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Abstract

In this paper, we propose a new formula for backward fuzzy stochas-
tic differential equations (BFSDEs) and prove that the approximation
solutions of BFSDEs converge to the exact solution under Lipschitz
conditions.

1 Introduction

We are interested in studying the backward fuzzy stochastic differential equa-
tions (BFSDEs). We present some research on stochastic differential equa-
tions.

Cortes et al. [2] proposed the numerical solution of SDEs using Scheme’s
random Euler difference method. Nouri and Ranjbar [3] used the Rung-
Kutta method to prove approximation solutions for SDE in the presence of
initial conditions. Assume the BSDEs with have following

Xt = ξ +

∫ T

0

Ψ(s,Xs)ds−

∫ T

0

ΓsdWs 0 ≤ t ≤ T, (1.1)

where {W(t),0≤t ≤ T} is a Wiener process on the probability space (Ω,Υ,P)
with the filtration (Υt, 0 ≤ t ≤ T ) and ξ is a givenΥ1-measurable random
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variable so that E|ξ|2 < ∞. Clearly, two random processes {(X(t), Γ(t)), 0
≤ t ≤ T} with values in R×R, which is Υt adapted and satisfies the equation
(1.1). Such a pair is an adapted solution of the equation. Pardoux and
Peng [1] proved the existence and the adapted solutions uniqueness for the
Backward SDEs under the Lipschitz condition. Falah and Liu [4] proposed
a numerical method for BSDEs with non-Lipschitz coefficients.

On the other hand, Kim [6] proved that the solution for fuzzy stochastic
differential equations exists and is unique under the appropriate Lipschitz
condition. Malinowski [7] studied fuzzy stochastic integrals and described
some of their characteristics. Also, he demonstrated the existence of solutions
to SFDEs governed by δ-dimensional Wiener process. In our work, we present
some basic concepts and assumptions to study the backward fuzzy SDEs.
Moreover, we discuss the approximation solution of BFSDEs under Lipschitz
conditions.

2 Preliminaries and Basic Hypotheses

In this section, we offer a few notations and theories that will be applied in the
subsequent section. Therefore, we assume that δ-dimensional wiener process
{Wt},0≤t≤T, for which the entire probability space is defined. (Ω,Υ,P),
{Υt}0≤t≤T denotes the filtration with σ-field of Υt-progressively subsets of
Ω× [0, T ]. The following spaces are used:

1- Let H2
T (R

λ) be the space of Υ-adapted processes X: ω×[0,T]−→ Rλ

such that E[sup0≤t≤T |X(t)|2] < ∞.

2-Let S2
T (R

λ×δ) be the space of Υ-predictable processes Γ : ω× [0, T ] −→

Rλ×δ such that E
∫ T

0
|Γ(t)|2dt< ∞.

The spaces H2
T (R

λ) and S2
T (R

λ×δ) are equipped with the norms

||X||2
H2

T

=E[sup0≤t≤T |X(t)|2] and ||Γ||2
S2
T

=E
∫ T

0
|Γ(t)|2dt, respectively.

We Assume the formula of the backward stochastic differential equation:

Xt = ξ +

∫ T

t0

[Ψ(s,X(s),Γ(s))]ds+

∫ T

t0

[Φ(s,X(s))− Γ(s)]dWs, (2.2)

where Ψ and Φ are Borel measurable function, {W (t), 0 ≤ t ≤ T} is a δ-
dimensional Wiener Process, and xi is given Υt-measurable random variable
combined with E|ξ|2 < ∞.
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Suppose that Ψ : Ω× [0, T ]×Rλ ×Rλ×δ −→ Rλ and Φ : Ω× [0, T ]×Rλ −→
Rλ×δ are jointly measurable and (X,Γ) ∈ Rλ × Rλ×δ.

The following conditions are used:

(H1) |Ψ(X1,Γ1, t)−Ψ(X2,Γ2, t)|
2 ≤ K(|X1 −X2|

2 + |Γ1 − Γ2|
2)a.s

|Φ(X1, t)− Φ(X2, t)|
2 ≤ K(|X1 −X2|

2),
where K > 0, and for all t ∈ [0, T ], X1, X2 ∈ Rλ and Γ1,Γ2 ∈ Rλ×δ

(H2) |Ψ(X,Γ)|2 ∨ |Φ(X,Γ)|2 ≤ K(1 + |X|2 + |Γ|2),
where c ∨ d = max{c, d}.

(H3) E|ξ(t)− ξ(s)|2 ≤ K(t− s).

