International Journal of Mathematics and Computer Science, **18**(2023), no. 4, 749–753

On $\delta s(\Lambda, s)$ -open sets in topological spaces

Prapart Pue-on, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

email: prapart.p@msu.ac.th, chawalit.b@msu.ac.th

(Submitted January 20, 2023, Accepted May 21, 2023, Published May 31, 2023)

Abstract

Our main purpose is to introduce the concept of $\delta s(\Lambda, s)$ -open sets. Moreover, we investigate some properties of $\delta s(\Lambda, s)$ -open sets and $\delta s(\Lambda, s)$ -closed sets.

1 Introduction

Semi-open sets, preopen sets, α -open sets, β -open sets and δ -open sets play an important role in the theory of classical point set topology. In 1963, Levine [5] introduced the concept of semi-open sets which is weaker than the concept of open sets in topological spaces. Veličko [8] introduced δ -open sets, which are stronger than open sets. Park et al. [6] have offered a new notion called δ -semiopen sets which are stronger than semi-open sets but weaker than δ -open sets and investigated the relationships between several types of these open sets. Caldas et al. [3] investigated some weak separation axioms by utilizing δ -semiopen sets and the δ -semiclosure operator. Caldas et al. [2] investigated the notion of δ - Λ_s -semiclosed sets which is defined as the intersection of a δ - Λ_s -set and a δ -semiclosed set. In [1], the present authors introduced and investigated the concept of (Λ , s)-closed sets by utilizing the

Key words and phrases: $\delta s(\Lambda, s)$ -open set, $\delta s(\Lambda, s)$ -closed set. Corresponding author: Prapart Pue-on.

AMS (MOS) Subject Classifications: 54A05. ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net notions of Λ_s -sets and semi-closed sets. In this paper, we introduce the concept of $\delta s(\Lambda, s)$ -open sets. In particular, some properties of $\delta s(\Lambda, s)$ -open sets and $\delta s(\Lambda, s)$ -closed sets are discussed.

2 Preliminaries

Throughout the present paper, unless explicitly stated spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed . Let A be a subset of a topological space (X,τ) . The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is called *semi*open [5] if $A \subseteq Cl(Int(A))$. The family of all semi-open sets in a topological space (X, τ) is denoted by $SO(X, \tau)$. A subset A^{Λ_s} [4] is defined as follows: $A^{\Lambda_s} = \cap \{ U \mid U \supseteq A, U \in SO(X, \tau) \}.$ A subset A of a topological space (X,τ) is called a Λ_s -set [4] if $A = A^{\Lambda_s}$. A subset A of a topological space (X,τ) is called (Λ, s) -closed [1] if $A = T \cap C$, where T is a Λ_s -set and C is a semi-closed set. The complement of a (Λ, s) -closed set is called (Λ, s) -open. The family of all (Λ, s) -closed (resp. (Λ, s) -open) sets in a topological space (X,τ) is denoted by $\Lambda_s C(X,\tau)$ (resp. $\Lambda_s O(X,\tau)$). Let A be a subset of a topological space (X, τ) . A point $x \in X$ is called a (Λ, s) -cluster point [1] of A if for every (Λ, s) -open set U of X containing x we have $A \cap U \neq \emptyset$. The set of all (Λ, s) -cluster points of A is called the (Λ, s) -closure [1] of A and is denoted by $A^{(\Lambda,s)}$. The union of all (Λ, s) -open sets contained in A is called the (Λ, s) -interior [1] of A and is denoted by $A_{(\Lambda,s)}$. Let A be a subset of a topological space (X, τ) . A point x of X is called a $\delta(\Lambda, s)$ -cluster point [7] of A if $A \cap [V^{(\Lambda,s)}]_{(\Lambda,s)} \neq \emptyset$ for every (Λ,s) -open set V of X containing x. The set of all $\delta(\Lambda, s)$ -cluster points of A is called the $\delta(\Lambda, s)$ -closure [7] of A and is denoted by $A^{\delta(\Lambda,s)}$. If $A = A^{\delta(\Lambda,s)}$, then A is said to be $\delta(\Lambda,s)$ -closed [7]. The complement of a $\delta(\Lambda, s)$ -closed set is said to be $\delta(\Lambda, s)$ -open [7]. The union of all $\delta(\Lambda, s)$ -open sets contained in A is called the $\delta(\Lambda, s)$ -interior [7] of A and is denoted by $A_{\delta(\Lambda,s)}$.

