On the Diophantine equation $6^{x}+p^{y}=z^{2}$, where p is prime

Suton Tadee, Nuanchuen Thaneepoon

Department of Mathematics
Faculty of Science and Technology
Thepsatri Rajabhat University
Lopburi 15000, Thailand
email: suton.t@lawasri.tru.ac.th, nuanchuen.t@lawasri.tru.ac.th
(Received April 20, 2023, Accepted May 25, 2023,
Published May 31, 2023)

Abstract

In this work, we study the Diophantine equation $6^{x}+p^{y}=z^{2}$, where p is prime and x, y, z are non-negative integers. We prove that if $p \leq 7$ and x is even, then the Diophantine equation has only four non-negative integer solutions which are $(p, x, y, z) \in\{(2,0,3,3)\} \cup$ $\{(3,0,1,2),(2,2,6,10),(3,4,6,45)\}$. Moreover, the equation has no non-negative integer solution when it satisfies one of the following cases: Case 1: $p \equiv 1(\bmod 5)$ or Case 2: $p \equiv 4(\bmod 5)$ and y is even or Case 3: $p \equiv 1(\bmod 7)$ and $z \not \equiv 0(\bmod 7)$.

Key words and phrases: Diophantine equation, Mihăilescu's Theorem.
AMS (MOS) Subject Classifications: 11D61.
The corresponding author is Nuanchuen Thaneepoon.
ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net

1 Introduction

In 2012, Chotchaisthit [2] showed that all non-negative integer solutions of the Diophantine equation $4^{x}+p^{y}=z^{2}$, where p is prime, are of the following form $(x, p, y, z) \in\{(2,3,2,5)\} \cup\left\{\left(r, 2^{r+1}+1,1,2^{r}+1\right): r \in \mathbb{N} \cup\{0\}\right\} \cup$ $\left\{\left(r, 2,2 r+3,3 \cdot 2^{r}\right): r \in \mathbb{N} \cup\{0\}\right\}$. In 2015, Qi and $\mathrm{Li}[5]$ studied positive integer solutions of the Diophantine equation $8^{x}+p^{y}=z^{2}$, where p is an odd prime. In 2016, Cheenchan el at. [1] found that the Diophantine equation $p^{x}+5^{y}=z^{2}$, where p is prime and p satisfies one of the following cases:
Case 1: $p \equiv 1(\bmod 4)$
or
Case 2: $p \equiv 3(\bmod 4)$ and $p \equiv 2(\bmod 5)$
or
Case $3: p \equiv 3(\bmod 4)$ and $p \equiv 3(\bmod 5)$,
has no non-negative integer solution.
In 2021, Tangjai and Chubthaisong [7] studied the Diophantine equation $3^{x}+p^{y}=z^{2}$, where p is prime and $p \equiv 2(\bmod 3)$. They found that if $y=0$, then $(p, x, y, z)=(p, 1,0,2)$ is the only non-negative integer solution of the equation for each prime p. If $4 \nmid y$, then $(p, x, y, z)=(2,0,3,3)$ is the unique non-negative integer solution. In 2022, Pakapongpun and Chattae [4] studied non-negative integer solutions of the Diophantine equation $p^{x}+7^{y}=z^{2}$, where p is prime, and proved that if $p \equiv 3(\bmod 6)$, then the Diophantine equation has exactly two non-negative integer solutions $(x, y, z) \in\{(1,0,2),(2,1,4)\}$. Moreover, they found some conditions of non-existence of non-negative integer solutions. In the same year, Tadee [6] studied all non-negative integer solutions of the Diophantine equation $2^{x}+p^{y}=z^{2}$, where $x \neq 1$ and p is prime with $p \equiv 3(\bmod 4)$. Inspired by the work mentioned earlier, we will study the Diophantine equation $6^{x}+p^{y}=z^{2}$, where p is prime and x, y, z are non-negative integers.

2 Main Results

We begin this section by the helpful Theorem.
Theorem 2.1 (Mihăilescu's Theorem). [3] The Diophantine equation $a^{x}-$ $b^{y}=1$ has the unique solution $(a, b, x, y)=(3,2,2,3)$, where a, b, x and y are integers with $\min \{a, b, x, y\}>1$.

