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Abstract

This work proposes a new version of integer sub-decomposition of a
scalar k in an elliptic curve scalar multiplication kP which is a core op-
eration for elliptic curve cryptography (ECC). A scalar k is represented
as a random matrix size 2×2, its elements are integers k11, k22, k12 and
k21 which are less than k and lying in the range [1, n−1], where n is a
prime order of a generator point P on an elliptic curve E defined over
a prime field Fp. The integers k11, k22, k12 and k21 are sub scalars of
k which also represented by random matrices size 2× 2 with elements
are less than them. With integer matrices size 2×2 sub-decomposition
(IM2×2SD) method, more speeding up for computing the kP is done
in compare to use the previous proposed GLV decomposition and ISD
sub-decomposition methods. The security of IM2×2SD method is de-
termined based on the random representations of a scalar k and its
sub-scalars that give many possible cases for generating these matri-
ces which are used to compute kP . New experimental results of the
IM2×2SD method have been presented.

Elliptic scalar multiplication techniques are used essentially as a key point in
cryptography, especially in ECC [1],[2]. ECC is presented by Victor Miller
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and Neal Koblitz in 1985 [3],[4]. Many researchers have attracted to work
using ECC, since the ECDLP can not be solved with good selected properly of
E by any sub-exponential algorithm [5]. Comparable security levels between
ECC and Rivest, Shamir and Adleman (RSA), makes ECC is used as an
alternative RSA. The scalar multiplication kP is major operation in ECC
as well as multiple point multiplication lP +mQ operation, with k, l and m
are integer numbers. The computations of kP and lP +mQ are done using
several different methods. The GLV method [6] speeds up a kP through
decomposing k and pre-computing the efficiently computable endomorphism
ψ of E defined over Fp. The gaps on GLV generators is proved by Kim
and Lim through proposed necessary condition in 2003 [7]. Recently, in
2010, Zhou et al. [8] presented a three dimensional 3-GLVmethod using two
distinct endomorphisms of E. In 2011, Galbraith et al. [9] used the twists of
E over a field Fp2 for decomposing k in 4-dimensions. Another idea in 2013
is proposed by Ruma Ajeena [10] which is based on the GLV method that is
known by ISD method to sub-decompose a scalar k and to work outside the
range ±√

n in compare to GLV idea that it doesnt work, also see [11],[12].
The hybrid GLV-ISD method [13] of scalar multiplication is proposed in 2014
for increasing the percentage of computing kP . Also see [14], [15].
This work introduces new version for sub-decomposing a scalar k in kP

which uses the random choosing for integer matrices [16], [17] size 2×2. The
summery of this work is: Section 2 includes new definition for representing
an integer by integer matrices size 2 × 2. Section 3 explains the IM2×2SD

method for computing kP . Section 4 presents new computational results for
calculating kP . The efficiency and security analysis is discussed in Section
5. Finally, Section 6 draws the conclusions.

1 Integer Matrices Size 2× 2

This section presents new definition to represent any integer as a square
matrix size 2× 2. This definition is given by

Definition 1.1. (Integer Matrix Size 2 × 2). Let g be any element in Z+.
The integer matrix size 2× 2 is defined by

gM2×2
=

[

a b

c d

]

such that
Tr1(gM2×2

) + Tr2(gM2×2
) = a+ d+ b+ c = g.
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Remark 1.2. 1. With p is a prime number, it is easy to define the prime
matrix size 2× 2 by

pM2×2
=

[

e f

h i

]

such that

Tr1(pM2×2
) + Tr2(pM2×2

) = e+ i+ f + h = p.

2. With g is a negative number, it is easy to define the matrix size 22 by

−gM2×2
= −

[

a b

c d

]

such that

−[Tr1(gM2×2
) + Tr2(gM2×2

)] = −(a+ d+ b+ c) = −g.

2 Integer Matrix Size 2× 2 Sub- Decomposi-

tion Method

This section proposes new version of the integer sub-decomposition (ISD)
method for computing the elliptic scalar multiplication. It uses the integer
matrices size 2× 2 to represent the scalar k and sub scalars k11, k12, k21 and
k22 in ISD method to compute the kP . First step is to represent a scalar k
as an integer matrix size 2× 2 by

kM2×2
=

[

k11 k12
k21 k22

]

such that

Tr1(kM2×2
) + Tr2(kM2×2

) ≡ k11 + k22 + k12 + k21(mod n)

≡ [k11]2×2 + [k22]2×2 · λ1 + [k12]2×2 + [k21]2×2 · λ2(mod n)
≡ k(mod n),

where [k11]2×2, [k22]2×2, [k12]2×2 and [k21]2×2 are integer matrices size 2×2 are
given by

[k11]2×2 =

[

a11 a12
a21 a22

]

, [k22]2×2 =

[

b11 b12
b21 b22

]

, [k12]2×2 =

[

c11 c12
c21 c22

]
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and

[k21]2×2 =

[

d11 d12
d21 d22

]

with λ1, λ2 ∈ [1, n − 1]. The integer matrix size 2 × 2 sub-decomposition
(IM2×2SD) for computing the elliptic scalar multiplication kP can be ex-
pressed by

kP ≡ [k11]2×2P + ([k22]2×2 · λ1)P + [k12]2×2P + ([k21]2×2 · λ2)P

≡
[

a11 a12
a21 a22

]

P +

[

b11 b12
b21 b22

]

· λ1P +

[

c11 c12
c21 c22

]

P +

[

d11 d12
d21 d22

]

