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Abstract

An option is a financial derivative that can help investors hedge risk
or speculate by taking on more risk for more profit. Therefore, option
pricing models have played an important role in supporting investors.
The option price is influenced by the volatility of an underlying asset
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return, which is impacted by both positive and negative information.
The volatility of the option price is considered an important factor for
approximating option, especially in short-term option trading. In this
research, a fuzzy-TGARCH model is constructed to estimate volatility,
which is used to calculate an option price in the stock market with
a short-term maturity date. This proposed approach is described
and analyzed by comparing the numerical results with those of other
methods. The data in the SET50 market are used for observation.
With this data, the proposed method performs well for ITM cases
when time to maturity is 20 and 30 days.

1 Introduction

An option is a financial contract between holder and writer, providing the
right to buy or sell an underlying asset at an exercise price and a specific
date. Apart from being a tool for reducing risk in an investment, this
contract can also be used as an investment instrument for making a profit
in both rising and falling markets. Therefore, this contract is widely used in
speculative trading, where speculators are attempting to make exceptionally
high returns from bets. Different information measuring the nature of stock
prices have been studied in order to find an appropriate duration and price
for purchasing. Volatility, a measure of stock price fluctuation, has also been
estimated by researchers using various methods. The volatility of a stock
price in the stock market may not be a constant. A GARCH model [1]
is widely used to estimate a nonconstant volatility, depending on time, in
various markets [2, 3, 4].

The GARCH model was established by Bollerslev in 1986 [1], and has
been widely used as an instrument for analyzing the daily returns of stock
prices [5, 6]. A financial asset’s price responds to both positive and nega-
tive elements, often with an asymmetric impact [7, 8]. However, the GARCH
model cannot capture the volatility of an asset return in response to asymmetric
information [9, 10]. Therefore, many researchers have emphasized the need
for an improved approximation of asset volatility with an asymmetric impact
using modified GARCH models, such as the EGARCH [11], GJR-GARCH
[12] and TGARCH [13] models, to overcome the restrictions of the standard
GARCH model. Unfortunately, these models do not adequately simulate a
stock fluctuation with volatility clustering [14, 15]. To further study volatil-
ity clustering, a fuzzy inference system with the GARCH model has been
applied for this circumstance.
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The fuzzy-GARCH model was proposed by Hung [16], and combines a
functional fuzzy inference system with the GARCH model. He demonstrated
that this model offers a significant improvement over other GARCH-family
models in forecasting the Taiwan market index and NASDAQ index volatil-
ities. Additionally, Hung [10], [14] developed a new adaptive fuzzy-GARCH
model for predicting stock volatility. The fuzzy system method with the
GARCH model is used to analyze volatility clustering. Based on their simu-
lation results, the estimations of both in-sample and out-of-sample volatility
performance are considerably improved.

In this work, an option pricing in a short-term trading period, according
to option speculator behavior, is investigated and analyzed. The TGARCH
model and fuzzy system are used to analyze stock price volatility by con-
sidering the asymmetric impact of positive and negative information. The
numerical study of the proposed framework is evaluated using real data from
the Stock Exchange of Thailand. This dataset is divided into two parts:
before and after the occurrence of the COVID-19 pandemic.

The rest of this article is divided into four sections. In Section 2, we
provide a literature review of the TGARCH and fuzzy-TGARCH models. In
Section 3, we examine the research methodology. In Section 4, we provide a
discussion of the data and numerical performance. In Section 5, we conclude
our paper.

2 Literature Review

There are various strategies for trading in an option investment, such as
bull, bear and butterfly strategies, in order to reduce risk and maximize
return. Asset return volatility estimation is an important factor in design-
ing investment strategies. Bollerslev established the GARCH model in 1986.
This model is commonly used to estimate nonconstant volatility, depend-
ing on time, in various sectors such as energy price [2, 17], agriculture price
[3, 18] and insurance [19, 20]. In the financial market, many researchers
have investigated the effectiveness of the GARCH model in describing the
volatility of emerging stock markets, [21, 22]. However, the GARCH model
works under an assumption of a symmetric response between volatility and
returns. Thus, some factors determining asset return cannot be sufficiently
described by this model [23, 24] in the event of an asymmetric response.
Therefore, many researchers have attempted to develop modified GARCH
models to overcome these limits and more accurately capture time-varying
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volatility and asymmetric responses. For example, Nelson [11] introduced an
EGARCH model in 1991, and Glosten et. al [12] proposed a GJR-GARCH
model to consider the positive and negative effects of the news on variance.
A shock would occur if the shock sign was separated from the variable of the
reaction. For similar purposes, Zakoian [13] introduced the TGARCH model,
which concentrated on conditional standard deviation (volatility) instead of
conditional variance. He analyzed the performance of his model by estimat-
ing the volatility of a stock index in France (CAC index). Building on this
research, a series of modified GARCH models have been designed to explain
the regularity of fluctuations, and they are effective in describing volatility
in the financial market.

