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Abstract
We determine explicitly algebraic points of degree at most 4 on the
curve C given by the affine equation y? +y = z°. This result extends
our previous result in [8].

1 Introduction

Let C be a smooth algebraic curve defined over Q. Let K be a numbers field.

We denote by C(K) the set of K-rational points of C and U C(K) the set
K:Q|<d

of points of algebraic of degree < d over Q. The degree o% an] algebraic point

R is the degree of its field of definition on Q : deg(R) = [Q(R) : Q).

The curve C is hyperelliptic of genus ¢ = 2 and rank null by [4]. The Mordell-

Weil group J(Q) of rational points of the Jacobain is finite [4].

Previous works in [4] and [8] have dealt with the algebraic points of degree

at most 3 on the Hindry-Silverman curve of affine equation y? + y = 2.

Let Py = (0,0), P, = (0,—1) and oo be the point at infinity.

Using ideas in [8], our goal is to determine the set of algebraic points of

degree at most 4 on the curve C over the rational numbers field Q.
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2 Auxiliary results

For a divisor D on the curve C, we let £ (D) denote the Q-vector space of
rational functions F' on the curve C such that F' =0 or div (F') > —D; [ (D)
denotes the Q-dimension of £ (D). Let z and y be the rational functions
defined on C by: z(X,Y, Z) = Zandy(X,Y,Z) = .

Lemma 2.1. [8] div(x) = Py + P, — 200, div(y) = 5P — 5oo, div(y + 1) =

5P1 — 500.

Consequences of lemma 2.1: 5j(FP,) = 5j(P;) = 0 and j(FR) =

—Jj (P1).

Lemma 2.2. £ (o0) = (1), £ (200) = (1, ) = L (300), L (400) = (1, =, 2?),
‘6(500) = <1; €, 1’2, y> ) ‘C(6OO) = <1; Z, 1'2, Y, ZL'3> ) £(7OO) = <17 €, 1’2, Y, 1’3, zy) :
Proof. This is a consequence of lemma 2.1 and of the fact that according to

the Riemann-Roch theorem, [(moo) = m — 1 as soon as m > 3.

Lemma 2.3 (4). The Mordell-Weil group of the curve C is

J(Q) = Z/5Z = ([P — o0]) = {a [Py — oc]; a €{0,1,2,3,4}}.

3 Main result

Theorem: The algebraic points of degree 4 over Q on the curve C are given
by the union Cy UC; UCy U C3 U Cy with

Coz{<x,—%:l:\/x5+i>\x€@, [Q(:c):@]:2}

(x,—1 —az(x+p)) | a, f € Q" and x root of

“ By(z) = 2" — a?2® — 2a°B2? — (a + o’z — af
(x,—1—az?(x+B)) | o, € Q* and = root of

“- Bsy(z) = o®z* + (202 — 1)23 + o?B%22 + ax + of
(r,—ax? (z + B)) | o, 8 € Q* and x root of

Cs =

Bs(z) = o?z' + (2% — 1)23 + o?%2% — ax — af
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(x,—ax(z+ p)) | o, 8 € Q" and x root of
Cy=
By(z) = 2* — o223 — 2a2B2° + (a + a2z + af
Proof. Let R € C(Q) with [Q(R): Q] = 4. Let Ry, Ry, R3, Ry be the
Galois conjugates of R. We have [Ry + Ry + R3 + Ry — 4o0] € J(Q). From
lemma 2.3,

[Rl + Rg + Rg + R4 — 400] = aj(Po) = —aj(Pl), 0 S a S 4 (*)

We note that R ¢ {co, Py, P1} and our proof is divided into five cases:

Case a = 0. Formula (%) becomes [Ry + Ry + Rs + Ry — 4o0] = 0. Then
there exists a rational function F such that div(F) = Ry + Re+ R3+ Ry — 400,
we have F' € L (400) and lemma 2.1 gives F(z,y) = a1 + asx + azx®. At
points R;, we have a; + asx + asz? = 0. The relation y?> +y = 2° &

N\ 1 , L, [T
<y—|—§) —Z:x‘r’glvesy:—ij: :55+Z.

We thus have a family of quartic points

C0:{<x,—%:t\/x5+i>|x€@, [@(SL’)Z@]:2}

Case a = 1. By (), [R1 + R2 + R3 + Ry — 4o0] = j(Fy) = —j(Py).

Then there exists a rational function F' such that

div(F) = Ry + Ry + R3 + Ry + P — 500, so I’ € L (500) and lemma 2.1 gives

F(z,y) = a1 + asx + asz® + agy, (aqg #0).

