International Journal of Mathematics and Computer Science, **18**(2023), no. 4, 743–747

M CS

On characterizations of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces

Napassanan Srisarakham, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

email: napassanan.sri@msu.ac.th, chawalit.b@msu.ac.th

(Submitted January 20, 2023, Accepted May 20, 2023, Published May 31, 2023)

Abstract

Our main purpose is to introduce the concept of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces. Moreover, some characterizations of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces are investigated.

1 Introduction

In 1968, Veličko [8] introduced δ -open sets, which are stronger than open sets. In 1982, Mashhour et al. [6] introduced and investigated the notion of preopen sets which is weaker than the notion of open sets in topological spaces. In 1993, Raychaudhuri and Mukherjee [7] introduced and studied the notions of δ -preopen sets and δ -almost continuity in topological spaces. The class of δ -preopen sets is larger than that of preopen sets. In 2005, Caldas et al. [2] introduced some weak separation axioms by utilizing the notions of δ -preopen sets and the δ -preclosure operator. The concept of semi-open sets was first introduced by Levine [5]. Caldas and Dontchev [4] introduced and investigated the notion of Λ_s -sets in topological spaces. Moreover, Caldas et al. [3] studied further the notion of δ - Λ_s -semiclosed sets which is defined as the intersection of a δ - Λ_s -set and a δ -semiclosed set. In [1], the present

Key words and phrases: $\delta p(\Lambda, s)$ -open set, $\delta p(\Lambda, s)$ - \mathscr{D}_1 space. Corresponding author: Napassanan Srisarakham. AMS (MOS) Subject Classifications: 54A05, 54D10. ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net authors introduced and studied the notion of (Λ, s) -closed sets by utilizing the notions of Λ_s -sets and semi-closed sets. In this paper, we introduced the concept of $\delta p(\Lambda, s)$ - \mathscr{D}_1 spaces. Moreover, several characterizations of $\delta p(\Lambda, s)$ - \mathscr{D}_1 spaces are discussed.

2 Preliminaries

Throughout the present paper, unless explicitly stated, spaces (X, τ) and (Y,σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assume . Let A be a subset of a topological space (X,τ) . The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is called *semi*open [5] if $A \subset Cl(Int(A))$. The complement of a semi-open set is called *semi*closed. The family of all semi-open (resp. semi-closed) sets in a topological space (X, τ) is denoted by $SO(X, \tau)$ (resp. $SC(X, \tau)$). A subset A^{Λ_s} (resp. A^{V_s} [2] is defined as follows: $A^{\Lambda_s} = \bigcap \{ U \mid U \supseteq A, U \in SO(X, \tau) \}$ (resp. $A^{V_s} = \bigcup \{F \mid F \subseteq A, F \in SC(X, \tau)\}$). A subset A of a topological space (X,τ) is called a Λ_s -set (resp. V_s -set) [2] if $A = A^{\Lambda_s}$ (resp. $A = A^{V_s}$). A subset A of a topological space (X, τ) is called (Λ, s) -closed [1] if A = $T \cap C$, where T is a Λ_s -set and C is a semi-closed set. The complement of a (Λ, s) -closed set is called (Λ, s) -open. The family of all (Λ, s) -closed (resp. (Λ, s) -open) sets in a topological space (X, τ) is denoted by $\Lambda_s C(X, \tau)$ (resp. $\Lambda_s O(X,\tau)$). Let A be a subset of a topological space (X,τ) . A point $x \in X$ is called a (Λ, s) -cluster point [1] of A if for every (Λ, s) -open set U of X containing x we have $A \cap U \neq \emptyset$. The set of all (Λ, s) -cluster points of A is called the (Λ, s) -closure [1] of A and is denoted by $A^{(\Lambda,s)}$. The union of all (Λ, s) -open sets contained in A is called the (Λ, s) -interior [1] of A and is denoted by $A_{(\Lambda,s)}$.

3 $\delta p(\Lambda, s)$ - \mathscr{D}_1 spaces

We introduce the notion of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces. Moreover, some characterizations of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces are discussed.

Definition 3.1. Let A be a subset of a topological space (X, τ) . A point x of X is called a $\delta(\Lambda, s)$ -cluster point of A if $A \cap [V^{(\Lambda,s)}]_{(\Lambda,s)} \neq \emptyset$ for every (Λ, s) -open set V of X containing x. The set of all $\delta(\Lambda, s)$ -cluster points of A is called the $\delta(\Lambda, s)$ -closure of A and is denoted by $A^{\delta(\Lambda,s)}$. If $A = A^{\delta(\Lambda,s)}$, On characterizations of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces

then A is said to be $\delta(\Lambda, s)$ -closed. The complement of a $\delta(\Lambda, s)$ -closed set is said to be $\delta(\Lambda, s)$ -open.

