Algebraic Points of Degree at most 4 on the Affine Curve $y^{2}+y=x^{5}$

EL Hadji Sow
Department of Mathematics and Applications Laboratory
Faculty of Science and Technology
Assane SECK University
Ziguinchor, Senegal
email: elpythasow@yahoo.fr

(Received March 2, 2023, Accepted April 13, 2023, Published May 31, 2023)

Abstract

We determine explicitly algebraic points of degree at most 4 on the curve \mathcal{C} given by the affine equation $y^{2}+y=x^{5}$. This result extends our previous result in [8].

1 Introduction

Let \mathcal{C} be a smooth algebraic curve defined over \mathbb{Q}. Let K be a numbers field. We denote by $\mathcal{C}(\mathrm{K})$ the set of K-rational points of \mathcal{C} and $\bigcup_{[K: \mathbb{Q}] \leq d} \mathcal{C}(K)$ the set of points of algebraic of degree $\leq d$ over \mathbb{Q}. The degree of an algebraic point R is the degree of its field of definition on $\mathbb{Q}: \operatorname{deg}(R)=[\mathbb{Q}(R): \mathbb{Q}]$.
The curve \mathcal{C} is hyperelliptic of genus $g=2$ and rank null by [4]. The MordellWeil group $J(\mathbb{Q})$ of rational points of the Jacobain is finite [4].
Previous works in [4] and [8] have dealt with the algebraic points of degree at most 3 on the Hindry-Silverman curve of affine equation $y^{2}+y=x^{5}$.
Let $P_{0}=(0,0), P_{1}=(0,-1)$ and ∞ be the point at infinity.
Using ideas in [8], our goal is to determine the set of algebraic points of degree at most 4 on the curve \mathcal{C} over the rational numbers field \mathbb{Q}.

Key words and phrases: Degree of algebraic points, Plane curves, Rational points.
AMS (MOS) Subject Classifications: 14H40, 11D68, 12 F 05.
ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net

2 Auxiliary results

For a divisor D on the curve \mathcal{C}, we let $\mathcal{L}(D)$ denote the $\overline{\mathbb{Q}}$-vector space of rational functions F on the curve \mathcal{C} such that $F=0$ or $\operatorname{div}(F) \geq-D ; l(D)$ denotes the \bar{Q}-dimension of $\mathcal{L}(D)$. Let x and y be the rational functions defined on \mathcal{C} by: $x(X, Y, Z)=\frac{X}{Z} \operatorname{andy}(X, Y, Z)=\frac{Y}{Z}$.

Lemma 2.1. [8] $\operatorname{div}(x)=P_{0}+P_{1}-2 \infty, \operatorname{div}(y)=5 P_{0}-5 \infty, \operatorname{div}(y+1)=$ $5 P_{1}-5 \infty$.
Consequences of lemma 2.1: $5 j\left(P_{0}\right)=5 j\left(P_{1}\right)=0$ and $j\left(P_{0}\right)=$ $-j\left(P_{1}\right)$.

Lemma 2.2. $\mathcal{L}(\infty)=\langle 1\rangle, \mathcal{L}(2 \infty)=\langle 1, x\rangle=\mathcal{L}(3 \infty), \mathcal{L}(4 \infty)=\left\langle 1, x, x^{2}\right\rangle$, $\mathcal{L}(5 \infty)=\left\langle 1, x, x^{2}, y\right\rangle, \mathcal{L}(6 \infty)=\left\langle 1, x, x^{2}, y, x^{3}\right\rangle, \mathcal{L}(7 \infty)=\left\langle 1, x, x^{2}, y, x^{3}, x y\right\rangle$.
Proof. This is a consequence of lemma 2.1 and of the fact that according to the Riemann-Roch theorem, $l(m \infty)=m-1$ as soon as $m \geq 3$.

