International Journal of Mathematics and Computer Science, **18**(2023), no. 4, 761–765

Sober $\delta p(\Lambda, s)$ - R_0 spaces

Montri Thongmoon, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

email: montri.t@msu.ac.th, chawalit.b@msu.ac.th

(Submitted January 25, 2023, Accepted May 25, 2023, Published May 31, 2023)

Abstract

This paper is concerned with the concept of sober $\delta p(\Lambda, s)$ - R_0 spaces. Moreover, several characterizations of sober $\delta p(\Lambda, s)$ - R_0 spaces are investigated.

1 Introduction

In 1963, Levine [6] offered a new concept in the field of topology by introducing the notion of semi-open sets in topological spaces. In 1968, Veličko [11] introduced δ -open sets, which are stronger than open sets. In 1982, Mashhour et al. [7] introduced and studied the concept of preopen sets. In 1993, Raychaudhuri and Mukherjee [9] introduced the notions of δ -preopen sets and δ -preclosures. Moreover, Caldas et al. [2] introduced some weak separation axioms by utilizing the notions of δ -preopen sets and the δ -preclosure operator. In 1997, Park et al. [8] introduced δ -semiopen sets which are stronger than semi-open sets but weaker than δ -open sets. In 1998, Caldas and Dontchev [5] introduced and investigated the notions of Λ_s -sets and V_s sets in topological spaces. In 2003, Caldas et al. [4] investigated some weak

Key words and phrases: $\delta p(\Lambda, s)$ -open set, sober $\delta p(\Lambda, s)$ - R_0 space. Corresponding author: Montri Thongmoon. AMS (MOS) Subject Classifications: 54A05, 54D10.

ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net

separation axioms by utilizing δ -semiopen sets and the δ -semiclosure operator. In 2005, Caldas et al. [3] investigated the notion of δ - Λ_s -semiclosed sets which is defined as the intersection of a δ - Λ_s -set and a δ -semiclosed set. In [1], the present authors introduced and investigated the concept of (Λ, s) closed sets by utilizing the notions of Λ_s -sets and semi-closed sets. In this paper, we introduce the concept of sober $\delta p(\Lambda, s)$ - R_0 spaces. Moreover, we characterize sober $\delta p(\Lambda, s)$ - R_0 spaces.

2 Preliminaries

Throughout this paper, unless explicitly stated, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed.

Let A be a subset of a topological space (X, τ) . The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is called *semi-open* [6] if $A \subseteq Cl(Int(A))$. The complement of a semi-open set is called *semi-closed*. The family of all semiopen (resp. semi-closed) sets in a topological space (X, τ) is denoted by $SO(X,\tau)$ (resp. $SC(X,\tau)$). A subset A^{Λ_s} (resp. A^{V_s}) [5] is defined as follows: $A^{\Lambda_s} = \cap \{U \mid U \supseteq A, U \in SO(X, \tau)\}$ (resp. $A^{V_s} = \cup \{F \mid F \subseteq V\}$ $A, F \in SC(X, \tau)$). A subset A of a topological space (X, τ) is called a Λ_s -set (resp. V_s -set) [5] if $A = A^{\Lambda_s}$ (resp. $A = A^{V_s}$). A subset A of a topological space (X, τ) is called (Λ, s) -closed [1] if $A = T \cap C$, where T is a Λ_s -set and C is a semi-closed set. The complement of a (Λ, s) -closed set is called (Λ, s) -open. The family of all (Λ, s) -closed (resp. (Λ, s) -open) sets in a topological space (X,τ) is denoted by $\Lambda_s C(X,\tau)$ (resp. $\Lambda_s O(X,\tau)$). Let A be a subset of a topological space (X, τ) . A point $x \in X$ is called a (Λ, s) cluster point [1] of A if for every (Λ, s) -open set U of X containing x we have $A \cap U \neq \emptyset$. The set of all (Λ, s) -cluster points of A is called the (Λ, s) closure [1] of A and is denoted by $A^{(\Lambda,s)}$. The union of all (Λ, s) -open sets contained in A is called the (Λ, s) -interior [1] of A and is denoted by $A_{(\Lambda,s)}$. Let A be a subset of a topological space (X, τ) . A point x of X is called a $\delta(\Lambda, s)$ -cluster point [10] of A if $A \cap [V^{(\Lambda, s)}]_{(\Lambda, s)} \neq \emptyset$ for every (Λ, s) -open set V of X containing x. The set of all $\delta(\Lambda, s)$ -cluster points of A is called the $\delta(\Lambda, s)$ -closure [10] of A and is denoted by $A^{\delta(\Lambda, s)}$. If $A = A^{\delta(\Lambda, s)}$, then A is said to be $\delta(\Lambda, s)$ -closed [10]. The complement of a $\delta(\Lambda, s)$ -closed set is said to be $\delta(\Lambda, s)$ -open [10]. The union of all $\delta(\Lambda, s)$ -open sets contained in A is called the $\delta(\Lambda, s)$ -interior [10] of A and is denoted by $A_{\delta(\Lambda, s)}$. A subset A of Sober $\delta p(\Lambda, s)$ - R_0 spaces

