

On $\delta p(\Lambda, s)$ -symmetric spaces

Jeeranunt Khampakdee, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit
Department of Mathematics
Faculty of Science
Mahasarakham University
Maha Sarakham, 44150, Thailand

email: jeeranunt.k@msu.ac.th, chawalit.b@msu.ac.th

(Submitted January 25, 2023, Accepted May 22, 2023, Published May 31, 2023)

Abstract

In this paper, we deal with the notion of $\delta p(\Lambda, s)$ -symmetric spaces. Moreover, some characterizations $\delta p(\Lambda, s)$ -symmetric spaces are investigated.

1 Introduction

Mashhour et al. [7] introduced and studied the concept of preopen sets which is weaker than the notion of open sets in topological spaces. Veličko [10] introduced δ -open sets, which are stronger than open sets. Raychaudhuri and Mukherjee [8] introduced and investigated the notions of δ -preopen sets and δ -almost continuity in topological spaces. The class of δ -preopen sets is larger than that of preopen sets. Caldas et al. [3] introduced some weak separation axioms by utilizing the notions of δ -preopen sets and the δ -preclosure operator. The concept of semi-open sets was first introduced by Levine [6]. Caldas and Dontchev [5] introduced and investigated the concepts of Λ_s -sets and V_s -sets in topological spaces. Moreover, Caldas et al. [4] studied the notion of δ - Λ_s -semiclosed sets which is defined as the intersection of a δ - Λ_s -set and a

Key words and phrases: $\delta p(\Lambda, s)$ -open set, $\delta p(\Lambda, s)$ -symmetric space.

Corresponding author: Jeeranunt Khampakdee.

AMS (MOS) Subject Classifications: 54A05, 54D10. ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net

 δ -semiclosed set. Boonpok and Viriyapong [2] introduced and investigated the concept of (Λ, s) -closed sets by utilizing the notions of Λ_s -sets and semiclosed sets. In this paper, we introduced the concept of $\delta p(\Lambda, s)$ -symmetric spaces. Furthermore, several characterizations of $\delta p(\Lambda, s)$ -symmetric spaces are discussed.

2 Preliminaries

Throughout the paper, unless explicitly stated, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms. Let A be a subset of a topological space (X,τ) . The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X,τ) is called *semi-open* [6] if $A\subseteq \mathrm{Cl}(\mathrm{Int}(A))$. The complement of a semi-open set is called *semi-closed*. The family of all semiopen sets in a topological space (X,τ) is denoted by $SO(X,\tau)$. A subset A^{Λ_s} [5] (resp. A^{Λ_s}) is defined as follows: $A^{\Lambda_s} = \bigcap \{U \mid U \supseteq A, U \in SO(X, \tau)\}$. A subset A of a topological space (X, τ) is called a Λ_s -set if $A = A^{\Lambda_s}$. A subset A of a topological space (X, τ) is called (Λ, s) -closed [2] if $A = T \cap C$, where T is a Λ_s -set and C is a semi-closed set. The complement of a (Λ, s) -closed set is called (Λ, s) -open. The family of all (Λ, s) -closed (resp. (Λ, s) -open) sets in a topological space (X, τ) is denoted by $\Lambda_s C(X, \tau)$ (resp. $\Lambda_s O(X, \tau)$). Let A be a subsets of a topological space (X, τ) . A point $x \in X$ is called a (Λ, s) -cluster point [2] of A if for every (Λ, s) -open set U of X containing x we have $A \cap U \neq \emptyset$. The set of all (Λ, s) -cluster points of A is called the (Λ, s) closure [2] of A and is denoted by $A^{(\Lambda,s)}$. The union of all (Λ,s) -open sets contained in A is called the (Λ, s) -interior [2] of A and is denoted by $A_{(\Lambda, s)}$. Let A be a subset of a topological space (X, τ) . A point x of X is called a $\delta(\Lambda, s)$ -cluster point [9] of A if $A \cap [V^{(\Lambda, s)}]_{(\Lambda, s)} \neq \emptyset$ for every (Λ, s) -open set V of X containing x. The set of all $\delta(\Lambda, s)$ -cluster points of A is called the $\delta(\Lambda, s)$ -closure [9] of A and is denoted by $A^{\delta(\Lambda, s)}$. If $A = A^{\delta(\Lambda, s)}$, then A is said to be $\delta(\Lambda, s)$ -closed [9]. The complement of a $\delta(\Lambda, s)$ -closed set is said to be $\delta(\Lambda, s)$ -open [9]. The union of all $\delta(\Lambda, s)$ -open sets contained in A is called the $\delta(\Lambda, s)$ -interior [9] of A and is denoted by $A_{\delta(\Lambda, s)}$. A subset A of a topological space (X,τ) is said to be $\delta p(\Lambda,s)$ -open [9] if $A\subseteq [A^{(\Lambda,s)}]_{\delta(\Lambda,s)}$. The complement of a $\delta p(\Lambda, s)$ -open set is said to be $\delta p(\Lambda, s)$ -closed [9]. The family of all $\delta p(\Lambda, s)$ -open (resp. $\delta p(\Lambda, s)$ -closed) sets in a topological space (X,τ) is denoted by $\delta p(\Lambda,s)O(X,\tau)$ (resp. $\delta p(\Lambda,s)C(X,\tau)$). Let A be a subset of a topological space (X,τ) . The intersection of all $\delta p(\Lambda,s)$ -closed sets containing A is called $\delta p(\Lambda, s)$ -closure [9] of A and is denoted by $A^{\delta p(\Lambda, s)}$.