Lemma 2.3 (4). The Mordell-Weil group of the curve \mathcal{C} is

$$
J(\mathbb{Q}) \cong \mathbb{Z} / 5 \mathbb{Z}=\left\langle\left[P_{0}-\infty\right]\right\rangle=\left\{a\left[P_{0}-\infty\right] ; a \in\{0,1,2,3,4\}\right\}
$$

3 Main result

Theorem: The algebraic points of degree 4 over \mathbb{Q} on the curve \mathcal{C} are given by the union $\mathcal{C}_{0} \cup \mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \mathcal{C}_{3} \cup \mathcal{C}_{4}$ with

$$
\begin{gathered}
\mathcal{C}_{0}=\left\{\left.\left(x,-\frac{1}{2} \pm \sqrt{x^{5}+\frac{1}{4}}\right) \right\rvert\, x \in \mathbb{Q},[\mathbb{Q}(x): \mathbb{Q}]=2\right\} \\
\mathcal{C}_{1}=\left\{\begin{array}{l}
(x,-1-\alpha x(x+\beta)) \mid \alpha, \beta \in \mathbb{Q}^{\star} \text { and } x \text { root of } \\
B_{1}(x)=x^{4}-\alpha^{2} x^{3}-2 \alpha^{2} \beta x^{2}-\left(\alpha+\alpha^{2} \beta^{2}\right) x-\alpha \beta
\end{array}\right\} \\
\mathcal{C}_{2}=\left\{\begin{array}{l}
\left(x,-1-\alpha x^{2}(x+\beta)\right) \mid \alpha, \beta \in \mathbb{Q}^{\star} \text { and } x \text { root of } \\
B_{2}(x)=\alpha^{2} x^{4}+\left(2 \alpha^{2}-1\right) x^{3}+\alpha^{2} \beta^{2} x^{2}+\alpha x+\alpha \beta
\end{array}\right\} \\
\mathcal{C}_{3}=\left\{\begin{array}{l}
\left(x,-\alpha x^{2}(x+\beta)\right) \mid \alpha, \beta \in \mathbb{Q}^{\star} \text { and } x \text { root of } \\
B_{3}(x)=\alpha^{2} x^{4}+\left(2 \alpha^{2}-1\right) x^{3}+\alpha^{2} \beta^{2} x^{2}-\alpha x-\alpha \beta
\end{array}\right\}
\end{gathered}
$$

$$
\mathcal{C}_{4}=\left\{\begin{array}{l}
(x,-\alpha x(x+\beta)) \mid \alpha, \beta \in \mathbb{Q}^{\star} \text { and } x \text { root of } \\
B_{4}(x)=x^{4}-\alpha^{2} x^{3}-2 \alpha^{2} \beta x^{2}+\left(\alpha+\alpha^{2} \beta^{2}\right) x+\alpha \beta
\end{array}\right\}
$$

Proof. Let $R \in \mathcal{C}(\overline{\mathbb{Q}})$ with $[\mathbb{Q}(R): \mathbb{Q}]=4$. Let $R_{1}, R_{2}, R_{3}, R_{4}$ be the Galois conjugates of R. We have $\left[R_{1}+R_{2}+R_{3}+R_{4}-4 \infty\right] \in J(\mathbb{Q})$. From lemma 2.3,

$$
\left[R_{1}+R_{2}+R_{3}+R_{4}-4 \infty\right]=a j\left(P_{0}\right)=-a j\left(P_{1}\right), 0 \leq a \leq 4(*)
$$

We note that $R \notin\left\{\infty, P_{0}, P_{1}\right\}$ and our proof is divided into five cases:
Case $a=0$. Formula ($*$) becomes $\left[R_{1}+R_{2}+R_{3}+R_{4}-4 \infty\right]=0$. Then there exists a rational function F such that $\operatorname{div}(F)=R_{1}+R_{2}+R_{3}+R_{4}-4 \infty$, we have $F \in \mathcal{L}(4 \infty)$ and lemma 2.1 gives $F(x, y)=a_{1}+a_{2} x+a_{3} x^{2}$. At points R_{i}, we have $a_{1}+a_{2} x+a_{3} x^{2}=0$. The relation $y^{2}+y=x^{5} \Leftrightarrow$ $\left(y+\frac{1}{2}\right)^{2}-\frac{1}{4}=x^{5}$ gives $y=-\frac{1}{2} \pm \sqrt{x^{5}+\frac{1}{4}}$.
We thus have a family of quartic points