3 $\delta s(\Lambda, s)$ -open sets

We begin this section by introducing the notion of $\delta s(\Lambda, s)$ -open sets.

Definition 3.1. A subset A of a topological space (X, τ) is said to be $\delta s(\Lambda, s)$ open if $A \subseteq [A_{(\Lambda,s)}]^{\delta(\Lambda,s)}$. The complement of a $\delta s(\Lambda, s)$ -open set is said to be $\delta s(\Lambda, s)$ -closed.

On $\delta s(\Lambda, s)$ -open sets in topological spaces

The family of all $\delta s(\Lambda, s)$ -open (resp. $\delta s(\Lambda, s)$ -closed) sets in a topological space (X, τ) is denoted by $\delta s(\Lambda, s)O(X, \tau)$ (resp. $\delta s(\Lambda, s)C(X, \tau)$). A subset N of a topological space (X, τ) is called a $\delta s(\Lambda, s)$ -neighborhood of a point $x \in X$ if there exists a $\delta s(\Lambda, s)$ -open set V such that $x \in V \subseteq N$.

Definition 3.2. Let A be a subset of a topological space (X, τ) . A point x of X is called a $\delta s(\Lambda, s)$ -cluster point of A if $A \cap U \neq \emptyset$ for every $\delta s(\Lambda, s)$ -open set U of X containing x. The set of all $\delta s(\Lambda, s)$ -cluster points of A is called the $\delta s(\Lambda, s)$ -closure of A and is denoted by $A^{\delta s(\Lambda, s)}$.

Lemma 3.3. The intersection of an arbitrary collection of $\delta s(\Lambda, s)$ -closed sets in X is $\delta s(\Lambda, s)$ -closed.

Corollary 3.4. Let A be a subset of a topological space (X, τ) . Then $A^{\delta s(\Lambda, s)} = \cap \{F \in \delta s(\Lambda, s)C(X, \tau) \mid A \subseteq F\}.$

Lemma 3.5. For the $\delta s(\Lambda, s)$ -closure of subsets A and B in a topological space (X, τ) , the following properties hold:

- (1) A is $\delta s(\Lambda, s)$ -closed in (X, τ) if and only if $A = A^{\delta s(\Lambda, s)}$.
- (2) If $A \subseteq B$, then $A^{\delta s(\Lambda,s)} \subseteq B^{\delta s(\Lambda,s)}$.
- (3) $A^{\delta s(\Lambda,s)}$ is $\delta s(\Lambda,s)$ -closed; that is, $A^{\delta s(\Lambda,s)} = [A^{\delta s(\Lambda,s)}]^{\delta s(\Lambda,s)}$.

Definition 3.6. Let A be a subset of a topological space (X, τ) . A subset $\delta s(\Lambda, s) Ker(A)$ is defined as follows:

$$\delta s(\Lambda, s) Ker(A) = \cap \{ U \mid A \subseteq U, U \in \delta s(\Lambda, s) O(X, \tau) \}.$$

Lemma 3.7. For subsets A and B of a topological space (X, τ) , the following properties hold:

- (1) $A \subseteq \delta s(\Lambda, s) Ker(A)$.
- (2) If $A \subseteq B$, then $\delta s(\Lambda, s)Ker(A) \subseteq \delta s(\Lambda, s)Ker(B)$.
- (3) $\delta s(\Lambda, s) Ker(\delta s(\Lambda, s) Ker(A)) = \delta s(\Lambda, s) Ker(A).$
- (4) If A is $\delta s(\Lambda, s)$ -open, $\delta s(\Lambda, s)Ker(A) = A$.

Definition 3.8. Let (X, τ) be a topological space and $x \in X$. A subset $\langle x \rangle_{\delta s(\Lambda,s)}$ is defined as follows: $\langle x \rangle_{\delta s(\Lambda,s)} = \delta s(\Lambda,s) Ker(\{x\}) \cap \{x\}^{\delta s(\Lambda,s)}$.