Zakoian [13] described the difference between GARCH and TGARCH
models in a Financial Times series, saying that the negative part of crisis has
more impact on volatility than the positive part. Following Zakoian’s 1994
findings [13], some researchers have investigated and applied the TGARCH
model to approximate the volatility of different underlying assets, including
carbon [25], crude oil, ethanol and corn [26], crude oil, natural gas and coal
[27] and sugar [28]. For financial market research, the TGARCH model is
applied to approximate volatility in several dimensions, such as trading vol-
ume index, Forex market, arbitrage trading and option pricing. For example,
Sabiruzzman [29] used both GARCH and TGARCH models, to evaluate the
pattern of volatility in the Hong Kong stock exchange’s daily trading volume
index. The TGARCH specification was found to be superior to the GARCH
specification. The TGARCH model is also used by Olweny and Omondi
[30] to investigate the impact of macroeconomic factors on the volatility of
Kenyan stock market returns, including the effects of foreign exchange rates,
interest rates, and inflation variability. In addition, the TGARCH model has
been applied to establish empirical evidence of calendar effects on individual
finance stocks in Malaysia [31]. Alternatively, an investigation of the op-
tion price by an analytical approximation has been studied using traditional
and modified GARCH models [32, 34, 35]. These analytical approximations
are constructed by combining the first four moments of cumulative asset
return. Compared to the Black-Scholes formula [36], the formula obtained
from a GARCH model is adjusted by adding the skewness and kurtosis of
the cumulative asset return. This technique reduces the assumptions of the
Black-Scholes formula related to a lognormal distribution of stock price and
a constant volatility [32, 33].

Various methods have been developed to determine stock price and its
effect on the market. A fuzzy inference system with the GARCH model
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is an approach that effectively explains stock fluctuations [14, 15]. There-
fore, many researchers have devoted their studies to applying a fuzzy logic
approach to modeling a stock price index in an attempt to solve financial
problems [37], [38]. The fuzzy logic model is also used to forecast stock mar-
ket volatility. Hung [9] adopted fuzzy logic systems to modify the threshold
values for an asymmetric GARCH model. Based on the simulations, he found
that the predicted performance significantly improved when the leverage ef-
fect of clustering was combined with the fuzzy systems and the GARCH
technique. Furthermore, Hung recently proposed the hybrid fuzzy-GARCH
model [16]. This model was founded based on asymmetric information and
volatility clustering. Maciel [15] also suggested a fuzzy GJR-GARCH model
in 2012 to estimate the volatility of the S&P 500 and Ibovespa indices. To
evaluate option pricing, Thavaneswaran et al. [39] presented a fuzzy call op-
tion model by clustering levels of various factors, such as an underlying price
and its volatility, via a fuzzy weighted possibilistic model. In their work, the
volatility was set as a constant. This model is sufficiently flexible and can
be easily adjusted to find an optimal solution. Wang and Lee [40] computed
the call option price via the Black-Scholes model when the underlying stock
price, volatility and risk-free interest rate are modeled as fuzzy numbers. As
the aforementioned research illustrates, a family of fuzzy-GARCH model is
a new and effective method to describe and map stock fluctuations.

3 Research Methodology

In this research, the option pricing model, based on clustering levels of non-
constant volatility, is constructed and computed via a Monte Carlo simulation.
The asset return volatility is estimated by a fuzzy-TGARCH approach. The
content of this section is organized into two parts; an asset return volatility
via a fuzzy-TGARCH model, and option pricing via a Monte Carlo simula-
tion.

3.1 Asset Return Volatility via Fuzzy-TGARCHModel

In order to compute asset return volatility with a fuzzy-TGARCH model,
we will divide the estimation into two steps. In the first step, we construct
the fuzzy-TGARCH model. In the second step, we approximate the optimal
parameters of fuzzy-TGARCH model.
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3.1.1 Fuzzy-TGARCH Model

The fuzzy-TGARCH model is a combination of the TGARCH approach and
a fuzzy inference system. The fuzzy-TGARCH model is constructed by IF-
THEN rules, which are used to formulate the conditional statements. The
process for constructing the fuzzy-TGARCH model is shown in the following
figure.

Figure 1: Fuzzy Inference Systems.