Lemma 2.2. Let p be prime. Then the Diophantine equation $1+p^{y}=z^{2}$ has only two non-negative integer solutions $(p, y, z) \in\{(2,3,3),(3,1,2)\}$.

Proof. Let y and z be non-negative integers such that $1+p^{y}=z^{2}$. It is easy to check that $z>1$ and $y \geq 1$. If $y=1$, then $p=(z-1)(z+1)$. Since p is prime, we have $z-1=1$ and $z+1=p$. Then $z=2$ and $p=3$. That is $(p, y, z)=(3,1,2)$. If $y>1$, then $\min \{z, p, 2, y\}>1$. By Theorem 2.1, we have $(p, y, z)=(2,3,3)$.

Theorem 2.3. Let p be prime. If $p \leq 7$ and x is even, then the Diophantine equation $6^{x}+p^{y}=z^{2}$ has only four non-negative integer solutions $(p, x, y, z) \in$ $\{(2,0,3,3),(3,0,1,2),(2,2,6,10),(3,4,6,45)\}$.

Proof. Let x, y and z be non-negative integers such that $6^{x}+p^{y}=z^{2}$. Since x is even, we get $x=2 k$ for some non-negative integer k. If $k=0$, then $(p, x, y, z) \in\{(2,0,3,3),(3,0,1,2)\}$, by Lemma 2.2. Now, we consider $k \geq 1$. Then $\left(z-6^{k}\right)\left(z+6^{k}\right)=p^{y}$. Since p is prime, there exists an integer u with $0 \leq u \leq y$ such that $z-6^{k}=p^{u}$ and $z+6^{k}=p^{y-u}$. Thus $y>2 u$ and so $2^{k+1} \cdot 3^{k}=p^{u}\left(p^{y-2 u}-1\right)$.

Case 1: $p=2$. Then $u=k+1$ and $2^{y-2 u}-3^{k}=1$. If $y-2 u=1$, then $k=0$, a contradiction. Then $y-2 u>1$. If $k>1$, then $\min \{2,3, y-2 u, k\}>$ 1. This is impossible by Theorem 2.1. Thus $k=1$ and so $(p, x, y, z)=$ (2, 2, 6, 10).

Case 2: $p=3$. Then $u=k$ and $3^{y-2 u}-2^{k+1}=1$. If $y-2 u=1$, then $k=0$, a contradiction. Then $y-2 u>1$ and so $\min \{3,2, y-2 u, k+1\}>1$. By Theorem 2.1, we have $y-2 u=2$ and $k+1=3$. Thus $k=u=2$ and $y=6$. It follows that $(p, x, y, z)=(3,4,6,45)$.

Case 3: $p=5$. Then $u=0$ and $2 \cdot 6^{k}=5^{y}-1$. Since $y>0$, we obtain $5^{y}-1 \equiv-1(\bmod 5)$. Then $2 \cdot 6^{k} \equiv-1(\bmod 5)$. This is impossible since $2 \cdot 6^{k} \equiv 2(\bmod 5)$.

Case 4: $p=7$. Then $u=0$ and $2 \cdot 6^{k}=7^{y}-1$. Since $y>0$, we get $7^{y}-1 \equiv-1(\bmod 7)$. Then $2 \cdot 6^{k} \equiv-1(\bmod 7)$. This is impossible since $2 \cdot 6^{k} \equiv 2,5(\bmod 7)$.

Theorem 2.4. Let p be prime. If $p \equiv 1(\bmod 5)$, then the Diophantine equation $6^{x}+p^{y}=z^{2}$ has no non-negative integer solution.

Proof. Assume that there exists non-negative integers x, y and z such that $6^{x}+p^{y}=z^{2}$. Since $p \equiv 1(\bmod 5)$, we have $6^{x}+p^{y} \equiv 2(\bmod 5)$. Then $z^{2} \equiv 2(\bmod 5)$. This is impossible since $z^{2} \equiv 0,1,4(\bmod 5)$.