3 Fuzzy Solution of the BSDEs

Let η(Rλ) be the family of all compact, convex, nonempty subsets Rλ. We
use the fuzzy set space of to denote Rλ as B(Rλ); i.e., the set of functions
ϕ : Rλ −→ [0, 1] such that [ϕ]β ∈ η(Rλ) for every β ∈ [0, 1], where [ϕ]β =
{a ∈ Rλ : ϕ(a) ≤ β} for β ∈ [0, 1] and [ϕ]0 = {a ∈ Rλ : ϕ(a) > 0}. Assume
(Ω,Υ, P ) is a probability space together with a filtration {Υt}t∈[0,T ], T ∈
(0,∞) under the usual conditions. A mapping X : Ω −→ B(Rλ) is called
fuzzy random variable, if [X ]β : Ω −→ η(Rλ) is an Υ-measurable multi-
function every β ∈ [0, 1].

Definition 3.1. [7] Assume (Ω,Υ, P ) is a complete probability space. We
say Y : Ω −→ Υ(Rλ) is a fuzzy random variable if for each β ∈[0,1], the
mapping [X ]β : Ω −→ η(Rλ) is Υ-measurable.

Definition 3.2. [7] A fuzzy stochastic process is a mapping X : [0, 1]×Ω −→
Υ(RΛ), where X(t, ·) or X(t) : Ω −→ Υ(Rλ) is a fuzzy random variable.

Definition 3.3. [7] If the functions X(.,W ) : [0, 1] −→ Υ(Rλ) are δ∞-
continuous mappings, then a fuzzy stochastic process X is considered to be
δ∞-continuous.

We consider the BFSDEs as
dX(t) = Ψ(t, X(t),Γ(t))dt+ [Φ(t, X(t))− Γ(t)]dW (t)
X(T ) = ξT =′ ξ(X(T ),Γ(T )), where Ψ : Ω× [0, 1]×Rλ ×Rλ×δ ×A(Rλ) −→
A(Rλ) and XT : Ω −→ A(Rλ) is a fuzzy random variable.
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4 Numerical Formula for BFSDEs

In this section, we propose a numerical formula that is based on a decretiza-
tion of (1.1). Therefore, let n ≥ 1 and t ∈ [0, T ]. Assume 0 = t0 < t1 < .... <

tn = T is a partition of [0, T ]. Let

π = △ti+1 = ti+1 − ti =
T
n
, 1 ≤ i ≤ n,△Wti+1

= Wti+1
−Wti ,

where i = 0, 1, ......, n− 1 and △t = max△ti. For the small interval [ti, ti+1],
the BFSDEs are as follows:

Xti = Xti+1
+

∫ ti+1

ti

[Ψ(s,X(s),Γ(s))]ds+

∫ ti+1

ti

[Φ(s,X(s))− Γ(s)]dW (s).

(4.3)
Therefore, the approximation formula is:

Xn
ti
= Xn

ti+1
+Ψ(t, Xn

i (t),Γ
n
i (t))π + Φ(t, Xn

i (t))− Γn
i (t)△Wti+1

,

with X(T ) = ξ(T ) on 0 ≤ t ≤ T. Thus we consider the BFSDEs as follows:

Xn
ti
= ξ+

∫ T

t0

[Ψ(s,Xn
i (s),Γ

n
i (s))]ds+

∫ T

t0

[Φ(s,Xn
i (s))−Γn

i (s)]dW (s) (4.4)

5 Main results

The purpose of this section is to discuss approximation solutions to the
BFSDE equations.

Theorem 5.1. Assume that {X(t),Γ(t)} is a solution of equation (2.2).
Then the approximation solution {Xn(t),Γn(t)} converges to {X(t),Γ(t)}
in the sense that for each t ∈ [0, T ]

lim
n−→∞

E|X(t)−Xn(t)|2 = 0

and

lim
n−→∞

E

∫ T

0

|Γ(s)− Γn(s)|2ds = 0

Proof.

|X(t)−Xn(t)|2 = |ξ − ξn +

∫ T

0

[Ψ(s,X(s),Γ(s))−Ψ(s,Xn(s),Γn(s))]ds

+

∫ T

0

[(Φ(s,X(s))− Γ(s))− (Φ(s,Xn(s))− Γn(s))]dWs|2.
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Using the inequality {|d+ e + h|2 ≤ 3(|d|2 + |e|2 + |h|2)}, we have

|X(t)−Xn(t)|2 ≤ 3|X(T )−Xn(T )|2 + 3(T )

∫ T

0

[|Ψ(s,X(s),Γ(s))−Ψ(s,Xn(s),Γn(s))|2]ds

+ 3

∫ T

0

[|(Φ(s,X(s))− Φ(s,Xn(s))|2 + |Γ(s)− Γn(s)|2]|dWs|2.