The process of fuzzy inference systems is divided into three steps. First,
a membership function is employed to convert a crisp set of input data into
a fuzzy set. This is referred as a fuzzification step. Then, an inference step
is formed based on a set of rules for mapping a given input to an output.
Lastly, in the defuzzification step, the fuzzy output from inference step is
converted to a crisp output by using a defuzzification method.

In this research, fuzzy logic is described as follows. For the first step, a
set of data x̄t = [x1,t, x2,t, . . . , xn,t] is transformed to a crisp set by using
the Gaussian membership formula defined as:

Fi(xi,t) = exp
(

−
1

2

(xi,t − ci
si

)2)

,

where ci and si are the center and the spread of the membership function
corresponding to the ith premise variable, respectively. The value Fi(xi,t) is
the grade of the membership of xi,t in Fi.

For the inference step, the inputs are applied to a set of IF-THEN control
rules, in which the TGARCH model is applied for setting these rules. Instead
of conditional variance, the TGARCH model specifies conditional standard
deviation. The TGARCH model with the parameters p and q, denoted by
TGARCH (p, q), is given by

yt =
√

htǫt,

√

ht = α0 +

q
∑

i=1

(α+
i y

+
t−i − α−

i y
−
t−i) +

p
∑

j=1

βj

√

ht−j , t ≥ 1, (3.1)
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where {ǫt} is a sequence of independent standard normal random variables,
y+t = max(yt, 0) and y−t = min(yt, 0) are the positive and negative parts of
yt, ht is the volatility, which is E[y2t |φt−1]. α0 is a positive real number; α+

i ,
α−
i and βj are non-negative real numbers for i = 1, . . . , q and j = 1, . . . , p.

The notation φt represents a set of information up to time t. The model in
(3.1) can be rewritten in the form

√

ht = α0 +

q
∑

i=1

αi

[

|yt−i| − γiyt−i

]

+

p
∑

j=1

βj

√

ht−j , for t ≥ 1,

where αi and γi are non-negative real numbers for all i = 1, . . . , q. For de-
scribing stock market fluctuation, the proposed fuzzy-TGARCH model is
represented by a collection of fuzzy rules in the form of IF-THEN statements.
Therefore, for a fixed number L of IF-THEN rules, the kth rule of the fuzzy-
TGARCH(p, q), k = 1, 2, . . . , L, is written as:

Rule(k) : IF x1,t is Fk1 AND · · · AND xn,t is Fkn, THEN

yt =
√

htǫt and
√

ht = αk +

q
∑

i=1

αki

[

|yt−i| − γkiyt−i

]

+

p
∑

j=1

βkj
√

ht−j , (3.2)

where yt is the output of the system, and the output of kth rule is the output
from the fuzzy-TGARCH model in equation (3.2).

For the defuzzification step, all outputs will be combined to obtain a
final output. From the rules in the inference step, the output of kth rule in
equation (3.2) is defuzzied by using a centroid method. By this method, the
output of the fuzzy-TGARCH model can be computed as follows:

√

ht =
L
∑

k=1

(weight of kth rule) · (output of kth rule)

where the weight of kth rule is defined by

wk(x̄t) =
uk(x̄t)
L
∑

k=1

uk(x̄t)

,

uk(x̄t) =
n
∏

i=1

Fki(xi,t) =
n
∏

i=1

exp
(

−
1

2

(xi,t − cki

ski

)2)

,

where cki and ski are the center and the spread of the kth rule membership function
corresponding to the ith premise variable. Therefore, we have constructed the
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fuzzy-TGARCH volatility model using the fuzzy inference system as follows:

√

ht =
L
∑

k=1

wk(x̄t)
{

αk +

q
∑

i=1

[

αki

(

|yt−i| − γkiyt−i

)]

+

p
∑

j=1

βkj
√

ht−j

}

.

This equation can be rearranged in the matrix form as

√

ht=

L
∑
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L
∑

k=1

q
∑
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L
∑
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q
∑
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+

L
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p
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√

ht−j

=ΛT zt, where ΛT =



































L
∑

k=1

wk(x̄t)αk

L
∑

k=1

wk(x̄t)αki

−
L
∑

k=1

wk(x̄t)αkiγki

+

L
∑

k=1

wk(x̄t)βkj



































and zt =



























1
q

∑

i=1

|yt−i|

q
∑

i=1

yt−i

p
∑

j=1

√
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. (3.3)

The parameters of the fuzzy-TGARCH volatility model in equation (3.3)
can be computed using the Genetic Algorithm (GA), which will be described
in the next section.