· λ2P

3 Computational Results of the IM2×2SDMethod

Let p = 61 be a prime number. Suppose E is defined by y2 ≡ x3 + 4x + 1
over F61. Let P = (44, 12). The scalar multiplication kP with k = 54 which
lies in the range [1, 66] is computed using a new version IM22SD method by

54M2×2
≡

[

5 8
16 25

]

≡ Tr1(54M2×2
) + Tr2(54M2×2

) (mod 67)

≡ 5 + 25 + 8 + 16 (mod 67)

≡ 5M2×2
+ 5M2×2

· 5 + 8M2×2
+ 4M2×2

· 4 (mod 67)

≡
[

1 1
1 2

]

+

[

1 1
1 2

]

· 5 +
[

2 2
2 2

]

+

[

1 1
1 1

]

· 4 (mod 67)

where the elements in matrices 5M2×2
, 8M2×2

, 4M2×2
< 5, 8, 4. The integer

matrix size 2 × 2 sub-decomposition (IM2×2SD) of computing the elliptic
scalar multiplication kP is done by

54M2×2
P ≡

[

1 1
1 2

]

P +

[

1 1
1 2

]

· 5P +

[

2 2
2 2

]

P +

[

1 1
1 1

]

· 4P (mod 61)

≡ (P + 2P + P + P ) + (P + 2P + P + P ) · 5 + (2P + 2P + 2P + 2P )

+ (P + P + P + P ) · 4 (mod 61)

≡ [(44, 12) + (56, 10) + (44, 12) + (44, 12)] + [(44, 12) + (56, 10) + (44, 12)

+ (44, 12)] · 5 + [(56, 10) + (56, 10) + (56, 10) + (56, 10)] + [(44, 12)

+ (44, 12) + (44, 12) + (44, 12)] · 4 (mod 61)

≡ (18, 7) + 5 · (18, 7) + (16, 14) + 4 · (59, 30)
≡ (18, 7) + (55, 26) + (16, 14) + (41, 20)

= (24, 47).
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Other experimental results over a prime field F61 with different values k ∈
[1, 66] are given in Table (1).

Table 1: Experimental results of IM2×2SD method over Fp.

k kM2×2
k11 k22 k12 k21 λ1 λ2

[

a11 a12
a21 a22

]

+

[

b11 b12
b21 b22

]

· λ1 kP
[

c11 c12
c21 c22

]

+

[

d11 d12
d21 d22

]

· λ2

63

[

10 11
12 30

]

10 30 11 12 3 3

[

3 3
2 2

]

+

[

3 3
2 2

]

· 3 (59,31)
[

3 3
3 2

]

+

[

1 1
1 1

]

· 3

43

[

9 10
16 8

]

9 8 10 16 2 4

[

3 2
2 2

]

+

[

1 1
1 1

]

· 2 (43,40)
[

3 3
2 2

]

+

[

1 1
1 1

]

· 4

59

[

10 11
12 26

]

10 26 11 12 2 3

[

3 3
2 2

]

+

[

3 4
3 3

]

· 2 (16,47)
[

3 3
3 2

]

+

[

1 1
1 1

]

· 3

38

[

4 10
16 8

]

4 8 10 16 2 4

[

1 1
1 1

]

+

[

1 1
1 1

]

· 2 (9,41)
[

3 3
2 2

]

+

[

1 1
1 1

]

· 4

29

[

6 6
9 8

]

6 8 6 9 2 3

[

2 1
1 2

]

+

[

1 1
1 1

]

· 2 (9,20)
[

2 1
1 2

]

+

[

1 1
1 1

]

· 3

4 The Efficiency and Security Analysis

The sub-decomposition of the scalars using the integer matrix size 2× 2 ac-
celerates computing the kP . Also, it reduces the computational complexity
of the ISD method in compare to the previous proposed ISD idea in [18].
In the current idea of ISD, it does not need to create the ISD generators,
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so the computational complexity of this creation will be shorthanded. As
well as most of the scalars values k in the range [1, n − 1] have matrices
size 2 × 2 sub-decomposition, namely the scalars that previously did not
have the GLV decomposition and ISD sub-decomposition, also here have the
IM2×2SD representations. Thus, the successful percentage for computing
kP has been increased. On the other hand, the IM2×2SD representations of
the sub scalars k11, k22, k12 and k21 help us to perform the computation of kP
is more faster in compare to previous proposed GLV and ISD methods, since
the simulations computations are done with the same values of representing
k11, k22, k12 and k21 as matrices size 2 × 2 speed up computing of kP . Fur-
thermore, the most important point with the proposed IM2×2SD method
is to increase the security, since the random generation of the matrices size
2×2 that are corresponded to the sub scalars k11, k22, k12 and k21 takes many
probable cases. Each element in any matrix can take all the possible values
that are lying in [1, n−1] and less than kij for i = j = 1, 2 or i 6= j, i, j = 1, 2.
Hence, it is more difficult of attackers to determine the matrix size 2× 2 for
any sub scalars kij.

5 Conclusions

A new version of the ISD method which is called the IM2×2SD method was
proposed in this work which depended on the random integer matrices size
2 × 2 representations of scalar k and sub-scalars k11, k22, k12 and k21. On
the proposed IM2×2SD method, faster computations resulted to determine
kP which is core operation to compute the public key and the ciphertext in
ECCs. The security with using IM2×2SD method was determined as well
based on the difficulty to recover a secret key k from its random integer
matrices size 2× 2 representation. Attackers need to compute many cases of
these representations. So the IM2×2SD method for computing kP was fast
and more secure for ECCs.
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