Let A be a subset of a topological space (X, τ) . The union of all $\delta(\Lambda, s)$ open sets contained in A is called the $\delta(\Lambda, s)$ -interior of A and is denoted by $A_{\delta(\Lambda,s)}$.

Definition 3.2. A subset A of a topological space (X, τ) is said to be $\delta p(\Lambda, s)$ open if $A \subseteq [A^{(\Lambda,s)}]_{\delta(\Lambda,s)}$. The complement of a $\delta p(\Lambda, s)$ -open set is said to
be $\delta p(\Lambda, s)$ -closed.

The family of all $\delta p(\Lambda, s)$ -open (resp. $\delta p(\Lambda, s)$ -closed) sets in a topological space (X, τ) is denoted by $\delta p(\Lambda, s)O(X, \tau)$ (resp. $\delta p(\Lambda, s)C(X, \tau)$). Let A be a subset of a topological space (X, τ) . The intersection of all $\delta p(\Lambda, s)$ -closed sets containing A is called the $\delta p(\Lambda, s)$ -closure of A and is denoted by $A^{\delta p(\Lambda, s)}$.

Lemma 3.3. For the $\delta p(\Lambda, s)$ -closure of subsets A, B in a topological space (X, τ) , the following properties hold:

- (1) If $A \subseteq B$, then $A^{\delta p(\Lambda,s)} \subseteq B^{\delta p(\Lambda,s)}$.
- (2) A is $\delta p(\Lambda, s)$ -closed in (X, τ) if and only if $A = A^{\delta p(\Lambda, s)}$.
- (3) $A^{\delta p(\Lambda,s)}$ is $\delta p(\Lambda,s)$ -closed, that is, $A^{\delta p(\Lambda,s)} = [A^{\delta p(\Lambda,s)}]^{\delta p(\Lambda,s)}$.
- (4) $x \in A^{\delta p(\Lambda,s)}$ if and only if $A \cap V \neq \emptyset$ for every $V \in \delta p(\Lambda,s)O(X,\tau)$ containing x.

Lemma 3.4. For a family $\{A_{\gamma} \mid \gamma \in \nabla\}$ of a topological space (X, τ) , the following properties hold:

- (1) $[\cap \{A_{\gamma} \mid \gamma \in \nabla\}]^{\delta p(\Lambda,s)} \subseteq \cap \{A_{\gamma}^{\delta p(\Lambda,s)} \mid \gamma \in \nabla\}.$
- $(2) \ [\cup\{A_{\gamma} \mid \gamma \in \nabla\}]^{\delta p(\Lambda,s)} \supseteq \cup\{A_{\gamma}^{\delta p(\Lambda,s)} \mid \gamma \in \nabla\}.$

Definition 3.5. A subset N_x of a topological space (X, τ) is said to be a $\delta p(\Lambda, s)$ -neighborhood of a point $x \in X$ if there exists a $\delta p(\Lambda, s)$ -open set U such that $x \in U \subseteq N_x$.

Definition 3.6. Let (X, τ) be a topological space. A point $x \in X$ which has only X as the $\delta p(\Lambda, s)$ -neighborhood is called a $\delta p(\Lambda, s)$ -neat point.

Lemma 3.7. Let (X, τ) be a topological space. For each point $x \in X$, $\{x\}$ is $p(\Lambda, s)$ -open or $p(\Lambda, s)$ -closed.

Lemma 3.8. Let A be a subset of a topological space (X, τ) . If A is $p(\Lambda, s)$ -open in (X, τ) , then A is $\delta p(\Lambda, s)$ -open in (X, τ) .

Definition 3.9. A subset A of a topological space (X, τ) is called a $\delta p(\Lambda, s)\mathcal{D}$ set if there exist $\delta p(\Lambda, s)$ -open sets U and V such that $U \neq X$ and A = U - V.

Definition 3.10. A topological space (X, τ) is said to be $\delta p(\Lambda, s)$ - \mathcal{D}_1 if, for any distinct pair of points x and y of X, there exist a $\delta p(\Lambda, s)\mathcal{D}$ -set U of X containing x but not y and a $\delta p(\Lambda, s)\mathcal{D}$ -set V of X containing y but not x.

Theorem 3.11. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\delta p(\Lambda, s)$ - \mathcal{D}_1 ;
- (2) (X, τ) has no $\delta p(\Lambda, s)$ -neat point.

Proof. (1) \Rightarrow (2): Since (X, τ) is $\delta p(\Lambda, s) \cdot \mathscr{D}_1$, each point x of X is contained in a $\delta p(\Lambda, s) \mathscr{D}$ -set G = U - V and thus in U, where U and V are $\delta p(\Lambda, s)$ open sets. By definition $U \neq X$. This implies that x is not a $\delta p(\Lambda, s)$ -neat point.

