Geodetic Bounds in Graphs

Aldison M. Asdain ${ }^{1}$, Jeffrey Imer C. Salim ${ }^{2}$, Rosalio G. Artes Jr. ${ }^{2}$
${ }^{1}$ Department of Mathematics and Statistics College of Science and Mathematics Western Mindanao State University
San Jose Road, 7000 Zamboanga City, Philippines
${ }^{2}$ Mathematics and Sciences Department
College of Arts and Sciences
Mindanao State University
Tawi-Tawi College of Technology and Oceanography Sanga-Sanga, 7500 Bongao, Tawi-Tawi, Philippines
email: asdain.aldison@wmsu.edu.ph, jeffreyimersalim@msutawi-tawi.edu.ph, rosalioartes@msutawi-tawi.edu.ph

(Received May 1, 2023, Accepted May 27, 2023, Published May 31, 2023)

Abstract

Let G be a connected graph. A subset S of $V(G)$ is said to be geodetically bounded if there exist $u, v \in V(G)$ such that $S \subseteq I_{G}[u, v]$. The geodetic bounding number of G is the cardinality of the maximum geodetically bounded subset of $V(G)$. In this paper, we establish the properties of the geodetic bounding number of a graph as well as the geodetic bounding number of some special graphs.

1 Introduction

In the year 2000, Chartrand et al. [1] studied geodetic sets in graphs. For two vertices u and v in a graph G, a $u-v$ geodesic in G is the shortest path

Key words and phrases: Geodetic bounds, geodetic bounding number.
AMS (MOS) Subject Classifications: 05C12, 05C35, 68R10.
ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net
joining u and v in G. The geodetic closure of $\{u, v\}$ in G is the set $I_{G}[u, v]=$ $\{u, v\} \cup\{y: y$ lies in a $u-v$ path in $G\}$. The geodetic closure of a subset S of $V(G)$ is the set $I_{G}[S]=\bigcup_{u, v \in S} I_{G}[u, v]$. A subset S of $V(G)$ is said to be a geodetic set if $I_{G}[S]=V(G)$. The minimum cardinality of a geodetic set in G is called the geodetic number of G and is denoted by $g(G)$.

The distance $d_{G}(u, v)$ between two vertices u and v in a connected graph G is the length of the shortest $u-v$ path in G. For a vertex v of G, the eccentricity $e_{G}(v)$ of a vertex v in G is the distance between v and the vertex farthest from v in G. The maximum eccentricity is the diameter of G denoted by $\operatorname{diam}(G)$.

A subset S of $V(G)$ is said to be geodetically bounded if there exists $(u, v) \in V(G) \times V(G)$ such that $S \subseteq I_{G}[u, v]$. In this case, the vertices u and v are geodetic bounds for S. If $V(G)$ is a geodetically bounded set, then we say that G is a geodetically bounded graph. The geodetic bounding number of G is the cardinality of the maximum geodetically bounded subset of $V(G)$. In symbol,

$$
\begin{aligned}
\Gamma_{g b n}(G) & =\max \{|S|: S \text { is geodetically bounded in } G\} \\
& =\max \left\{\left|I_{G}[u, v]\right|: u, v \in V(G)\right\} .
\end{aligned}
$$

Graphs considered in this study are simple, connected, and undirected. For standard terminologies and notations, the readers may refer to $[2,3]$.

2 Properties and Existence

Remark 2.1. A geodetic set may not be geodetically bounded. Moreover, a geodetically bounded set may not be a geodetic set.

On the other hand, for $n \geq 3, g\left(K_{n}\right)=n$. Hence, the geodetic set for K_{n} is $V\left(K_{n}\right)$. Moreover, $V\left(K_{n}\right)$ is not geodetically bounded.

Every singleton set is geodetically bounded. Indeed, if $S=\{u\}$, then $I_{G}[u, u]=\{u\}=S$. In this case, if G is non-trivial and noncomplete, then S is not a geodetic set.

Every pair of vertices $\{u, v\}$ such that $u v \in E(G)$ is a geodetically bounded set. In fact, $I_{G}[u, v]=\{u, v\}$.

Remark 2.2. For every $u, v \in V(G), \operatorname{dist}_{G}(u, v) \leq\left|I_{G}[u, v]\right|-1$ and equality holds if and only if the path joining u and v in G is unique.

The next result establishes the sharp bounds for the geodetic bounding number of graphs.

Theorem 2.3. For a nontrivial connected graph G,

$$
\begin{equation*}
\Gamma_{g b n}(G) \geq \operatorname{diam}(G)+1 \tag{2.1}
\end{equation*}
$$

Proof. The lower bound is attained by paths.
The following can be verified easily.
Example 2.4. For $n \geq 2$,

1. $\Gamma_{g b n}\left(K_{n}\right)=2$.
2. $\Gamma_{g b n}\left(P_{n}\right)=n$.

The following result establishes the properties of geodetically bounded sets and geodetic bounds of graphs.

Lemma 2.5. A geodetically bounded set S of G whose cardinality corresponds to the geodetic bounding number of G contains its geodetic bounds.

The result below gives the exact value for the geodetic bounding number of trees.

Theorem 2.6. Let T_{n} be a tree of order $n \geq 2$. Then $\Gamma_{g b n}\left(T_{n}\right)=1+$ $\operatorname{diam}\left(T_{n}\right)$.