3.1.2 Optimal Parameters of Fuzzy-TGARCH Model

Various iterative techniques can be used to approximate the parameters of
the membership functions and TGARCH models such as Genetic Algorithm
(GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE).
An algorithm based on the genetic algorithm (GA) will be used in this study.
The fuzzy-TGARCH model parameters can be computed by minimizing a
mean squared error criteria. As a result, an objective function of this opti-
mization problem is defined as follows:

E[Λ] =
1

N

N
∑

t=1

[yt − ŷt]
2,
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where N is the number of in-sample stock market data, ŷt is the in-sample
stock market data and yt is the output obtained from the fuzzy-TGARCH
model. That is,

yt =
√

htǫt = ΛT
ztǫt. (3.4)

Therefore, the parameters of the fuzzy-TGARCH model can be estimated by
solving the following optimization problem:

min
Λ∈Θ

E(Λ), (3.5)

where yt =

L
∑

k=1

N
∏

i=1

exp
[

−
1

2

(xi,t − cki

ski

)2

× [αk + αki(|yt−1| − γkiyt−1) + βki

√

ht−1]

L
∑

k=1

N
∏

i=1

exp
[

−
1

2

(xi,t − cki

ski

)2]
ǫt.

(3.6)

The fuzzy-TGARCH model in equation (3.4) is a general nonlinear time
varying equation. The behaviors of nonlinear dynamic systems have been
modeled on this specific type of equation. For this reason, minimizing the
mean square error, which is an objective function defined in equation (3.5),
would be an effective way to ensure increased success of this model. The
Genetic Algorithm (GA) is implemented to solve different types of complex
optimization problems. Based on the results, GA was proven to perform
better than Differential Evolution (DE) and Particle Swarm Optimization
(PSO) in obtaining the highest numbers of best minimum fitness and worked
faster. The fuzzy-TGARCH model in (3.6) is solved by using the fitness
function defined as E(Λ). We then consider a set of solutions for the problem
and select the set of best examples. The flowchart representing each step of
GA is shown below:

Table 1: The steps of optimizing the parameters of fuzzy-TGARCH via GA.
Procedure Genetic Algorithm (GA)

0: Input the received data x̄t (ie. x1,t = |yt−1|)
1: Randomly create the initial population
2: Evaluate each individual in the population
3: while (termination conditions are not met) do
4: for each individual repeat do
5: Select parents for reproducing
6: Crossover
7: Mutation
8: Generate new population
9: Evaluate the new population
10: Select the best solution from the population.
11: end for
12: end while
13: Return the best solution.



790 W. Hongwiengjan, P. Kunam, D. Thongtha

After computing the appropriate parameters via GA, we will use these
values to predict the volatility of the asset return, and then use the obtained
volatility to approximate option prices. This process will be described in the
next section.

3.2 Option Pricing via Monte Carlo Simulation

An option price can be estimated using various factors, such as current stock
price, strike price, time to maturity date, interest rate, underlying asset price
and volatility. The payoff of a call option can be considered as max(ST−K, 0),
where ST and K are the stock price at expiration date and the strike price,
respectively. The computing option price via Monte Carlo simulation results
from averaging all possible option prices at the expiration date, and then
discounting the value of the payoff back to the current time. The general
form of the option price at current time t is as follows:

Ct = e−r(T−t)E[max(ST −K, 0)|φt], (3.7)

where Ct is a call premium at the time t, r is a risk-free rate, T − t is time
duration until expiration date and φt is the set (σ-field) of all information up
to time t. It can be seen that the expression E[max(ST −K, 0)|φt] depends
on the asset price at the expiration time T . In this research, the ST will be
computed by following Duan’s equations [41]. The equation is

ST = Stexp
[

r(T − t) −
1

2

T
∑

s=t+1

hs +

T
∑

s=t+1

ξs

]

, (3.8)

where ht is the volatility of the asset return obtained from the fuzzy-TGARCH
model given in section 3.1, and ξs is a normal random variable. In comput-
ing ST , the value for ξs is generated and the ST is estimated via a Monte
Carlo simulation. The step of computing call option prices for the proposed
method is shown below:

Option Pricing via Fuzzy-TGARCH Model

Step 1: Finding the asset volatility via fuzzy-TGARCH model in section 3.1
Step 2: Simulating the asset price ST in (3.8) and computing the option price Ct in (3.7)

by using the Monte Carlo method.
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4 Numerical Performance and Discussion

From the previous section, it can be seen that approximating the option prices
depends on the value of the underlying asset price and volatility. Therefore,
our study is focused on two main elements. Section 4.1 investigates esti-
mating volatility from a fuzzy-TGARCH model. Section 4.2 studies and
discusses the option prices estimated from the method proposed in section
3. These results are compared to those obtained from other methods, such
as GARCH and TGARCH models, Black-Scholes formula (BS), an analyti-
cal approximation via GARCH (A GARCH) and TGARCH (A TGARCH)
models and an analytical approximation with a Monte Carlo simulation
(A GARCH with MC). The steps of each method are summarized in the
following table:

Table 2: Methods for computing option prices.

