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Abstract
In this paper, we propose a new formula for backward fuzzy stochas-
tic differential equations (BFSDEs) and prove that the approximation
solutions of BFSDEs converge to the exact solution under Lipschitz
conditions.

1 Introduction

We are interested in studying the backward fuzzy stochastic differential equa-
tions (BFSDEs). We present some research on stochastic differential equa-
tions.

Cortes et al. [2] proposed the numerical solution of SDEs using Scheme’s
random Euler difference method. Nouri and Ranjbar [3] used the Rung-
Kutta method to prove approximation solutions for SDE in the presence of
initial conditions. Assume the BSDEs with have following

T T
X =¢ +/ U(s, X,)ds — / [dW, 0<t<T, (1.1)
0 0

where { W(t),0<t < T} is a Wiener process on the probability space (€2, T,P)
with the filtration (7;,0 < ¢t < T') and £ is a givenT;-measurable random
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variable so that E|¢|* < co. Clearly, two random processes {(X(t), I'(t)), 0
<t < T} with values in Rx R, which is T; adapted and satisfies the equation
(1.1). Such a pair is an adapted solution of the equation. Pardoux and
Peng [1] proved the existence and the adapted solutions uniqueness for the
Backward SDEs under the Lipschitz condition. Falah and Liu [4] proposed
a numerical method for BSDEs with non-Lipschitz coefficients.

On the other hand, Kim [6] proved that the solution for fuzzy stochastic
differential equations exists and is unique under the appropriate Lipschitz
condition. Malinowski [7] studied fuzzy stochastic integrals and described
some of their characteristics. Also, he demonstrated the existence of solutions
to SFDEs governed by d-dimensional Wiener process. In our work, we present
some basic concepts and assumptions to study the backward fuzzy SDEs.
Moreover, we discuss the approximation solution of BESDEs under Lipschitz
conditions.

2 Preliminaries and Basic Hypotheses

In this section, we offer a few notations and theories that will be applied in the
subsequent section. Therefore, we assume that d-dimensional wiener process
{W;},0<t<T, for which the entire probability space is defined. (£, ,P),
{T:}o<t<r denotes the filtration with o-field of Y;-progressively subsets of
Q2 x [0, T]. The following spaces are used:

1- Let HZ(R*) be the space of T-adapted processes X: wx[0,T]— R*
such that Efsupgc,<p | X ()]*] < oo.

2-Let S2(R**?) be the space of T-predictable processes I' : w x [0,7] —
R such that EfOT IT(t)2dt< .

The spaces H2(R*) and SZ(R**%) are equipped with the norms
T .
\\X||§{%:E[sup0§t§T | X (¢)]?] and HF||§% :Efo IT'(¢)|2dt, respectively.
We Assume the formula of the backward stochastic differential equation:

T

T

X;=¢ +/ (W(s, X(s),I'(s))]ds +/ [D(s, X(s)) —T'(s)]dWs, (2.2)
to to

where ¥ and ® are Borel measurable function, {W(¢),0 < ¢t < T} is a §-

dimensional Wiener Process, and xi is given Y;-measurable random variable

combined with F|¢]? < oc.
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Suppose that ¥ : Q x [0,7] x R* x R?° — R* and ® : Q x [0, T] x R* —
R are jointly measurable and (X,I') € R* x R,
The following conditions are used:

(H1> \\If(Xl,Fl,t) — \I](XQ,FQ’t)‘z S K(|X1 - X2‘2 + |F1 — F2|2)CL.8
[D(X1, 1) — (X, 1)|* < K(| X1 — Xaf?),
where K > 0, and for all t € [0,7], X1, Xo € R* and ',y € RM?

(H2) (WX, D)PVI[X, D) < K(1+[X[*+TP),
where ¢V d = max{c, d}.

(Hs)  ElS(t) = &(s)]* < K(t — ).

3 Fuzzy Solution of the BSDEs

Let n(R*) be the family of all compact, convex, nonempty subsets R*. We
use the fuzzy set space of to denote R* as B(R?); i.e., the set of functions
¢ : R* — [0,1] such that [p]® € n(R*) for every 3 € [0, 1], where [¢]® =
{a € R : p(a) < B} for B €[0,1] and [p]® = {a € R* : p(a) > 0}. Assume
(€2,Y, P) is a probability space together with a filtration {Y;}icjo,r, T €
(0, 00) under the usual conditions. A mapping X : Q — B(R?) is called
fuzzy random variable, if [X]? : Q@ — n(R*) is an YT-measurable multi-
function every € [0, 1].

Definition 3.1. [7] Assume (2,7, P) is a complete probability space. We
say YV 1 Q — T(RY) is a fuzzy random variable if for each 3 €[0,1], the
mapping [X]° : Q@ — n(R*) is T-measurable.

Definition 3.2. [7] A fuzzy stochastic process is a mapping X : [0, 1] xQ —
T(Rp), where X (t,-) or X(t) : Q@ — Y(R)) is a fuzzy random variable.

Definition 3.3. [7] If the functions X (., W) : [0,1] — YT(R") are du-
continuous mappings, then a fuzzy stochastic process X is considered to be
O -CONLINUOUS.