a topological space (X, τ) is said to be $\delta p(\Lambda, s)$ -open [10] if $A \subseteq [A^{(\Lambda,s)}]_{\delta(\Lambda,s)}$. The complement of a $\delta p(\Lambda, s)$ -open set is said to be $\delta p(\Lambda, s)$ -closed [10]. The family of all $\delta p(\Lambda, s)$ -open (resp. $\delta p(\Lambda, s)$ -closed) sets in a topological space (X, τ) is denoted by $\delta p(\Lambda, s)O(X, \tau)$ (resp. $\delta p(\Lambda, s)C(X, \tau)$). Let A be a subset of a topological space (X, τ) . The intersection of all $\delta p(\Lambda, s)$ -closed sets containing A is called the $\delta p(\Lambda, s)$ -closure [10] of A and is denoted by $A^{\delta p(\Lambda, s)}$.

Lemma 2.1. [10] For the $\delta p(\Lambda, s)$ -closure of subsets A, B in a topological space (X, τ) , the following properties hold:

- (1) If $A \subseteq B$, then $A^{\delta p(\Lambda,s)} \subseteq B^{\delta p(\Lambda,s)}$.
- (2) A is $\delta p(\Lambda, s)$ -closed in (X, τ) if and only if $A = A^{\delta p(\Lambda, s)}$.
- (3) $A^{\delta p(\Lambda,s)}$ is $\delta p(\Lambda,s)$ -closed, that is, $A^{\delta p(\Lambda,s)} = [A^{\delta p(\Lambda,s)}]^{\delta p(\Lambda,s)}$.
- (4) $x \in A^{\delta p(\Lambda,s)}$ if and only if $A \cap V \neq \emptyset$ for every $V \in \delta p(\Lambda,s)O(X,\tau)$ containing x.

3 Sober $\delta p(\Lambda, s)$ - R_0 spaces

In this section, we introduce the concept of sober $\delta p(\Lambda, s)$ - R_0 spaces. Moreover, we characterize sober $\delta p(\Lambda, s)$ - R_0 spaces.

Definition 3.1. Let A be a subset of a topological space (X, τ) . The $\delta p(\Lambda, s)$ -kernel of A, denoted by $\delta p(\Lambda, s) Ker(A)$, is defined to be the set

$$\delta p(\Lambda, s) Ker(A) = \cap \{ U \in \delta p(\Lambda, s) O(X, \tau) \mid A \subseteq U \}.$$

Definition 3.2. [10] A subset N_x of a topological space (X, τ) is called a $\delta p(\Lambda, s)$ -neighborhood of a point $x \in X$ if there exists a $\delta p(\Lambda, s)$ -open set U such that $x \in U \subseteq N_x$.

Lemma 3.3. Let A be a subset of a topological space (X, τ) and $x \in X$. Then $\delta p(\Lambda, s) Ker(A) = \{x \in X \mid \{x\}^{\delta p(\Lambda, s)} \cap A \neq \emptyset\}.$

Proof. Let $x \in \delta p(\Lambda, s) Ker(A)$ and suppose that $\{x\}^{\delta p(\Lambda, s)} \cap A = \emptyset$. Thus $x \notin X - \{x\}^{\delta p(\Lambda, s)}$ which is a $\delta p(\Lambda, s)$ -open set containing A. This is absurd, since $x \in \delta p(\Lambda, s) Ker(A)$. Hence $\{x\}^{\delta p(\Lambda, s)} \cap A \neq \emptyset$. Next, let x be such that $\{x\}^{\delta p(\Lambda, s)} \cap A \neq \emptyset$ and suppose that $x \notin \delta p(\Lambda, s) Ker(A)$. Then there exists a $\delta p(\Lambda, s)$ -open set U containing A and $x \notin U$. Let $y \in \{x\}^{\delta p(\Lambda, s)} \cap A$. Thus U is a $\delta p(\Lambda, s)$ -neighborhood of y which does not contain x. This contradiction leads to $x \in \delta p(\Lambda, s) Ker(A)$ and so the claim follows.