Method for computing Method for computing

option prices Volatility ST Ct

GARCH [41] GARCH Monte Carlo Method
TGARCH [43] TGARCH
BS [36] Historical - Black-Scholes

Volatility - formula
A GARCH [32] GARCH Using parameters from

GARCH Model
A GARCH with MC [32] GARCH Monte Carlo Capprox[32]
A TGARCH [35] TGARCH Using parameters from

TGARCH Model
Proposed Method Fuzzy-TGARCH Monte Carlo Method
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This section will investigate the accuracy of these techniques with the real
data. The dataset used in this study is focused on the period between January
2020 and December 2020, during the COVID-19 pandemic in Thailand. All
real data are collected from the Stock Exchange of Thailand website (http://
www.setsmart.com). The SET50 index is considered as the asset price and
the contract prices of SET50 index option, namely, S50H20C, S50M20C and
S50Z20C, are considered as observation data. The S50H20C contract is a
SET50 index option contract that expired at the end of March 2020. During
this period, the SET50 index rapidly decreased, caused by the first wave of
the COVID-19 outbreak in Thailand. This situation was negative informa-
tion to investors. For the S50M20C and S50Z20C contracts, the SET50 index
option contracts expired at the end of June 2020 and at the end of December
2020. The movement of SET50 index in these two periods continuously in-
creased due to the first and second waves of the COVID-19 outbreak settling
down. This is positive information to investors. The closing SET50 index
during the periods of contracts S50H20C, S50M20C and S50Z20C is shown
in Figure 2, where the yellow, green and purple shaded areas represent the
durations of S50H20C, S50M20C and S50Z20C, respectively.

Figure 2: Daily SET 50 Index from May 27, 2019 to June 29, 2020

To approximate the option price in equation (3.7), the values of K, T −
t, r and St are needed. These values are specified by the value in the real
market. In this study, the risk-free interest rate is set to 1.99% per year,
the Thai government bond rate. Also, due to the market fluctuation, this
research focuses on short-term trading for speculators. Therefore, the time to
expiration (T − t) is considered in three cases; 20, 30 and 40 days, according
to speculate behavior[42]. The value of the underlying asset price, (St), is
the SET50 index at time t and the strike price K is the strike price in each
option contract.
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4.1 Estimating Volatility from Fuzzy-TGARCHModel

Here, we assume that the volatility of observation data follows the fuzzy-
TGARCH model with p = q = 1. From equation (3.3), the fuzzy-TGARCH(1,1)
model is

√

ht =









w1(x̄t)α1 + w2(x̄t)α2 + · · ·+ wL(x̄t)αL

w1(x̄t)α11 +w2(x̄t)α21 + · · · +wL(x̄t)αL1

−w1(x̄t)α11γ11 − w2(x̄t)α21γ21 − · · · − wL(x̄t)αL1γL1
w1(x̄t)β1 + w2(x̄t)β2 + · · · +wL(x̄t)βL









T 







1
|yt−1|
yt−1

√

ht−1









.

Setting up the values of the initial parameters of the fuzzy-TGARCH
model based on observation data, the number of rule (L) is set to be three as
laid out by [10]. Given the initial parameters of the fuzzy-TGARCH model,
the appropriate parameters of the fuzzy-TGARCH model can be optimized
by solving equation (3.5) via GA. However, there are a number of parameters
in GA that need to be set, such as mutation rate, crossover rate, replacement
factor, selection rate and population size. The following table shows all
parameter values that are set in this work.

Table 3: Selected values of parameters in GA estimation approach[10].
Name of Parameters Parameter values
Mutation rate 0.01
Crossover rate 0.95
Replacement factor 0.5
Selection rate 0.5
Population size 100

All outputs of the dataset, such as membership functions of or fuzzy sets
of volatility in contracts S50H20C, S50M20C and S50Z20C, are shown in
Figure 3 - 5, respectively. The appropriate models obtained from the fuzzy-
TGARCH are shown in Table 4. The weight fuzzy-TGARCH models for the
volatility in each contract are provided. The models is obtained by averaging
the results from the three rules.
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Figure 3: The Gaussian membership functions of volatility in S50H20C.
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Figure 4: The Gaussian membership functions of volatility in S50M20C.
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Figure 5: The Gaussian membership functions of volatility in S50Z20C.

