.25)
By taking
k(1 +€) = (@ + ][k + A = 1 k(v = (1 = v)(=1)"]"a
e (1—d)(1 — @) [N![k — 1]! , (2.26)
and N
=12 v (2.27)

we have (2.21). The proof is complete.

Corollary 2.11. According to Theorem 2.10, functions I'y(¢), where k > 2
are the extreme points of the class T'S}(q, \, v, i, @, €).
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