Using condition (H1) and (H3), we have

E|X(t)−Xn(t)|2 ≤ 3E|X(T )−Xn(T )|2 + 3K(T )E

∫ T

0

[|X(s)−Xn(s)|2

+ |Γ(s)− Γn(s)|2]ds+ 3KE

∫ T

0

[|X(s)−Xn(s))|2 + |Γ(s)− Γn(s)|2]ds.

E|X(t)−Xn(t)|2 ≤ 3K(T − 0) + 3K(T + 1)

∫ T

0

E[|X(s)−Xn(s)|2 + |Γ(s)− Γn(s)|2]ds.

Let C1 = 3K(T ), C2 = 3K(T + 1). We obtain

E|X(t)−Xn(t)|2 ≤ C1 + C2

∫ T

0

E|X(s)−Xn(s)|2 + E|Γ(s)− Γn(s)|2ds.

Next,

E|X(t)−Xn(t)|2 ≤ C1 + C2

∫ T

0

E|X(s)−Xn(s)|2ds,

for all t ∈ [0, T ]. Using theorem (1.8.1) (Gronwall’s inequality) in [9], we have

lim
n−→∞

E|X(t)−Xn(t)|2 = 0.

So

lim
n−→∞

E

∫ T

0

|Γ(s)− Γn(s)|2ds = 0.

Theorem 5.2. Suppose that the assumptions H1 − H3 are fulfilled. Then
there exists a unique solution of the following equation:

Xt = ξ +

∫ T

0

[Ψ(s,X(s),Γ(s))]ds+

∫ T

0

[Φ(s,X(s))− Γ(s)]dWs.
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Proof. Existence. By theorem (4.2) in [5], there exist

X ∈ H2
T (R

λ) and Γ ∈ S2
T (R

λ×δ)

such that limn−→∞(Xn,Γn) = (X,Γ). Then lemma (3.1) in [8] and theorem
(5.1) show that

lim
n−→∞

E|Xn(t)−X(t)|2 = 0, 0 ≤ t ≤ T.

The result now follows by lemma (3.1) in [8], lemma (3.2) in [8], and theorem
(4.2) in [5].

Uniqueness. Consider the pair (Xi,Γi), where i = 1, 2 representing the
solutions of BFSDEs.
By theorem (5.1), we have
limn−→∞ |X(t)−Xn

1 (t)|
2 = 0 and limn−→∞ |X(t)−Xn

2 (t)|
2 = 0.

Now, we prove
lim

n−→∞
|Xn

1 (t)−Xn
2 (t)|

2 = 0.

|Xn
1 (t)−Xn

2 (t)|
2 =|ξn1 − ξn2 +

∫ T

0

[Ψ(s,Xn
1 (s),Γ

n
1(s))−Ψ(s,Xn

2 (s),Γ
n
2 (s))]ds

+

∫ T

0

(Φ(s,Xn
1 (s))− Γn

1 (s))− (Φ(s,Xn
2 (s))− Γn

2 (s))dWs|2.

Using the inequality |d+ e+ h|2 ≤ 3(|d|2 + |e|2 + |h|2), we have

|Xn
1 (t)−Xn

2 (t)|
2 ≤3|Xn

1 (T )−Xn
2 (T |

2 + 3|

∫ T

0

[Ψ(s,Xn
1 (s),Γ

n
1 (s))−Ψ(s,Xn

2 (s),Γ
n
2(s))]ds|

2

+ 3|

∫ T

0

(Φ(s,Xn
1 (s))− Φ(s,Xn

2 (s))− (Γn
1(s)− Γn

2 (s))dWs|2.

Using conditions H1 and H3, we obtain

E|Xn
1 (t)−Xn

2 (t)|
2 ≤3K(T ) + 3K(T )

∫ T

0

E(|Xn
1 (s)−Xn

2 (s)|
2 + |Γn

1 (s)− Γn
2 (s)|

2)ds

+ 3K

∫ T

0

E(|Xn
1 (s)−Xn

2 (s)|
2 + |Γn

1 (s)− Γn
2 (s)|

2ds.

Let C1 = 3K(T ), C2 = 3K(T + 1). We have

E|Xn
1 (t)−Xn

2 (t)|
2 ≤ C1 +C2

∫ T

0

E|Xn
1 (s)−Xn

2 (s)|
2 +E|Γn

1 (s)− Γn
2 (s)|

2ds.
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Then E|Xn
1 (t)−Xn

2 (t)|
2 ≤ C1 + C2

∫ T

0
E|Xn

1 (s)−Xn
2 (s)|

2,

for all t ∈ [0, T ].

Using theorem (1.8.1) (Gronwall’s inequality) in [9], we have

lim
n−→∞

E|Xn
1 (t)−Xn

2 (t)|
2 = 0.

Hence Xn
1 (t) = Xn

2 (t).
As a result, we get limn−→∞E|Γn

1(t)− Γn
2 (t)|

2 = 0.
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