Table 4: The appropriate parameters of fuzzy-TGARCH model in each rule
of S50H20C, S50M20C and S50Z20C.

Contract T − t Parameters in fuzzy- Values Weight fuzzy-TGARCH
no. (days) TGARCH model model

S50H20C 20 (α1, α11, γ11, β11) (0.0245, 0.2143, 0.0260, 0.0157)
√

ht = 0.0324 + 0.1325|yt−1

(α2, α21, γ21, β21) (0.0457, 0.1510, 0.0193, 0.0333) −(0.1325)(0.0221)yt−1

(α3, α31, γ31, β31) (0.0269, 0.0322, 0.0209, 0.0322) +0.0271
√

ht−1

30 (α1, α11, γ11, β11) (0.0329, 0.3176, 0.0338, 0.0374)
√

ht = 0.0315 + 0.3281|yt−1 |
(α2, α21, γ21, β21) (0.0281, 0.3305, 0.0389, 0.0316) −(0.3281)(0.0333)yt−1

(α3, α31, γ31, β31) (0.0336, 0.3363, 0.0272, 0.0238) +0.0309
√

ht−1

40 (α1, α11, γ11, β11) (0.0237, 0.2859, 0.0321, 0.0364)
√

ht = 0.0276 + 0.2340|yt−1 |
(α2, α21, γ21, β21) (0.0264, 0.2043, 0.0280, 0.0359) −(0.2340)(0.0296)yt−1

(α3, α31, γ31, β31) (0.0327, 0.2117, 0.0287, 0.0267) +0.0330
√

ht−1

S50M20C 20 (α1, α11, γ11, β11) (0.0314, 0.1521, 0.0313, 0.0207)
√

ht = 0.0277 + 0.1852|yt−1 |
(α2, α21, γ21, β21) (0.0288, 0.2772, 0.0257, 0.0321) −(0.1852)(0.0269)yt−1

(α3, α31, γ31, β31) (0.0228, 0.1264, 0.0237, 0.0301) +0.0276
√

ht−1

30 (α1, α11, γ11, β11) (0.0320, 0.3180, 0.0169, 0.0122)
√

ht = 0.0332 + 0.3058|yt−1 |
(α2, α21, γ21, β21) (0.0260, 0.3941, 0.0183, 0.0310) −(0.3058)(0.0230)yt−1

(α3, α31, γ31, β31) (0.0416, 0.2052, 0.0337, 0.0353) +0.0262
√

ht−1

40 (α1, α11, γ11, β11) (0.0201, 0.2807, 0.0283, 0.0311)
√

ht = 0.0265 + 0.3291|yt−1 |
(α2, α21, γ21, β21) (0.0259, 0.3387, 0.0307, 0.0352) −(0.3291)(0.0330)yt−1

(α3, α31, γ31, β31) (0.0336, 0.3678, 0.0401, 0.0308) +0.0324
√

ht−1

S50Z20C 20 (α1, α11, γ11, β11) (0.0161, 0.3483, 0.0261, 0.0226)
√

ht = 0.0247 + 0.2785|yt−1 |
(α2, α21, γ21, β21) (0.0331, 0.3390, 0.0385, 0.0273) −(0.2785)(0.0282)yt−1

(α3, α31, γ31, β31) (0.0248, 0.1481, 0.0201, 0.0374) +0.0295
√

ht−1

30 (α1, α11, γ11, β11) (0.0301, 0.2232, 0.0331, 0.0359)
√

ht = 0.0282 + 0.2289|yt−1 |
(α2, α21, γ21, β21) (0.0223, 0.2723, 0.0280, 0.0172) −(0.2289)(0.0323)yt−1

(α3, α31, γ31, β31) (0.0324, 0.21911, 0.0359, 0.0311) +0.0281
√

ht−1

40 (α1, α11, γ11, β11) (0.0297, 0.2562, 0.0249, 0.0368)
√

ht = 0.0275 + 0.2324|yt−1 |
(α2, α21, γ21, β21) (0.0184, 0.2104, 0.0346, 0.0323) −(0.2324)(0.0317)yt−1

(α3, α31, γ31, β31) (0.0344, 0.2308, 0.0356, 0.0291) +0.0328
√

ht−1
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4.2 Approximation of Option Price via Fuzzy-TGARCH

Model

In order to approximate option prices via a Monte Carlo simulation in eq. (3.7),
we have to simulate an underlying asset price, St, by following eq. (3.8). For
this simulation, 500,000 samples of ξs in (3.8) are generated with 500,000
path simulations.