Theorem 3.9. For a topological space (X, τ) , the following properties hold:

- (1) $\delta s(\Lambda, s)Ker(A) = \{x \in X \mid A \cap \{x\}^{\delta s(\Lambda, s)} \neq \emptyset\}$ for each subset A of X.
- (2) For each $x \in X$, $\delta s(\Lambda, s)Ker(\langle x \rangle_{\delta s(\Lambda, s)}) = \delta s(\Lambda, s)Ker(\{x\}).$
- (3) For each $x \in X$, $[\langle x \rangle_{\delta s(\Lambda,s)}]^{\delta s(\Lambda,s)} = \{x\}^{\delta s(\Lambda,s)}$.
- (4) If U is $\delta s(\Lambda, s)$ -open in X and $x \in U$, then $\langle x \rangle_{\delta s(\Lambda, s)} \subseteq U$.
- (5) If F is $\delta s(\Lambda, s)$ -closed in X and $x \in F$, then $\langle x \rangle_{\delta s(\Lambda, s)} \subseteq F$.

Proof. (1) Suppose that $A \cap \{x\}^{\delta s(\Lambda,s)} = \emptyset$. Then $x \notin X - \{x\}^{\delta s(\Lambda,s)}$ which is a $\delta s(\Lambda, s)$ -open set containing A. Thus $x \notin \delta s(\Lambda, s)Ker(A)$ and hence

$$\delta s(\Lambda, s) Ker(A) \subseteq \{ x \in X \mid A \cap \{ x \}^{\delta s(\Lambda, s)} \neq \emptyset \}.$$

Next, let $x \in X$ such that $A \cap \{x\}^{\delta s(\Lambda,s)} \neq \emptyset$. Suppose that $x \notin \delta s(\Lambda, s) Ker(A)$. Then there exists a $\delta s(\Lambda, s)$ -open set U containing A and $x \notin U$. Let $y \in A \cap \{x\}^{\delta s(\Lambda,s)}$. Therefore, U is a $\delta s(\Lambda, s)$ -neighbourhood of y which does not contain x. This contradiction leads to $x \in \delta s(\Lambda, s) Ker(A)$.

(2) Let $x \in X$. Then $\{x\} \subseteq \{x\}^{\delta s(\Lambda,s)} \cap \delta s(\Lambda,s) Ker(\{x\}) = \langle x \rangle_{\delta s(\Lambda,s)}$. By Lemma 3.7, $\delta s(\Lambda,s) Ker(\{x\}) \subseteq \delta s(\Lambda,s) Ker(\langle x \rangle_{\delta s(\Lambda,s)})$. Next, we show the opposite implication. Suppose that $y \notin \delta s(\Lambda,s) Ker(\{x\})$. Then there exists a $\delta s(\Lambda,s)$ -open set V such that $x \in V$ and $y \notin V$. Since $\langle x \rangle_{\delta s(\Lambda,s)} \subseteq \delta s(\Lambda,s) Ker(\{x\}) \subseteq \delta s(\Lambda,s) Ker(V) = V$, we have $\delta s(\Lambda,s) Ker(\langle x \rangle_{\delta s(\Lambda,s)}) \subseteq$ V. Since $y \notin V, y \notin \delta s(\Lambda,s) Ker(\langle x \rangle_{\delta s(\Lambda,s)})$ and hence $\delta s(\Lambda,s) Ker(\langle x \rangle_{\delta s(\Lambda,s)}) \subseteq$ $\delta s(\Lambda,s) Ker(\{x\})$. Thus $\delta s(\Lambda,s) Ker(\{x\}) = \delta s(\Lambda,s) Ker(\langle x \rangle_{\delta s(\Lambda,s)})$.

(3) By the definition of $\langle x \rangle_{\delta s(\Lambda,s)}$, we have $\{x\} \subseteq \langle x \rangle_{\delta s(\Lambda,s)}$ and $\{x\}^{\delta s(\Lambda,s)} \subseteq [\langle x \rangle_{\delta s(\Lambda,s)}]^{\delta s(\Lambda,s)}$ by Lemma 3.5. On the other hand, we have $\langle x \rangle_{\delta s(\Lambda,s)} \subseteq \{x\}^{\delta s(\Lambda,s)}$ and $(\langle x \rangle_{\delta s(\Lambda,s)})^{\delta s(\Lambda,s)} \subseteq (\{x\}^{\delta s(\Lambda,s)})^{\delta s(\Lambda,s)} = \{x\}^{\delta s(\Lambda,s)}$. Therefore, $(\langle x \rangle_{\delta s(\Lambda,s)})^{\delta s(\Lambda,s)} \subseteq \{x\}^{\delta s(\Lambda,s)}$.

