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Abstract

In this paper, we establish the clique connected common neighbor-

hood polynomial of the graph resulting from the join of two connected

graphs.

1 Introduction

The study of graph polynomials captured the interests of several mathemati-
cians in recent years because of its widespread applications in Chemistry [8],
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Biology, and Physics [5]. These graph polynomials included the clique poly-
nomials and independent sets polynomials by Hoede and Li [10] in 1994, and
the neighborhood polynomial by Brown and Nowakowski [4] in 2008. The
above polynomials are univariate. In 2022, Artes, Langamin, and Calig-og
[2] introduced a bivariate graph polynomial called the clique common neigh-
borhood polynomial of a graph by considering the common neighborhood
system of a clique in a graph. This bivariate polynomial generalizes the
clique polynomial defined in [10].

Graphs considered in this study are simple, connected, and undirected.
For standard terminologies and notations, we refer the readers to [3, 9, 7].

If v ∈ V (G), the open neighborhood or simply the neighborhood of v in G

is the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The closed neighborhood of v in
G is the set NG[v] = {v} ∪NG(v). For a subset S of V (G), the neighborhood

system of S in G is the set NG(S) =
⋃

s∈S

NG(s)\S. The common neighborhood

system of S in G, denoted by N c
G(S), is the set N c

G(S) =
⋂

s∈S

NG(s).

Given a nontrivial simple connected graph G, the clique common neigh-

borhood polynomial of G is given by

ccn(G; x, y) =

n−i∑

j=0

ω(G)∑

i=1

cij(G)xiyj, (1.1)

where cij(G) is the number of i-cliques in G with common neighborhood
cardinality equal to j and ω(G) is the cardinality of a maximum clique in G,
called the clique number of G. This was first defined in [2].

In our paper [1], we extended the idea of the clique common neigh-
borhood polynomial of a graph into a more restricted case by considering
the maximum connected subset of the common neighborhood system of a
clique in a graph. We introduced a new graph polynomial as follows: The
clique connected common neighborhood polynomial of a graph G, denoted by
Ωcccn(G; x, y), is given by

Ωcccn(G; x, y) =
n−i∑

j=0

ω(G)∑

i=1

ωij(G)xiyj, (1.2)

where ωij(G) is the number of i-cliques in G with a maximum connected sub-
set of the common neighborhood system has cardinality equal to j, and ω(G)
is the cardinality of a maximum clique in G, called the clique number of G. In
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[1], we established the clique connected common neighborhood polynomials
of the complete, complete bipartite, and complete q-partite graphs.

In this paper, we will characterize the cliques in the join G⊕H of two con-
nected graphs G and H , and establish the clique connected common neigh-
borhood polynomial of G⊕H .

2 Results

In this section, we present the main result of the study. First, we characterize
the cliques in the join G⊕H of two connected graphs G and H . The char-
acterization is our basis in order to establish the clique connected common
neighborhood polynomial of G⊕H by considering the maximum connected
subset of the common neighborhood systems of cliques in G⊕H .

The join of two graphs G and H is the graph G ⊕ H with vertex-set
V (G⊕H) = V (G) ∪ V (H) and order |V (G⊕H)| = |V (G)| + |V (H)|. The
edge-set of G⊕H is E(G⊕H) = E(G)∪E(H)∪{u, v : u ∈ V (G), v ∈ V (H)}
and its size is |E(G⊕H)| = |E(G)|+ |E(H) + |V (G)||V (H)|.

The following lemma follows easily from the definition of the join of
graphs.

Lemma 2.1. Let S ⊆ V (G ⊕ H). If S intersects G and H, then S is

connected in G⊕H.

The following lemma characterizes the cliques in the join G ⊕ H of two
connected graphs G and H .

Lemma 2.2. A subset S of V (G⊕H) is a clique in G⊕H if and only if it

satisfies one of the following conditions:

(i) S is a clique in G

(ii) S is a clique in H

(iii) S = SG ∪ SH , where SG is a clique in G and SH is a clique in H

Proof: Let S be a subset of V (G⊕H). Then either S ⊆ V (G), S ⊆ V (H),
or S intersects both V (G) and V (H). Assume that S is a clique in G⊕H .
Case 1: S ⊆ V (G).

By definition of the join of graphs, the induced subgraph of S in G is the
same as the induced subgraph of S in G⊕H . Hence, S is a clique in G and
(i) is satisfied.
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Case 2: S ⊆ V (H).
A similar argument to Case 1 implies (ii).

Case 3: S ∩ V (G) 6= ∅ and S ∩ V (G) 6= ∅.
Necessarily, S ∩ V (G) must induce a complete graph in G and S ∩ V (H)

must induce a complete graph inH . Take SG = S∩V (G) and SH = S∩V (H).
Then, condition (iii) follows.

For the converse, suppose that S ⊂ V (G ⊕H) satisfies (i); that is, S is
a clique in G. This implies that S ⊆ V (G). Note that, in this case, the
induced subgraph of S is G is the same as the induced subgraph of S in
G ⊕ H . Hence, S induces a complete graph in G ⊕ H . Accordingly, S is a
clique in G⊕H . A similar argument when S is a clique in H asserts that S is
a clique in G⊕H . Assume that (iii) is satisfied. By the adjacency property
of the join of graphs, S induces a complete graph in G⊕H . Accordingly, S
is a clique in G⊕H . This completes the proof of the lemma. �

The following establishes our main result on the clique connected com-
mon neighborhood polynomial of the graph resulting from the join of two
connected graphs.

Theorem 2.3. Let G and H be connected graphs. Then

Ωcccn(G⊕H ; x, y) = |V (H)|Ωcccn(G; x, y) + |V (G)|Ωcccn(H ; x, y)

+ccn(G; x, y)ccn(H ; x, y).

Proof: Let S be a clique in V (G ⊕ H). By Lemma 2.2 (i) and by the
connectivity property of H , the entire vertex-set of H adds to the connected
common neighborhood of every clique in G. This gives the first term. The
second term follows a similar argument. Now, suppose that SG = S ∩ V (G)
and SH = S ∩ V (H) are non-empty. From Lemma 2.2 (iii), since V (H)
is in the neighborhood of SG, the neighborhood of SG in G is contained in
the neighborhood of S in G⊕H . Similarly, the neighborhood of SH in H is
contained in the neighborhood of S in G⊕H . Moreover, these neighborhoods
are common to S and are connected by the connectivity property of the join
of G and H . The third term follows. �

3 Conclusion

In this study, we have established the clique connected common neighbor-
hood polynomial of the graph resulting from the join of two graphs in terms
of the clique common neighborhood and the clique connected common neigh-
borhood polynomials of the graphs being considered. We conclude that even
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if the neighborhood of the cliques in G or H is not connected, these neigh-
borhoods are connected common neighborhoods in their join.
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