In order to ensure accurate studies, several methods are used to measure
approximated results such as, correlation coefficient (CORR), mean absolute
error (MAE), mean absolute percentage error (MAPE), and root mean square
error (RMSE). Their formulas are as follows:

CORR =

n
∑

i=1

(xi − x̄)(yi − ȳ)

√

√

√

√

n
∑

i=1

(xi − x̄)2
n
∑

i=1

(yi − ȳ)2

, MAE =

n
∑

i=1

∣

∣

∣

xi − yi

n

∣

∣

∣
,

MAPE =
100%

n
×

n
∑

i=1

∣

∣

∣

xi − yi

xi

∣

∣

∣
and RMSE =

√

√

√

√

n
∑

i=1

(xi − yi)2

n
,

where the xi is an observed price, yi is an estimated price, x̄ is the mean
of observed prices, ȳ is the mean of estimated prices and n is the number
of observations. Based on these measures, the results in Table 5 illustrate
that, for all ITM cases (37 cases) with K/St ≤ 1, the proposed method has
superior performance compared with other approaches.

Additionally, the accuracy results of the seven methods in Table 5 are
shown in Figure 6. For the CORR, the results of these seven methods are
close to 1. As shown by the MAE, MAPE and RMSE, the proposed method
provides more accurate results than the other approaches. In particular, the
MAPE from our method is significantly less than the others. Moreover, it
can be seen that the proposed method has enhanced performance when we
focus on cases when the time to maturity date equals 20 and 30 days.

The discussion of the results is separated in two directions. The first
direction illustrates the discussion the dimension of time. The absolute per-
centage error(APE) of all estimated prices in the seven approaches are plotted
in Figure 7. According to the Figure 7, it is clear that the APE of the pro-
posed method is less than 20% where T − t = 20 and 30 days. These results
reveal that the option prices obtained from the proposed method is effective
for short periods of time to maturity date (≈ 1 month).
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Table 5: The performance of option price via fuzzy-TGARCH compared with
other methods.

T-t St K K/St Observed
GARCH TGARCH BS A GARCH A GARCH A TGARCH Proposed

[41] [43] [36] [32] with MC [35] Method
[32]

20 897.96 850 0.9466 60.00 52.2768 49.2304 50.2344 56.4782 34.2538 34.3284 54.3501
875 0.9744 36.30 32.7388 24.2700 28.7948 35.9798 49.2311 49.3014 35.5991

896.01 775 0.8649 119.40 128.4753 122.1667 131.7913 141.4448 122.1624 122.2332 120.10321
800 0.8928 100.00 108.0879 97.1993 111.8597 120.2831 97.1943 97.2775 95.64541
825 0.9207 77.00 88.3437 72.2376 93.5850 99.8612 72.2545 72.5761 72.22107
850 0.9487 56.90 71.8459 47.2809 77.1448 80.4872 47.2770 49.6602 51.22455

933.60 700 0.7498 232.00 234.3580 234.3110 234.4032 237.5685 234.5672 234.3630 233.7031
725 0.7766 207.00 209.5361 209.3423 209.5228 211.5994 209.7555 209.3903 208.7425
750 0.8033 181 184.5376 184.3606 184.7955 185.7236 185.6798 184.4175 183.7820
775 0.8301 153 160.1407 159.3948 160.3933 160.6329 160.7556 159.4448 158.8219
800 0.8569 130.2 136.1210 134.4198 136.5956 137.0894 136.3639 134.4720 133.8703
825 0.8837 112.9 113.0502 109.4448 113.7930 96.1286 92.3791 109.4993 108.9556
850 0.9105 89.7 91.3239 84.4769 92.4571 78.4106 72.5792 84.5269 84.3113
900 0.9640 45 54.6586 34.5311 56.0543 62.0386 54.6642 41.9300 39.2255
925 0.9908 28.3 39.9120 9.5561 41.6650 49.7710 43.0165 0.9496 22.2189

30 1025.18 975 0.9511 47.60 55.4279 52.6966 55.5485 59.1919 55.1542 52.4853 52.5197
1000 0.9754 28.70 35.3150 27.7559 35.5600 38.5719 35.0661 33.5203 29.2535

854.57 725 0.8484 128.00 131.2508 131.2161 131.3552 131.1378 130.7139 130.7609 131.53948
750 0.8776 112.00 106.4840 106.2757 106.6926 105.4840 105.7555 105.8020 107.60083
800 0.9361 63.00 59.5801 56.3938 60.3041 60.6365 58.9086 55.8841 64.24824
825 0.9654 46.00 39.5358 31.4534 40.7336 42.6728 39.3243 30.9279 46.34986
850 0.9947 29.00 23.8472 6.5120 25.1467 26.7049 23.5181 7.3866 31.73768