(2) \Rightarrow (1): By Lemma 3.7, for each distinct pair of points $x, y \in X$, at least one of them, x (say) has a $\delta p(\Lambda, s)$ -neighborhood U containing x and not y. Thus U which is different from X is a $\delta p(\Lambda, s)$ \mathscr{D} -set. If X has no $\delta p(\Lambda, s)$ neat point, then y is not a $\delta p(\Lambda, s)$ -neat point. This means that there exists a $\delta p(\Lambda, s)$ -neighborhood V of y such that $V \neq X$. Thus $y \in V - U$ but not y and V - U is a $\delta p(\Lambda, s) \mathscr{D}$ -set. This shows that (X, τ) is $\delta p(\Lambda, s) \cdot \mathscr{D}_1$. \Box

Definition 3.12. A function $f : (X, \tau) \to (Y, \sigma)$ is called $\delta p(\Lambda, s)$ -continuous if, for each $x \in X$ and each $\delta p(\Lambda, s)$ -open set V of Y containing f(x), there exists a $\delta p(\Lambda, s)$ -open set U of X containing x such that $f(U) \subseteq V$.

Lemma 3.13. A function $f : (X, \tau) \to (Y, \sigma)$ is $\delta p(\Lambda, s)$ -continuous if and only if $f^{-1}(V)$ is $\delta p(\Lambda, s)$ -open in X for every $\delta p(\Lambda, s)$ -open set V of Y.

Theorem 3.14. If $f : (X, \tau) \to (Y, \sigma)$ is a $\delta p(\Lambda, s)$ -continuous surjective function and B is a $\delta p(\Lambda, s) \mathscr{D}$ -set in Y, then $f^{-1}(B)$ is a $\delta p(\Lambda, s) \mathscr{D}$ -set in X.

Proof. Let B be a $\delta p(\Lambda, s) \mathscr{D}$ -set in Y. Then, there exist $\delta p(\Lambda, s)$ -open sets U and V in Y such that B = U - V and $U \neq Y$. By the $\delta p(\Lambda, s)$ -continuity of f, $f^{-1}(U)$ and $f^{-1}(V)$ are $\delta p(\Lambda, s)$ -open in X. Since $U \neq Y$, we have $f^{-1}(U) \neq X$. Thus $f^{-1}(B) = f^{-1}(U) - f^{-1}(V)$ is a $\delta p(\Lambda, s) \mathscr{D}$ -set. \Box

746

On characterizations of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces

Theorem 3.15. If (Y, σ) is a $\delta p(\Lambda, s)$ - \mathscr{D}_1 space and $f : (X, \tau) \to (Y, \sigma)$ is a $\delta p(\Lambda, s)$ -continuous bijection, then (X, τ) is $\delta p(\Lambda, s)$ - \mathscr{D}_1 .

Proof. Suppose that (Y, σ) is a $\delta p(\Lambda, s) - \mathscr{D}_1$ space. Let x and y be any pair of distinct points in X. Since f is injective and (Y, σ) is $\delta p(\Lambda, s) - \mathscr{D}_1$, there exist $\delta p(\Lambda, s) \mathscr{D}$ -sets U and V of Y containing f(x) and f(y), respectively, such that $f(y) \notin U$ and $f(x) \notin V$. By Theorem 3.14, $f^{-1}(U)$ and $f^{-1}(V)$ are $\delta p(\Lambda, s) \mathscr{D}$ -sets in X containing x and y, respectively, such that $y \notin f^{-1}(U)$ and $x \notin f^{-1}(V)$. This shows that (X, τ) is $\delta p(\Lambda, s) - \mathscr{D}_1$.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math., 16, no. 1, (2023), 336–362.
- [2] M. Caldas, T. Fukutake, S. Jafari, T. Noiri, Some applications of δpreopen sets in topological spaces, Bull. Inst. Math. Acad. Sinica, 33, no. 3, (2005), 261–276.
- [3] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari, T. Noiri, δ-semiopen sets in topological spaces, Topology Proc., 29, no. 2, (2005), 369–383.
- [4] M. Caldas, J. Dontchev, $G.\Lambda_s$ -sets and $g.V_s$ -sets, arXiv:math/9810080v1 [math.GN], (1998).
- [5] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
- [6] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53, (1982), 47–53.
- [7] S. Raychaudhuri, M. N. Mukherjee, On δ -almost continuity and δ -preopen sets, Bull. Inst. Math. Acad. Sinica, **21** (1993), 357–366.
- [8] N. V. Veličko, *H*-closed topological spaces, Trans. Amer. Math. Soc., 78, no. 2, (1968), 103–118.