Definition 3.4. A topological space (X, τ) is said to be sober $\delta p(\Lambda, s)$ - R_0 if $\bigcap_{x \in X} \{x\}^{\delta p(\Lambda, s)} = \emptyset$.

Theorem 3.5. A topological space (X, τ) is sober $\delta p(\Lambda, s)$ - R_0 if and only if $\delta p(\Lambda, s)Ker(\{x\}) \neq X$ for each $x \in X$.

Proof. Suppose that the space (X, τ) is sober $\delta p(\Lambda, s) - R_0$. Assume that there is a point y in X such that $\delta p(\Lambda, s) Ker(\{y\}) = X$. Let x be any point of X. Then $x \in V$ for every $\delta p(\Lambda, s)$ -open set V containing y and hence $y \in \{x\}^{\delta p(\Lambda, s)}$ for each $x \in X$. Thus $y \in \bigcap_{x \in X} \{x\}^{\delta p(\Lambda, s)}$. This is a contradiction.

Conversely, assume that $\delta p(\Lambda, s) Ker(\{x\}) \neq X$ for each $x \in X$. If there exists a point y in X such that $y \in \bigcap_{x \in X} \{x\}^{\delta p(\Lambda, s)}$, then every $\delta p(\Lambda, s)$ -open set containing y must contain every point of X. This implies that the space (X, τ) is the unique $\delta p(\Lambda, s)$ -open set containing y. Thus, $\delta p(\Lambda, s) Ker(\{x\}) = X$ which is a contradiction. This shows that (X, τ) is sober $\delta p(\Lambda, s) - R_0$. \Box

Definition 3.6. A function $f : (X, \tau) \to (Y, \sigma)$ is called $\delta p(\Lambda, s)$ -closed if f(F) is $\delta p(\Lambda, s)$ -closed in Y for every $\delta p(\Lambda, s)$ -closed set F of X.

Theorem 3.7. If $f : (X, \tau) \to (Y, \sigma)$ is an injective $\delta p(\Lambda, s)$ -closed function and (X, τ) is sober $\delta p(\Lambda, s)$ - R_0 , then (Y, σ) is sober $\delta p(\Lambda, s)$ - R_0 .

Proof. Since (X, τ) is sober $\delta p(\Lambda, s) - R_0$, $\bigcap_{x \in X} \{x\}^{\delta p(\Lambda, s)} = \emptyset$. Since f is a $\delta p(\Lambda, s)$ -closed injection, we have

$$\emptyset = f(\bigcap_{x \in X} \{x\}^{\delta p(\Lambda, s)}) = \bigcap_{x \in X} f(\{x\}^{\delta p(\Lambda, s)})$$
$$\supseteq \bigcap_{x \in X} \{f(x)\}^{\delta p(\Lambda, s)} \supseteq \bigcap_{y \in Y} \{y\}^{\delta p(\Lambda, s)}$$

Thus, (Y, σ) is sober $\delta p(\Lambda, s)$ - R_0 .

Acknowledgment. This research project was financially supported by Mahasarakham University.

764

References

- C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math., 16, no. 1, (2023), 336–362.
- [2] M. Caldas, T. Fukutake, S. Jafari, T. Noiri, Some applications of δpreopen sets in topological spaces, Bull. Inst. Math. Acad. Sinica, 33, no. 3, (2005), 261–276.
- [3] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari, T. Noiri, δ-semiopen sets in topological spaces, Topology Proc., 29, no. 2, (2005), 369–383.
- [4] M. Caldas, D. N. Georgiou, S. Jafari, T. Noiri, More on δ-semiopen sets, Note di Matematica, 22, no. 2, (2003), 1–14.
- [5] M. Caldas, J. Dontchev, $G.\Lambda_s$ -sets and $g.V_s$ -sets, arXiv:math/9810080v1 [math.GN], (1998).
- [6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, (1963), 36–41.
- [7] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53, (1982), 47–53.
- [8] J. H. Park, B. Y. Lee, M. J. Son, On δ-semiopen sets in topological spaces, J. Indian Acad. Math., 19, (1997), 59–67.
- [9] S. Raychaudhuri, M. N. Mukherjee, On δ-almost continuity and δpreopen sets, Bull. Inst. Math. Acad. Sinica, 21, (1993), 357–366.
- [10] N. Srisarakham, C. Boonpok, On characterizations of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces, Int. J. Math. Comput. Sci., **18**, no. 4, (2023), 743–747.
- [11] N. V. Veličko, *H*-Closed Topological Spaces, Trans. Amer. Math. Soc., 78, no. 2, (1968), 103–118.