The Egyptian fraction of the form $\frac{1}{a}+\frac{1}{b}=\frac{q-1}{p q}$

Supawadee Prugsapitak

Division of Computational Science
Faculty of Science
Prince of Songkla University
Hatyai, Songkhla, Thailand
email: supawadee.p@psu.ac.th

(Received February 28, 2023, Accepted April 1, 2023, Published May 31, 2023)

Abstract

We determine all positive integer solutions of the equation $\frac{1}{a}+\frac{1}{b}=$ $\frac{q-1}{p q}$, where p and q are prime numbers with $p>q$.

1 Introduction

Representing a rational as a sum of positive distinct unit fractions is called an Egyptian fraction. Many mathematicians find the Egyptian fractions very interesting. In 2022, Johnson [1] solved the general equation

$$
\frac{1}{a}+\frac{1}{b}=\frac{q+1}{p q}
$$

where p and q are distinct primes such that $q+1 \mid p-1$ which appeared back in the 2018 William Lowell Putnam Mathematical Competition [2]. We wish to explore an equation similar to the above equation; namely,

$$
\begin{equation*}
\frac{1}{a}+\frac{1}{b}=\frac{q-1}{p q} \tag{1.1}
\end{equation*}
$$

where p and q are prime numbers with $p>q$.
Key words and phrases: Egyptian fractions, Diophantine Equations.
AMS (MOS) Subject Classifications: 11D85, 11D99.
ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net

2 Main results

Let's rewrite equation (1.1) as $(a+b) p q=(q-1) a b$. Since $p>q$ are primes, we must have the case that p divides both a and b or p divides a or b. Suppose first that p divides both a and b. Write $a=p x$ and $b=p y$, for some positive integers x and y. Then $(x+y) q=(q-1) x y$. Since q and $q-1$ are relatively prime, q divides x or q divides y. Without loss of generality, we assume that q divides x. Then we write $x=q x^{\prime}$, for some positive integer x^{\prime}. Thus

$$
y\left(1+x^{\prime}\right)=q x^{\prime}(y-1) .
$$

Since $\operatorname{gcd}\left(x^{\prime}, 1+x^{\prime}\right)=\operatorname{gcd}(y-1, y)=1, y=x^{\prime}$ or $y=q$ or $y=q x^{\prime}$. Suppose $y=x^{\prime}$. Then $1+x^{\prime}=q\left(x^{\prime}-1\right)$ and this implies that $q=1+\frac{2}{x^{\prime}-1}$. Thus $x^{\prime}=2$ or 3 which implies that $q=3$ or $q=2$, respectively. Hence we obtain two solutions; namely, $(a, b, p, q)=(6 p, 2 p, p, 3)$, where $p>3$ is prime and $(a, b, p, q)=(6 p, 3 p, p, 2)$, where $p>2$ is prime.

Next, suppose that $y=q$. We have $x^{\prime}=1$ and we obtain a positive solution ($3 p, 3 p, p, 3$), where $p>3$ is a prime.

Now consider the case $y=q^{\prime} x$. Then $q=1+\frac{2}{x^{\prime}}$. Thus $x^{\prime}=1$ or 2 and this implies that $q=3$ or 2 . Hence we obtain two solutions; namely, $(a, b, p, q)=(3 p, 3 p, p, 3)$, where $p>3$ is prime and $(a, b, p, q)=(4 p, 4 p, p, 2)$, where $p>2$ is prime.

Now suppose p divides a but p does not divide b. Write $a=p x$, for some positive integer x. Then

$$
p x q=b((q-1) x-q) .
$$

Since $\operatorname{gcd}(q-1, q)=1$, we have q divides b or q divides x.
If q divides b, then we write $b=q y$, for some positive integer y. Then

$$
q y+p x=(q-1) x y .
$$

Obviously, x divides $q y$. If q and x are relatively prime, then x divides y and we write $y=x y^{\prime}$, for some positive integer y^{\prime}. Thus

$$
p=y^{\prime}(q x-x-q) .
$$

Since p is relatively prime to y^{\prime}, we have $y^{\prime}=1$. This implies that $x=y$ and $p=q x-x-q$. Thus $q=(p+x) /(x-1)$. Therefore, the positive solution is

$$
(a, b, p, q)=\left(p x, q x, p, \frac{p+x}{x-1}\right)
$$

The Egyptian Fraction $\frac{1}{a}+\frac{1}{b}=\frac{q-1}{p q}$
where $(p+x) /(x-1)$ is a prime.
If q divides x, then we write $x=q x^{\prime}$, for some positive integer x^{\prime}. We have

$$
p x^{\prime} q=b\left((q-1) x^{\prime}-1\right) .
$$

Since p does not divide b, p divides $(q-1) x^{\prime}-1$. Thus

$$
x^{\prime} q=b\left(\frac{(q-1) x^{\prime}-1}{p}\right) .
$$

Since $\operatorname{gcd}\left(x^{\prime},(q-1) x^{\prime}-1\right)$, there are two possible cases as follows:
Case $1 x^{\prime}=b$. We have $a=p q b$, where $b=(p q+1) /(q-1)$. It is easy to see that $q-1$ divides $p+1$ if and only if $q-1$ divides $p q+1$. Thus we obtain a new solution

$$
\left(\frac{p q(1+p q)}{q-1}, \frac{1+p q}{q-1}, p, q\right)
$$

where $q-1$ divides $p+1$.
Case $2 x^{\prime}=1$. Thus $q=b(q-2) / p$ is not an integer because p does not divide b and $p>q$.

In conclusion, we have proved the following theorem:
Theorem 2.1. Let $p>q$ be primes. The positive integer solutions of the Diophantine equation

$$
\frac{1}{a}+\frac{1}{b}=\frac{q-1}{p q}
$$

are:

1. $(a, b, p, q)=(6 p, 2 p, p, 3),(6 p, 3 p, p, 2),(3 p, 3 p, p, 3),(4 p, 4 p, p, 2)$,
2. $(a, b, p, q)=(p x, q x, p, q)$, where $x=(p+q) /(q-1)$ is a positive integer,
3. $(a, b, p, q)=((p q(1+p q)) /(q-1),(1+p q) /(q-1), p, q)$, where $q-1$ divides $p+1$.

References

[1] Jeremiah W. Johnson, A Diophantine Equation with an Elementary Solution Coll. Math. J., 53, (2022), 361-363.
[2] The William Lowell Putnam Mathematical Competition, (2019). Available at: https://www.maa.org/sites/ default/files/pdf/Putnam/Competition Archive/2018PutnamProblems.pdf. Accessed December 28, 2022.