Proof. By Theorem 2.3, $\Gamma_{g b n}\left(T_{n}\right) \geq 1+\operatorname{diam}\left(T_{n}\right)$. Note that, for every pair of vertices $\{u, v\}$, the $u-v$ geodesic in T_{n} is unique. Taking the maximum of any geodetic closure of pairs of vertices gives one less than the diameter of T_{n}. The result now follows.

The following lemma characterizes the geodetically bounded sets in the complete bipartite graph $K_{m, n}$.

Lemma 2.7. Let m and n be natural numbers with $m, n \geq 2$ and $K_{m, n}=$ $\overline{K_{m}} \oplus \overline{K_{n}}$. A nontrivial subset S of $V\left(K_{m, n}\right)$ is geodetically bounded in $K_{m, n}$ if and only if it satisfies one of the following:
(i) $S=S_{1} \cup S_{2}$, where $S_{1} \subseteq V\left(\overline{K_{m}}\right), S_{2} \subseteq V\left(\overline{K_{n}}\right)$ and $\left|S_{1}\right|=\left|S_{2}\right|=1$;
(ii) $S=S_{1} \cup V\left(\overline{K_{n}}\right)$, where $S_{1} \subseteq V\left(\overline{K_{m}}\right)$ and $\left|S_{1}\right|=2$; or
(iii) $S=V\left(\overline{K_{m}}\right) \cup S_{2}$, where $S_{2} \subseteq V\left(\overline{K_{n}}\right)$ and $\left|S_{1}\right|=2$.

Proof. Let S be a geodetically bounded set. Then there exist $u, v \in V\left(K_{m, n}\right)$ such that $S \subseteq I_{K_{m, n}}[u, v]$. Consider the following cases:

Case 1: $u \in V\left(\overline{K_{m}}\right)$ and $v \in V\left(\overline{K_{n}}\right)$. In this case, $I_{K_{m, n}}[u, v]=\{u, v\}$ since $u v \in E\left(K_{m, n}\right)$. Then (i) holds.

Case 2: $u, v \in V\left(\overline{K_{m}}\right)$. Then $I_{K_{m, n}}[u, v]=\{u, v\} \cup V\left(\overline{K_{n}}\right)$ and $(i i)$ is satisfied.

Case 3: $u, v \in V\left(\overline{K_{n}}\right)$. This is similar to Case 2 and (iii) follows.
The converse is clear.
The following establishes the geodetic bounding number of the complete bipartite graph $K_{m, n}$.

Theorem 2.8. For $m, n \geq 2, \Gamma_{g b n}\left(K_{m, n}\right)=2+\max \{m, n\}$.
Proof. Let S be a geodetically bounded set in $K_{m, n}$. Then it satisfies one of the conditions in Lemma 2.7. If S satisfies Lemma $2.7(i)$, then $|S|=2$. If S satisfies Lemma $2.7(i i)$, then $|S|=2+n$. If S satisfies Lemma 2.7 (iii), then $|S|=2+m$. The result follows by taking the maximum of the three cases.

Define the parity indicator function on \mathbb{N} as the function defined by

$$
i_{p}(n)= \begin{cases}1, & \text { if } n \text { is even } \\ 0, & \text { if } n \text { is odd }\end{cases}
$$

Theorem 2.9. For $n \geq 4$,

$$
\Gamma_{g b n}\left(C_{n}\right)=n\left[i_{p}(n)\right]+\frac{n+1}{2}\left[1-i_{p}(n)\right] .
$$

Proof. Let $C_{n}=\left[v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right]$. Suppose n is even. Take $u=v_{1}$ and $v=v_{n / 2}$. Then $I_{C_{n}}[u, v]=V\left(C_{n}\right)$. Hence, $\Gamma_{g b n}\left(C_{n}\right)=n$.

Suppose n is odd. Take $u=v_{1}$ and $v=v_{(n+1) / 2}$. Then $I_{C_{n}}[u, v]=$ $\left[v_{1}, v_{2}, \ldots, v_{(n+1) / 2}\right]$. Moreover, this choice of u and v gives the maximum geodetic closure.

The result follows.
The following result assures the existence of a geodetically bounded graph of all orders.

Theorem 2.10. For every natural number n, there exists a geodetically bounded graph G of order n.

Proof. Take $G=P_{n}$.
The existence of graphs with prescribed order and geodetic bounding number is established in the next result.

Theorem 2.11. Let n and k be natural numbers such that $2 \leq k<n$. Then there exists a graph G of order n with geodetic bounding number equal to k.

Proof. For $k=2$, take $G=K_{n}$. For $3 \leq k \leq n$, take $P_{k}=\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ and then attach $n-k$ vertices to v_{2}. The resulting graph is a tree of diameter $k-1$ and geodetic bounding number equal to k.

Acknowledgment. The authors would like to acknowledge the support of Western Mindanao State University and Mindanao State University-TawiTawi College of Technology and Oceanography for the resources provided which were necessary in conducting and completing this paper and for the publication fee assistance granted to the authors.

References

[1] G. Chartrand, F. Harary, P. Zhang. Geodetic Sets in Graphs. Discussiones Mathematicae Graph Theory, 20, (2000), 129-138.
[2] G. Chartrand, L. Lesniak. Graphs and Digraphs, 3rd edition, Chapman \& Hall, New York, 1996.
[3] F. Harary. Graph Theory. CRC Press, Boca Raton, 2018.
[4] W. Goddard, O.R. Oellermann. Distance in Graphs. In: M. Dehmer,(ed.) Structural Analysis of Complex Networks, Birkhäuser Boston, 2011.