Lemma 2.1. [9] For the $\delta p(\Lambda, s)$ -closure of subsets A, B in a topological space (X, τ) , the following properties hold:

- (1) If $A \subseteq B$, then $A^{\delta p(\Lambda,s)} \subseteq B^{\delta p(\Lambda,s)}$.
- (2) A is $\delta p(\Lambda, s)$ -closed in (X, τ) if and only if $A = A^{\delta p(\Lambda, s)}$.
- (3) $A^{\delta p(\Lambda,s)}$ is $\delta p(\Lambda,s)$ -closed, that is, $A^{\delta p(\Lambda,s)} = [A^{\delta p(\Lambda,s)}]^{\delta p(\Lambda,s)}$.
- (4) $x \in A^{\delta p(\Lambda,s)}$ if and only if $A \cap V \neq \emptyset$ for every $V \in \delta p(\Lambda,s)O(X,\tau)$ containing x.

3 $\delta p(\Lambda, s)$ -symmetric spaces

In this section, we introduce the concept of $\delta p(\Lambda, s)$ -symmetric spaces. Moreover, some characterizations of $\delta p(\Lambda, s)$ -symmetric spaces are discussed.

Definition 3.1. A topological space (X,τ) is said to be $\delta p(\Lambda,s)$ - T_1 if, for any distinct pair of points x and y of X, there exist a $\delta p(\Lambda,s)$ -open set U of X containing x but not y and a $\delta p(\Lambda,s)$ -open set V of X containing y but not x.

Theorem 3.2. A topological space (X, τ) is $\delta p(\Lambda, s)$ - T_1 if and only if the singletons are $\delta p(\Lambda, s)$ -closed sets.

Proof. Suppose that (X, τ) is $\delta p(\Lambda, s)$ - T_1 and x be any point of X. Let $y \in X - \{x\}$. Then, $x \neq y$ and so there exists a $\delta p(\Lambda, s)$ -open set U_y such that $y \in U_y$ but $x \notin U_y$. Thus, $y \in U_y \subseteq X - \{x\}$ and hence $X - \{x\} = \bigcup \{U_y \mid y \in (X - \{x\})\}$ is $\delta p(\Lambda, s)$ -open.

Conversely, suppose that $\{z\}$ is $\delta p(\Lambda, s)$ -closed for each $z \in X$. Let $x, y \in X$ such that $x \neq y$. Now $x \neq y$ implies $y \in X - \{x\}$. Thus, $X - \{x\}$ is a $\delta p(\Lambda, s)$ -open set containing y but not containing x. Similarly, $X - \{y\}$ is a $\delta p(\Lambda, s)$ -open set containing x but not containing y. This shows that (X, τ) is $\delta p(\Lambda, s)$ - T_1 .

Definition 3.3. A topological space (X, τ) is called $\delta p(\Lambda, s)$ -symmetric if, for each x and y in X, $x \in \{y\}^{\delta p(\Lambda, s)}$ implies $y \in \{y\}^{\delta p(\Lambda, s)}$.

Lemma 3.4. Let (X, τ) be a topological space. For each point $x \in X$, $\{x\}$ is $p(\Lambda, s)$ -open or $p(\Lambda, s)$ -closed.