Theorem 2.5. Let p be prime. If $p \equiv 4(\bmod 5)$ and y is even, then the Diophantine equation $6^{x}+p^{y}=z^{2}$ has no non-negative integer solution.

Proof. Assume that there exists non-negative integers x, y and z such that $6^{x}+p^{y}=z^{2}$. Since $p \equiv 4(\bmod 5)$ and y is even, we have $p^{y} \equiv 1(\bmod 5)$. Then $6^{x}+p^{y} \equiv 2(\bmod 5)$ and so $z^{2} \equiv 2(\bmod 5)$. This is impossible since $z^{2} \equiv 0,1,4(\bmod 5)$.

Theorem 2.6. Let p be prime. If $p \equiv 1(\bmod 7)$ and $z \not \equiv 0(\bmod 7)$, then the Diophantine equation $6^{x}+p^{y}=z^{2}$ has no non-negative integer solution.

Proof. Assume that there exists non-negative integers x, y and z such that $6^{x}+p^{y}=z^{2}$. Since $z \not \equiv 0(\bmod 7)$, we get $z^{2} \not \equiv 0(\bmod 7)$. Since $p \equiv 1$ $(\bmod 7)$, we have $6^{x}+p^{y} \equiv(-1)^{x}+1(\bmod 7)$. Thus $0 \not \equiv(-1)^{x}+1(\bmod 7)$ and so x is even. There exists a non-negative integer h such that $x=2 h$. Then $\left(z-6^{h}\right)\left(z+6^{h}\right)=p^{y}$. Since p is prime, there exists an integer v with $0 \leq v \leq y$ such that $z-6^{h}=p^{v}$ and $z+6^{h}=p^{y-v}$. Thus $y>2 v$ and $2 \cdot 6^{h}=p^{v}\left(p^{y-2 v}-1\right)$. Since p is prime and $p \equiv 1(\bmod 7)$, we get $p \notin\{2,3\}$. Then $v=0$ and so $2 \cdot 6^{h}=p^{y}-1$. Since $p^{y}-1 \equiv 0(\bmod 7)$, we get $2 \cdot 6^{h} \equiv 0$ $(\bmod 7)$. This is impossible since $2 \cdot 6^{h} \equiv 2,5(\bmod 7)$.

Acknowledgement

This work was supported by the Research and Development Institute and the Faculty of Science and Technology, Thepsatri Rajabhat University, Thailand.

References

[1] I. Cheenchan, S. Phona, J. Ponggan, S. Tanakan, S. Boonthiem, On the Diophantine equation $p^{x}+5^{y}=z^{2}$, SNRU Journal of Science and Technology, 8, no. 1, (2016), 146-148.
[2] S. Chotchaisthit, On the Diophantine equation $4^{x}+p^{y}=z^{2}$ where p is a prime number, Amer. J. Math. Sci., 1, no. 1, (2012), 191-193.
[3] P. Mihăilescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572, (2004), 167-195.
[4] A. Pakapongpun, B. Chattae, On the Diophantine equation $p^{x}+7^{y}=z^{2}$, where p is prime and x, y, z are non-negative integers, Int. J. Math. Comput. Sci., 17, no. 4, (2022), 1535-1540.

On the Diophantine equation $6^{x}+p^{y}=z^{2}$, where p is prime
[5] L. Qi, X. Li, The Diophantine equation $8^{x}+p^{y}=z^{2}$, The Scientific World Journal, (2015), Article ID 306590, 3 pages.
[6] S. Tadee, On the Diophantine equation $2^{x}+p^{y}=z^{2}$, where $x \neq 1$ and $p \equiv 3(\bmod 4)$, Mathematical Journal by The Mathematical Association of Thailand Under The Patronage of His Majesty The King, 67, no. 707, (2022), 13-19.
[7] W. Tangjai, C. Chubthaisong, On the Diophantine equation $3^{x}+p^{y}=$ z^{2}, where $p \equiv 2(\bmod 3)$, WSEAS Transactions on Mathematics, 20, (2021), 283-287.