$$
\mathcal{C}_{0}=\left\{\left.\left(x,-\frac{1}{2} \pm \sqrt{x^{5}+\frac{1}{4}}\right) \right\rvert\, x \in \mathbb{Q},[\mathbb{Q}(x): \mathbb{Q}]=2\right\}
$$

Case $a=1$. By (*), $\left[R_{1}+R_{2}+R_{3}+R_{4}-4 \infty\right]=j\left(P_{0}\right)=-j\left(P_{1}\right)$.
Then there exists a rational function F such that
$\operatorname{div}(F)=R_{1}+R_{2}+R_{3}+R_{4}+P_{1}-5 \infty$, so $F \in \mathcal{L}(5 \infty)$ and lemma 2.1 gives $F(x, y)=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} y,\left(a_{4} \neq 0\right)$.
At point P_{1}, we have $F\left(P_{1}\right)=0$ so $a_{1}-a_{4}=0$ hence
$F(x, y)=a_{4}(y+1)+a_{2} x+a_{3} x^{2}$. At points R_{i}, we have $a_{4}(y+1)+a_{2} x+a_{3} x^{2}=$ 0 . Hence $y=-1-\frac{a_{2}}{a_{4}} x-\frac{a_{3}}{a_{4}} x^{2}=-1-\frac{a_{3}}{a_{4}} x\left(x+\frac{a_{2}}{a_{3}}\right)$. We have $y=-1-\alpha x(x+\beta)$ with $\alpha, \beta \in \mathbb{Q}^{\star}$. Therefore, $y(y+1)=x^{5} \Leftrightarrow(-1-\alpha x(x+\beta))(-\alpha x(x+\beta))=$ x^{5}
$\Leftrightarrow x^{5}-\alpha^{2} x^{4}-2 \alpha^{2} \beta x^{3}-\left(\alpha+\alpha^{2} \beta^{2}\right) x^{2}-\alpha \beta x=0$
$\Leftrightarrow x\left(x^{4}-\alpha^{2} x^{3}-2 \alpha^{2} \beta x^{2}-\left(\alpha+\alpha^{2} \beta^{2}\right) x-\alpha \beta\right)=0$.
We must have $x \neq 0$ and $\alpha, \beta \in \mathbb{Q}^{\star}$, and we obtain a family of quartic points

$$
\mathcal{C}_{1}=\left\{\begin{array}{l}
(x,-1-\alpha x(x+\beta)) \mid \alpha, \beta \in \mathbb{Q}^{\star} \text { and } x \text { root of } \\
B_{1}(x)=x^{4}-\alpha^{2} x^{3}-2 \alpha^{2} \beta x^{2}-\left(\alpha+\alpha^{2} \beta^{2}\right) x-\alpha \beta
\end{array}\right\}
$$

