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Abstract

This paper is concerned with the concept of sober δp(Λ, s)-R0

spaces. Moreover, several characterizations of sober δp(Λ, s)-R0 spaces
are investigated.

1 Introduction

In 1963, Levine [6] offered a new concept in the field of topology by introduc-
ing the notion of semi-open sets in topological spaces. In 1968, Veličko [11]
introduced δ-open sets, which are stronger than open sets. In 1982, Mash-
hour et al. [7] introduced and studied the concept of preopen sets. In 1993,
Raychaudhuri and Mukherjee [9] introduced the notions of δ-preopen sets
and δ-preclosures. Moreover, Caldas et al. [2] introduced some weak sepa-
ration axioms by utilizing the notions of δ-preopen sets and the δ-preclosure
operator. In 1997, Park et al. [8] introduced δ-semiopen sets which are
stronger than semi-open sets but weaker than δ-open sets. In 1998, Caldas
and Dontchev [5] introduced and investigated the notions of Λs-sets and Vs-
sets in topological spaces. In 2003, Caldas et al. [4] investigated some weak
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separation axioms by utilizing δ-semiopen sets and the δ-semiclosure oper-
ator. In 2005, Caldas et al. [3] investigated the notion of δ-Λs-semiclosed
sets which is defined as the intersection of a δ-Λs-set and a δ-semiclosed set.
In [1], the present authors introduced and investigated the concept of (Λ, s)-
closed sets by utilizing the notions of Λs-sets and semi-closed sets. In this
paper, we introduce the concept of sober δp(Λ, s)-R0 spaces. Moreover, we
characterize sober δp(Λ, s)-R0 spaces.

2 Preliminaries

Throughout this paper, unless explicitly stated, spaces (X, τ) and (Y, σ) (or
simply X and Y ) always mean topological spaces on which no separation
axioms are assumed.
Let A be a subset of a topological space (X, τ). The closure of A and the
interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of
a topological space (X, τ) is called semi-open [6] if A ⊆ Cl(Int(A)). The
complement of a semi-open set is called semi-closed. The family of all semi-
open (resp. semi-closed) sets in a topological space (X, τ) is denoted by
SO(X, τ) (resp. SC(X, τ)). A subset AΛs (resp. AVs) [5] is defined as
follows: AΛs = ∩{U | U ⊇ A, U ∈ SO(X, τ)} (resp. AVs = ∪{F | F ⊆
A, F ∈ SC(X, τ)}). A subset A of a topological space (X, τ) is called a
Λs-set (resp. Vs-set) [5] if A = AΛs (resp. A = AVs). A subset A of a
topological space (X, τ) is called (Λ, s)-closed [1] if A = T ∩C, where T is a
Λs-set and C is a semi-closed set. The complement of a (Λ, s)-closed set is
called (Λ, s)-open. The family of all (Λ, s)-closed (resp. (Λ, s)-open) sets in
a topological space (X, τ) is denoted by ΛsC(X, τ) (resp. ΛsO(X, τ)). Let
A be a subset of a topological space (X, τ). A point x ∈ X is called a (Λ, s)-
cluster point [1] of A if for every (Λ, s)-open set U of X containing x we
have A ∩ U 6= ∅. The set of all (Λ, s)-cluster points of A is called the (Λ, s)-
closure [1] of A and is denoted by A(Λ,s). The union of all (Λ, s)-open sets
contained in A is called the (Λ, s)-interior [1] of A and is denoted by A(Λ,s).
Let A be a subset of a topological space (X, τ). A point x of X is called a
δ(Λ, s)-cluster point [10] of A if A∩ [V (Λ,s)](Λ,s) 6= ∅ for every (Λ, s)-open set
V of X containing x. The set of all δ(Λ, s)-cluster points of A is called the
δ(Λ, s)-closure [10] of A and is denoted by Aδ(Λ,s). If A = Aδ(Λ,s), then A is
said to be δ(Λ, s)-closed [10]. The complement of a δ(Λ, s)-closed set is said
to be δ(Λ, s)-open [10]. The union of all δ(Λ, s)-open sets contained in A is
called the δ(Λ, s)-interior [10] of A and is denoted by Aδ(Λ,s). A subset A of
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a topological space (X, τ) is said to be δp(Λ, s)-open [10] if A ⊆ [A(Λ,s)]δ(Λ,s).
The complement of a δp(Λ, s)-open set is said to be δp(Λ, s)-closed [10]. The
family of all δp(Λ, s)-open (resp. δp(Λ, s)-closed) sets in a topological space
(X, τ) is denoted by δp(Λ, s)O(X, τ) (resp. δp(Λ, s)C(X, τ)). Let A be a
subset of a topological space (X, τ). The intersection of all δp(Λ, s)-closed
sets containing A is called the δp(Λ, s)-closure [10] of A and is denoted by
Aδp(Λ,s).