At point P;, we have F(P;) =0 so a; — aq = 0 hence

F(x,y) = as(y+1)+asz+azz?. At poénts R;, we have ay(y+1)+asx+azx?
as as o 3

0. Hencey = —1——x——2° = —1——:5(x+%). We have y = —1—ax(z+/5)
Gy ay ay as
with a, 8 € Q*. Therefore, y(y+1) = 2° & (=1 — az(x + 8)) (—ax(x + B)) =
5
x
& 25 — ozt — 20282 — (a+ a?B?)2? —aBzr =0
& x(zt — a?2® — 202827 — (a + a?B%)x — af) = 0.

We must have z # 0 and «, 5 € Q*, and we obtain a family of quartic points

(x,—1 —ax(x + p)) | o, B € Q" and x root of
C =
Bi(z) = 2" — o*2® — 2a°B2® — (a + o’z — off



616 EL Hadji Sow

Case a = 2. By (%), [R1 + Ry + R3 + Ry — 4o0] = 2j(Fy) = —2j(F;). Then
there exists a rational function F' such that

div(F) = Ry + Ry + Rs + Ry + 2P, — 600, so F € L(6c0) and therefore
F(x,y) = a1+ aox + azx® + asy + a5z, (a5 # 0). The function F is of order 2
at point Py s0 a; —ay = 0 et ay = 0, hence F(x,y) = as(y+ 1) + azz? + asa>.
At points R;, we must have as(y + 1) + azz® + asz® = 0, hence y = —1 —
Z—ixQ <x + %) . We see that y is of the form y = —1 —aa? (v + ) with , 8 €
Q*. Therefore, y(y + 1) = 2° & (=1 —az? (z + 8)) (—az? (x + B)) = 2° &
2% (2t + (202 — 1)2? + o?B%? + ax + aff) = 0.

We must have 22 # 0 and «, 8 € Q*, and we obtain a family of quartic points

(x,—1—az?(x+B)) | o, € Q* and = root of
Cy =
By(z) = %z + (202 — 1)23 + o?B%22 + az + of

Case a = 3. By (), [R1 + Ry + R3 + Ry — 4o0] = 3j(Fy) = —2j(Fp). Then
there exists a rational function F' such that div(F) = Ry + Re + Rs + Ry +
2Py—600, so ' € L (6c0) and therefore F(z,y) = a; +asx+azx?®+asy+asz®,
(CL5 §£ O)

The function F' is of order 2 at point Fy so a; = 0 and as = 0, hence
F(x,y) = azx®+aqy+asz®. At points R;, we must have azx?®+aqy+asz® = 0.
Hence y = —Z—ix2 <x + ‘;—:) . We see that y is of the form y = —ax? (z + 3)
with o, 8 € Q*. Also, y(y+1) = 2° & (—az® (z + 8)) (1 — az? (z + 8)) = 2°
& 2?2 (a2t + (2% — 1)2® + o?B%2® — ax — af) = 0. We must have 22 # 0
and «, § € Q*, and we obtain a family of quartic points

(x,—ax® (x + ) | a, 8 € Q* and x Toot of
Cs =
Bs(z) = o?z* + (20 — 1)2° + %2 — az — af

Case a = 4. By (), [R1 + Ro+ Rs + Ry — 4o0] = 4j(Fy) = —j(Fy). Then
there exists a rational function F' such that

div(F) = R+ Ry + R3+ Ry + Py — 500, so F' € L (5oo) and lemma 2.1 gives
F(z,y) = a1 + asr + azx® + aqy, (as # 0). At point Py, we have F(P) = 0
and so a; = 0. Hence F(x,y) = axx + azz? + ayy. At points R;, we have
asx + azr?® + agy = 0. Thus y = By B —%x(:c + %). We see that

ay ay Qy as

y is of the form y = —ax(z + () with «, 8 € Q*. Therefore, y(y +1) = 2° &
(—az(z+ B)) (1 — ax(x + B)) = 2° & 2° — a2t — 202B2° — (o + ?B?)2? —
afzr =0 & z(z' — a?2® — 2a2B2% — (a + a?B?*)xr — aff) = 0.
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So x # 0 and a, 8 € QF, we obtain a family of quartic points

(x, —azx(x + p)) | o, € Q* and x root of
Cy =
By(z) = 2* — o223 — 2a2B2° + (a + a?BH)x + af

Conclusion. The set of quartic points on C is given by Co UCy UCy UC3UCy.
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