We consider the BFSDEs as
dX(t) =V(t, X(t),[(t))dt + [P(t, X(t)) — L'(t)]dW (¢)
X(T) =& = &(X(T),T(T)), where U : Q x [0,1] x R} x R*® x A(RY) —
A(RY) and X7 : Q — A(R») is a fuzzy random variable.
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4 Numerical Formula for BFSDEs

In this section, we propose a numerical formula that is based on a decretiza-
tion of (1.1). Therefore, let n > 1 and ¢t € [0, T]. Assume 0 =ty <t < .... <

t, =T is a partition of [0, T]. Let
W:Ati+1:ti+1—ti:%,1Sign,AWt :Wt —Wti,

where i = 0,1, ...... ,n—1 and At = max At;. For the small interval [t;, t; 1],
the BFSDEs are as follows:

Xo= Xt [ W X T+ [ @5 X(9) =TI (s)
Z Z (4.3)

141 141

Therefore, the approximation formula is:

XP = XP 4 W, X0(E), To()m + O, XP(E) — T2(t) AW,

tit1

with X(7T) = &(T) on 0 < ¢t <T. Thus we consider the BFSDEs as follows:

i1

T

XP =4 / (s, X7 (s), T2 (s))]ds + / [B(s, X7(s)) — T2(s)]dW (s) (4.4)

to to

5 Main results
The purpose of this section is to discuss approximation solutions to the
BFSDE equations.

Theorem 5.1. Assume that {X(t),['(t)} is a solution of equation (2.2).
Then the approzimation solution {X"(t),[™(t)} converges to {X(t),I'(t)}
in the sense that for each t € [0,T]

lim E|X(t) — X"(#)]2 =0

n—oQ
and
T
lim E/ IT(s) — I'™(s)|*ds = 0
n—oo 0
Proof.

X (t) = X" ()" = | —€" + /0 [W(s, X(s),I'(s)) = W(s, X"(s),I"(s))]ds

+/0 [((s, X(s)) = T(s)) — (D(s, X"(s)) — T"(s))]dW s |".
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Using the inequality {|d + e + h|? < 3(|d|*> + |e|* + |h]*)}, we have
T
X () = X"(1)]* < 3|1X(T) — X™(T)]* + 3(T) / W (s, X(s),I(s)) — ¥(s, X"(s),I"(s))["]ds
0
T
+ 3/ [1(@(s, X(s)) = @(s, X"(s))[* + [[(s) — I"(s)[*]|dW s "
0
Using condition (H;) and (Hj3), we have
T
EIX(t) = X"(t)]* < 3E|X(T) — X"(T)|* + 3K(T)E/ [1X(s) = X"(s)]”
0

+|T(s) — T™(s)[*]ds + BKE/O [1X(s) = X™(s)|” + |T'(s) — T™(s)*]ds.
E|X(t) — X™(t)|* < 3K(T — 0) + 3K (T + 1)/0 E[|X(s) — X"(s)]* + |(s) — I'"(s)[*]ds.

Let C; =3K(T), Cy =3K(T +1). We obtain
T
E|IX(t) - X"(t)]* < C, + 02/ E|X(s) — X"(s)|* + E|I'(s) — I'™(s)|ds.
0

Next,
T
EIX(t) = X"(0)]2 < Oy + 02/ EIX(s) — X"(s)|ds,
0

for all t € [0, 7). Using theorem (1.8.1) (Gronwall’s inequality) in [9], we have

lim E|X(t) — X"(t)]* = 0.

n——aoo

So .
lim E/ IT(s) — I'™(s)|*ds = 0.
0

n—aoo

Theorem 5.2. Suppose that the assumptions Hy — Hs are fulfilled. Then
there exists a unique solution of the following equation:

Xy =¢ —I—/O [(W(s, X(s),T'(s))]ds +/0 [D(s, X(s)) —I'(s)]dWs.
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Proof. Existence. By theorem (4.2) in [5], there exist

X € HA(RY) and T € SZ2(RM)

such that lim, . (X™ ') = (X,I'). Then lemma (3.1) in [8] and theorem
(5.1) show that

lim E|X"(t)— X(#)]* =0, 0<t<T.

n—»aoo

The result now follows by lemma (3.1) in [8], lemma (3.2) in [8], and theorem
(4.2) in [5].

Uniqueness. Consider the pair (X;,T';), where i = 1,2 representing the
solutions of BFSDEs.
By theorem (5.1), we have
lim, oo [X(#) = XP()?=0 and lim, .. |X(t) — X2(t)]* =0.
Now, we prove

lim |X7'(t) — X3 (t)|* = 0.

n—aoo

XP0) = X3 et -5+ [ [W(s, X7(), T4() — (s, X5 (), TH(s)]ds
-/ (@05, X7 () — TH($)) — (B(s, X3 (5)) — T3(s))aWWsf?.
Using the inequality |d + e + h|* < 3(|d]* + |e|* + |h|?), we have
XT(0) = X300 <3XT(T) = X3 +3) [ " [(s, X7 (), T3(5)) — W(s, X3(5), T3 (s)]dsP
= (@5, X7(5)) - B(s, X3(s)) — (TY(s) — T3(s)) WP
Using conditions H; and Hs, we obtain
EIXI(t) — X3 ()] <3K(T) +3K(T) / " B(XE(s) — X3 +IT7(s) - T3
3K / (1X7(5) = X3 (s)[2 + T (s) — T3(s) .
Let C; =3K(T), Cy = 3K (T +1). We have

T
EIX}(0) - X307 < Ci+ G | EIXI(5) = X3(5)F + EITY(s) - T3(s) s
0



Approximation Solutions of BESDEs 653

Then  B|X7(t) = X3 (1) < Cy + s fy BIXP(s) = X3 (s)[2,
for all t € [0, 7.

Using theorem (1.8.1) (Gronwall’s inequality) in [9], we have

lim E|X}(t) — X3 (t)]* = 0.

n—~oo

Hence X7 (t) = X3 ().
As a result, we get lim,,_, E|T}(t) — T3(¢)]* = 0. n
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