Lemma 2.1. [10] For the δp(Λ, s)-closure of subsets A, B in a topological
space (X, τ), the following properties hold:

(1) If A ⊆ B, then Aδp(Λ,s) ⊆ Bδp(Λ,s).

(2) A is δp(Λ, s)-closed in (X, τ) if and only if A = Aδp(Λ,s).

(3) Aδp(Λ,s) is δp(Λ, s)-closed, that is, Aδp(Λ,s) = [Aδp(Λ,s)]δp(Λ,s).

(4) x ∈ Aδp(Λ,s) if and only if A ∩ V 6= ∅ for every V ∈ δp(Λ, s)O(X, τ)
containing x.

3 Sober δp(Λ, s)-R0 spaces

In this section, we introduce the concept of sober δp(Λ, s)-R0 spaces. More-
over, we characterize sober δp(Λ, s)-R0 spaces.

Definition 3.1. Let A be a subset of a topological space (X, τ). The δp(Λ, s)-
kernel of A, denoted by δp(Λ, s)Ker(A), is defined to be the set

δp(Λ, s)Ker(A) = ∩{U ∈ δp(Λ, s)O(X, τ) | A ⊆ U}.

Definition 3.2. [10] A subset Nx of a topological space (X, τ) is called a
δp(Λ, s)-neighborhood of a point x ∈ X if there exists a δp(Λ, s)-open set U
such that x ∈ U ⊆ Nx.

Lemma 3.3. Let A be a subset of a topological space (X, τ) and x ∈ X.
Then δp(Λ, s)Ker(A) = {x ∈ X | {x}δp(Λ,s) ∩ A 6= ∅}.

Proof. Let x ∈ δp(Λ, s)Ker(A) and suppose that {x}δp(Λ,s) ∩ A = ∅. Thus
x 6∈ X −{x}δp(Λ,s) which is a δp(Λ, s)-open set containing A. This is absurd,
since x ∈ δp(Λ, s)Ker(A). Hence {x}δp(Λ,s)∩A 6= ∅. Next, let x be such that
{x}δp(Λ,s)∩A 6= ∅ and suppose that x 6∈ δp(Λ, s)Ker(A). Then there exists a
δp(Λ, s)-open set U containing A and x 6∈ U . Let y ∈ {x}δp(Λ,s) ∩A. Thus U
is a δp(Λ, s)-neighborhood of y which does not contain x. This contradiction
leads to x ∈ δp(Λ, s)Ker(A) and so the claim follows.
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Definition 3.4. A topological space (X, τ) is said to be sober δp(Λ, s)-R0 if
∩

x∈X
{x}δp(Λ,s) = ∅.

Theorem 3.5. A topological space (X, τ) is sober δp(Λ, s)-R0 if and only if
δp(Λ, s)Ker({x}) 6= X for each x ∈ X.

Proof. Suppose that the space (X, τ) is sober δp(Λ, s)-R0. Assume that
there is a point y in X such that δp(Λ, s)Ker({y}) = X . Let x be any
point of X . Then x ∈ V for every δp(Λ, s)-open set V containing y and
hence y ∈ {x}δp(Λ,s) for each x ∈ X . Thus y ∈ ∩

x∈X
{x}δp(Λ,s). This is a

contradiction.
Conversely, assume that δp(Λ, s)Ker({x}) 6= X for each x ∈ X . If there

exists a point y in X such that y ∈ ∩
x∈X

{x}δp(Λ,s), then every δp(Λ, s)-open

set containing y must contain every point of X . This implies that the space
(X, τ) is the unique δp(Λ, s)-open set containing y. Thus, δp(Λ, s)Ker({x}) =
X which is a contradiction. This shows that (X, τ) is sober δp(Λ, s)-R0.

Definition 3.6. A function f : (X, τ) → (Y, σ) is called δp(Λ, s)-closed if
f(F ) is δp(Λ, s)-closed in Y for every δp(Λ, s)-closed set F of X.

Theorem 3.7. If f : (X, τ) → (Y, σ) is an injective δp(Λ, s)-closed function
and (X, τ) is sober δp(Λ, s)-R0, then (Y, σ) is sober δp(Λ, s)-R0.

Proof. Since (X, τ) is sober δp(Λ, s)-R0, ∩
x∈X

{x}δp(Λ,s) = ∅. Since f is a

δp(Λ, s)-closed injection, we have

∅ = f( ∩
x∈X

{x}δp(Λ,s)) = ∩
x∈X

f({x}δp(Λ,s))

⊇ ∩
x∈X

{f(x)}δp(Λ,s) ⊇ ∩
y∈Y

{y}δp(Λ,s).

Thus, (Y, σ) is sober δp(Λ, s)-R0.
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