Theorem 3.5. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\delta p(\Lambda, s)$ -symmetric.
- (2) For each $x \in X$, $\{x\}$ is $\delta p(\Lambda, s)$ -closed.
- (3) (X, τ) is $\delta p(\Lambda, s)$ - T_1 .
- Proof. (1) \Rightarrow (2): Suppose that (X,τ) is $\delta p(\Lambda,s)$ -symmetric. Let x be any point of X and y be any distinct point from x. By Lemma 3.4, $\{y\}$ is $p(\Lambda,s)$ -open or $p(\Lambda,s)$ -closed in (X,τ) . (i) In case $\{y\}$ is $p(\Lambda,s)$ -open, put $V_y = \{y\}$, then $V_y \in \delta p(\Lambda,s)O(X,\tau)$. (ii) In case $\{y\}$ is $p(\Lambda,s)$ -closed, $x \notin \{y\} = \{y\}^{p(\Lambda,s)}$ and $x \notin \{y\}^{\delta p(\Lambda,s)}$. By (1), $y \notin \{x\}^{\delta p(\Lambda,s)}$. Now put $V_y = X \{x\}^{\delta p(\Lambda,s)}$. Then, $x \notin V_y$, $y \in V_y$ and $V_y \in \delta p(\Lambda,s)O(X,\tau)$. Thus, $X \{x\} = \bigcup_{y \in X \{x\}} V_y \in \delta p(\Lambda,s)O(X,\tau)$ and hence $\{x\}$ is $\delta p(\Lambda,s)$ -closed.
- $(2) \Rightarrow (3)$: Suppose that $\{z\}$ is $\delta p(\Lambda, s)$ -closed for each $z \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in X \{x\}$. Thus, $X \{x\}$ is a $\delta p(\Lambda, s)$ -open set containing y but not containing x. Similarly, we have $X \{y\}$ is a $\delta p(\Lambda, s)$ -open set containing x but not containing y. This shows that (X, τ) is $\delta p(\Lambda, s)$ - T_1 .
- (3) \Rightarrow (1): Suppose that $y \notin \{x\}^{\delta p(\Lambda,s)}$. Then, since $x \neq y$, by (3) there exists a $\delta p(\Lambda,s)$ -open set U containing x such that $y \notin U$ and hence $x \notin \{y\}^{\delta p(\Lambda,s)}$. This shows that $x \in \{y\}^{\delta p(\Lambda,s)}$ implies $y \in \{x\}^{\delta p(\Lambda,s)}$. Thus, (X,τ) is $\delta p(\Lambda,s)$ -symmetric.

Definition 3.6. [1] A subset A of a topological space (X, τ) is said to be generalized $\delta p(\Lambda, s)$ -closed (briefly, g- $\delta p(\Lambda, s)$ -closed) if $A^{\delta p(\Lambda, s)} \subseteq U$ whenever $A \subseteq U$ and U is $\delta p(\Lambda, s)$ -open in (X, τ) .

Theorem 3.7. A topological space (X, τ) is $\delta p(\Lambda, s)$ -symmetric if and only if $\{x\}$ is g- $\delta p(\Lambda, s)$ -closed for each $x \in X$.

Proof. Assume that $x \in \{y\}^{\delta p(\Lambda,s)}$ but $y \in \{x\}^{\delta p(\Lambda,s)}$. This means that the complement of $\{x\}^{\delta p(\Lambda,s)}$ contains y. Thus, the set $\{y\}$ is a subset of the complement of $\{x\}^{\delta p(\Lambda,s)}$. This implies that $\{y\}^{\delta p(\Lambda,s)}$ is a subset of the complement of $\{x\}^{\delta p(\Lambda,s)}$. Now the complement of $\{x\}^{\delta p(\Lambda,s)}$ contains x which is a contradiction.

Conversely, suppose that $\{x\} \subseteq U \in \delta p(\Lambda, s)O(X, \tau)$, but $\{x\}^{\delta p(\Lambda, s)}$ is not a subset of U. This means that $\{x\}^{\delta p(\Lambda, s)}$ and the complement of U are not disjoint. Let y belongs to their intersection. Now we have $x \in \{y\}^{\delta p(\Lambda, s)}$ which is a subset of the complement of U and $x \notin U$. This is a contradiction. \square

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] C. Boonpok, N. Srisarakham, Properties of generalized $\delta p(\Lambda, s)$ -closed sets, (accepted).
- [2] C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math., **16**, no. 1, (2023), 336–362.
- [3] M. Caldas, T. Fukutake, S. Jafari, T. Noiri, Some applications of δ -preopen sets in topological spaces, Bull. Inst. Math. Acad. Sinica, **33**, no. 3, (2005), 261–276.
- [4] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari, T. Noiri, δ-semiopen sets in topological spaces, Topology Proc., **29**, no. 2, (2005), 369–383.
- [5] M. Caldas, J. Dontchev, G. Λ_s -sets and g. V_s -sets, arXiv:math/9810080v1 [math.GN], 1998.
- [6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, **70**, (1963), 36–41.
- [7] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, **53**, (1982), 47–53.
- [8] S. Raychaudhuri, M. N. Mukherjee, On δ -almost continuity and δ -preopen sets, Bull. Inst. Math. Acad. Sinica, **21**, (1993), 357–366.
- [9] N. Srisarakham, C. Boonpok, On characterizations of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces, Int. J. Math. Comput. Sci., **18**, no. 4, (2023), 743–747.
- [10] N. V. Veličko, H-closed topological spaces, Trans. Amer. Math. Soc., **78**, no. 2,) (1968), 103–118.