Case $a=2$. By $(*),\left[R_{1}+R_{2}+R_{3}+R_{4}-4 \infty\right]=2 j\left(P_{0}\right)=-2 j\left(P_{1}\right)$. Then there exists a rational function F such that $\operatorname{div}(F)=R_{1}+R_{2}+R_{3}+R_{4}+2 P_{1}-6 \infty$, so $F \in \mathcal{L}(6 \infty)$ and therefore $F(x, y)=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} y+a_{5} x^{3},\left(a_{5} \neq 0\right)$. The function F is of order 2 at point P_{1} so $a_{1}-a_{4}=0$ et $a_{2}=0$, hence $F(x, y)=a_{4}(y+1)+a_{3} x^{2}+a_{5} x^{3}$. At points R_{i}, we must have $a_{4}(y+1)+a_{3} x^{2}+a_{5} x^{3}=0$, hence $y=-1-$ $\frac{a_{5}}{a_{4}} x^{2}\left(x+\frac{a_{3}}{a_{5}}\right)$. We see that y is of the form $y=-1-\alpha x^{2}(x+\beta)$ with $\alpha, \beta \in$ \mathbb{Q}^{*}. Therefore, $y(y+1)=x^{5} \Leftrightarrow\left(-1-\alpha x^{2}(x+\beta)\right)\left(-\alpha x^{2}(x+\beta)\right)=x^{5} \Leftrightarrow$ $x^{2}\left(\alpha^{2} x^{4}+\left(2 \alpha^{2}-1\right) x^{3}+\alpha^{2} \beta^{2} x^{2}+\alpha x+\alpha \beta\right)=0$.
We must have $x^{2} \neq 0$ and $\alpha, \beta \in \mathbb{Q}^{*}$, and we obtain a family of quartic points

$$
\mathcal{C}_{2}=\left\{\begin{array}{l}
\left(x,-1-\alpha x^{2}(x+\beta)\right) \mid \alpha, \beta \in \mathbb{Q}^{\star} \text { and } x \text { root of } \\
B_{2}(x)=\alpha^{2} x^{4}+\left(2 \alpha^{2}-1\right) x^{3}+\alpha^{2} \beta^{2} x^{2}+\alpha x+\alpha \beta
\end{array}\right\}
$$

Case $a=3$. By $(*),\left[R_{1}+R_{2}+R_{3}+R_{4}-4 \infty\right]=3 j\left(P_{0}\right)=-2 j\left(P_{0}\right)$. Then there exists a rational function F such that $\operatorname{div}(F)=R_{1}+R_{2}+R_{3}+R_{4}+$ $2 P_{0}-6 \infty$, so $F \in \mathcal{L}(6 \infty)$ and therefore $F(x, y)=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} y+a_{5} x^{3}$, $\left(a_{5} \neq 0\right)$.
The function F is of order 2 at point P_{0} so $a_{1}=0$ and $a_{2}=0$, hence
$F(x, y)=a_{3} x^{2}+a_{4} y+a_{5} x^{3}$. At points R_{i}, we must have $a_{3} x^{2}+a_{4} y+a_{5} x^{3}=0$. Hence $y=-\frac{a_{5}}{a_{4}} x^{2}\left(x+\frac{a_{3}}{a_{5}}\right)$. We see that y is of the form $y=-\alpha x^{2}(x+\beta)$ with $\alpha, \beta \in \mathbb{Q}^{*}$. Also, $y(y+1)=x^{5} \Leftrightarrow\left(-\alpha x^{2}(x+\beta)\right)\left(1-\alpha x^{2}(x+\beta)\right)=x^{5}$ $\Leftrightarrow x^{2}\left(\alpha^{2} x^{4}+\left(2 \alpha^{2}-1\right) x^{3}+\alpha^{2} \beta^{2} x^{2}-\alpha x-\alpha \beta\right)=0$. We must have $x^{2} \neq 0$ and $\alpha, \beta \in \mathbb{Q}^{*}$, and we obtain a family of quartic points

$$
\mathcal{C}_{3}=\left\{\begin{array}{l}
\left(x,-\alpha x^{2}(x+\beta)\right) \mid \alpha, \beta \in \mathbb{Q}^{\star} \text { and } x \text { root of } \\
B_{3}(x)=\alpha^{2} x^{4}+\left(2 \alpha^{2}-1\right) x^{3}+\alpha^{2} \beta^{2} x^{2}-\alpha x-\alpha \beta
\end{array}\right\}
$$