The proofs of (4) and (5) are straightforward.

Theorem 3.10. For any points x and y in a topological space (X, τ) , the following properties are equivalent:

- (1) $\delta s(\Lambda, s)Ker(\{x\}) \neq \delta s(\Lambda, s)Ker(\{y\}).$
- (2) $\{x\}^{\delta s(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}$.

Proof. (1) \Rightarrow (2): Suppose that $\delta s(\Lambda, s)Ker(\{x\}) \neq \delta s(\Lambda, s)Ker(\{y\})$. There exists a point $z \in X$ such that $z \in \delta s(\Lambda, s)Ker(\{x\})$ and $z \notin \delta s(\Lambda, s)Ker(\{y\})$ or $z \in \delta s(\Lambda, s)Ker(\{y\})$ and $z \notin \delta s(\Lambda, s)Ker(\{x\})$. We prove only the first case with the second case being analogous. From $z \in \delta s(\Lambda, s)Ker(\{x\})$,

it follows that $\{x\} \cap \{z\}^{\delta s(\Lambda,s)} \neq \emptyset$ which implies $x \in \{z\}^{\delta s(\Lambda,s)}$. By $z \notin \delta s(\Lambda,s)Ker(\{y\})$, we have $\{y\} \cap \{z\}^{\delta s(\Lambda,s)} = \emptyset$. Since $x \in \{z\}^{\delta s(\Lambda,s)}$, we have $\{x\}^{\delta p(\Lambda,s)} \subseteq \{z\}^{\delta s(\Lambda,s)}$ and $\{y\} \cap \{x\}^{\delta s(\Lambda,s)} = \emptyset$. Therefore, $\{x\}^{\delta s(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}$. Thus $\delta s(\Lambda,s)Ker(\{x\}) \neq \delta s(\Lambda,s)Ker(\{y\})$ and hence $\{x\}^{\delta s(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}$.

(2) \Rightarrow (1): Suppose that $\{x\}^{\delta s(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}$. There exists a point $z \in X$ such that $z \in \{x\}^{\delta s(\Lambda,s)}$ and $z \notin \{y\}^{\delta s(\Lambda,s)}$ or $z \in \{y\}^{\delta s(\Lambda,s)}$ and $z \notin \{x\}^{\delta s(\Lambda,s)}$. We prove only the first case with the second case being analogous. It follows that there exists a $\delta s(\Lambda, s)$ -open set containing z and therefore x but not y; namely, $y \notin \delta s(\Lambda, s) Ker(\{x\})$ and thus $\delta s(\Lambda, s) Ker(\{x\}) \neq \delta s(\Lambda, s) Ker(\{y\})$.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math., 16, no. 1, (2023), 336–362.
- [2] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari, T. Noiri, δ-semiopen sets in topological spaces, Topology Proc., 29, no. 2, (2005), 369–383.
- [3] M. Caldas, D. N. Georgiou, S. Jafari, T. Noiri, More on δ-semiopen sets, Note di Matematica, 22, no. 2, (2003), 1–14.
- [4] M. Caldas, J. Dontchev, $G.\Lambda_s$ -sets and $g.V_s$ -sets, arXiv:math/9810080v1 [math.GN], (1998).
- [5] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, (1963), 36–41.
- [6] J. H. Park, B. Y. Lee, M. J. Son, On δ-semiopen sets in topological spaces, J. Indian Acad. Math., 19, (1997), 59–67.
- [7] N. Srisarakham, C. Boonpok, On characterizations of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces, Int. J. Math. Comput. Sci., **18**, no. 4, (2023), 743–747.
- [8] N. V. Veličko, *H*-closed topological spaces, Trans. Amer. Math. Soc., 78, no. 2, (1968), 103–118.