868.27 700 0.9511 163.00 170.5580 169.3644 170.9073 172.5745 171.9434 169.4145 167.4730
725 0.9754 143.00 147.1127 144.4093 147.4475 149.5375 146.9764 144.4553 142.5905
750 0.8484 122.6 124.4231 119.4498 125.0129 128.3376 124.9040 119.4962 117.9257
775 0.8776 96.5 103.1182 94.4861 103.9829 108.9554 104.0137 94.5371 93.8442
800 0.9361 78 83.5841 69.5283 84.7273 91.1593 84.1852 69.6010 71.0973
825 0.9654 58 66.2595 44.5703 67.5530 74.6772 66.7159 49.2199 50.6271
850 0.9947 43 51.1808 19.6161 52.6602 59.3376 51.4278 30.5125 33.4848

40 1018.08 975 0.9577 46.10 51.4246 46.0742 51.6541 55.8503 51.6553 46.0850 61.2164
1000 0.9822 27.70 33.1983 21.1538 33.5263 36.1710 33.1221 23.0878 45.7070

854.34 800 0.9364 93.00 97.7283 56.7986 99.0442 111.9559 98.7330 70.0993 68.55778
825 0.9657 73.00 83.9523 31.8680 85.0048 94.5720 83.7424 56.2364 52.51664
850 0.9949 57.90 71.1971 6.9859 72.4069 78.4583 71.3111 0.0000 39.08713

751.14 700 0.9319 54.50 71.1923 52.6229 72.0716 79.1203 71.5693 52.9092 55.9693
725 0.9652 36.00 55.3261 27.6816 56.4419 63.4549 55.9280 51.9057 37.2559
750 0.9985 18.9 41.8921 2.7486 43.2054 49.0000 42.2088 -56.5217 22.6659

CORR 0.9912 0.9819 0.9882 0.9776 0.9804 0.9652 0.9889
MAE 7.7645 10.3937 8.9818 12.9535 9.1368 11.0168 5.8643

MAPE(%) 17.7022% 20.8266% 18.5156% 24.9259% 18.5473% 28.0505% 10.4899%
RMSE 9.2629 15.3404 10.7869 15.2740 10.9812 18.5937 8.2402
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Figure 6: CORR, MAE, MAPE and RMSE of call option price in SET50
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Figure 7: Boxplot of call option price in SET50

Remark 4.1. The symbol ”+” means that the corresponding points are con-

sidered as outliers of the box plot.

In the second direction, the impact of K/St corresponding to call op-
tion prices is described. For the ITM cases when K/St ≤ 0.96, in Figure
8 shows that the APEs of approximated prices from each technique have
similar patterns. For the ITM cases when K/St approaches 1, the APE of
GARCH, TGARCH, A GARCH, A GARCH with MC and A TGARCH do
not perform well. However, it can be seen that the APE of the proposed
method still displays a small error for ITM cases when K/St approaches 1.
This shows a better performance in comparison to the other methods.

In Figure 9, looking closer at a short time to maturity date, 20 days
(15 cases) and 30 days (14 cases), the MAEs are 4.1088 and 3.8394 and the
MAPEs are 6.4658% and 6.0303%, respectively. Based on these results, the
proposed method provides an excellent estimated price for all ITM cases.
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Figure 8: Impact of K/St correspondence on call option price in SET50 data
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Figure 9: Impact of time to maturity and K/St corresponding to option price
in SET50.

5 Conclusion

In this study, we developed Option pricing via a fuzzy-TGARCH model.
The fuzzy-TGARCH model was mainly used to construct asset volatility
models by clustering volatility. These volatility models were used to com-
pute option prices through a Monte Carlo simulation. The numerical results
of 37 ITM cases of option pricing were investigated and analyzed. We used
data from the Stock Exchange of Thailand from January 2020 to December
2020, in which the market was affected by positive and negative information.
These estimated prices show that the fuzzy-TGARCH model outperforms
other methods with 10.4899% MAPE. Looking deeper at cases with 20 and
30 days before maturity, the proposed method still significantly outperforms
the others by estimating call option prices with lower errors (MAPE equals
6.4658% and 6.0303%, respectively). Based on these numerical results, option
pricing via a fuzzy-TGARCH model is one of the better tools for speculator
decision in short-term trading. This study contributes both academic knowl-
edge and real-world practice. In terms of academic knowledge, although the
Black-Scholes formula is commonly used in option markets, it requires several
unrealistic assumptions. The new approach proposed here is more realistic
because it relaxes some of those unrealistic conditions. In terms of empiri-
cal practice, this approach shows effective performance when applied to real
data. It can be seriously considered as an alternative approach for specular
investors to determine option pricing.
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