Case $a=4$. By $(*),\left[R_{1}+R_{2}+R_{3}+R_{4}-4 \infty\right]=4 j\left(P_{0}\right)=-j\left(P_{0}\right)$. Then there exists a rational function F such that $\operatorname{div}(F)=R_{1}+R_{2}+R_{3}+R_{4}+P_{0}-5 \infty$, so $F \in \mathcal{L}(5 \infty)$ and lemma 2.1 gives $F(x, y)=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} y,\left(a_{4} \neq 0\right)$. At point P_{0}, we have $F\left(P_{0}\right)=0$ and so $a_{1}=0$. Hence $F(x, y)=a_{2} x+a_{3} x^{2}+a_{4} y$. At points R_{i}, we have $a_{2} x+a_{3} x^{2}+a_{4} y=0$. Thus $y=-\frac{a_{2}}{a_{4}} x-\frac{a_{3}}{a_{4}} x^{2}=-\frac{a_{3}}{a_{4}} x\left(x+\frac{a_{2}}{a_{3}}\right)$. We see that y is of the form $y=-\alpha x(x+\beta)$ with $\alpha, \beta \in \mathbb{Q}^{\star}$. Therefore, $y(y+1)=x^{5} \Leftrightarrow$ $(-\alpha x(x+\beta))(1-\alpha x(x+\beta))=x^{5} \Leftrightarrow x^{5}-\alpha^{2} x^{4}-2 \alpha^{2} \beta x^{3}-\left(\alpha+\alpha^{2} \beta^{2}\right) x^{2}-$ $\alpha \beta x=0 \Leftrightarrow x\left(x^{4}-\alpha^{2} x^{3}-2 \alpha^{2} \beta x^{2}-\left(\alpha+\alpha^{2} \beta^{2}\right) x-\alpha \beta\right)=0$.

Algebraic Points of Degree at most 4 on the Affine Curve $y^{2}+y=x^{5}$

So $x \neq 0$ and $\alpha, \beta \in \mathbb{Q}^{*}$, we obtain a family of quartic points

$$
\mathcal{C}_{4}=\left\{\begin{array}{l}
(x,-\alpha x(x+\beta)) \mid \alpha, \beta \in \mathbb{Q}^{\star} \text { and } x \text { root of } \\
B_{4}(x)=x^{4}-\alpha^{2} x^{3}-2 \alpha^{2} \beta x^{2}+\left(\alpha+\alpha^{2} \beta^{2}\right) x+\alpha \beta
\end{array}\right\}
$$

Conclusion. The set of quartic points on \mathcal{C} is given by $\mathcal{C}_{0} \cup \mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \mathcal{C}_{3} \cup \mathcal{C}_{4}$.

References

[1] The LMFDB Collaboration, The L-functions and Modular Forms Database. https://www.lmfdb.org/Genus2Curve/Q/
[2] E. L. García, Diophantine Geometry, Course notes from the CIMPA school "Functional Equations: Theory, Practice and Interactions" held in Hanoi, April 12-23, 2021.
[3] P. A. Griffiths, Introduction to algebraic curves, Translations of mathematical monographs, 76, American Mathematical Society, (1989).
[4] M. Hindry, J. H. Silverman, Diophantine Geometry, An Introduction, Graduate Texts in Mathematics, 2000.
[5] O. Sall, M. Fall, C. M. Coly, Points algébriques de degré donné sur la courbe d'équation affine $y^{2}=x^{5}+1$, International Journal Of Development Research, 6, no. 11, (2016), 10295-10300.
[6] E. H. Sow, M. Fall, O. Sall, Points algébriques de degrés au-plus 5 sur la courbe d'équation affine $y^{2}=4 x^{5}+1$, SCIREA J. Math., $\mathbf{6}$, (2021).
[7] E. H. Sow, P. M. Sarr, O. Sall, Algebraic Points of Degree at Most 5 on the Affine Curve $y^{2}=x^{5}-243$, Asian Research J. Math., (2021), 51-58.
[8] E. H. Sow, M. Fall, O. Sall, Parametrization of Algebraic Points of Low Degrees on the Hindry-Silverman Curve, Journal of Contemporary Applied Mathematics, 13, no. 1, (2023), 64-70.

