International Journal of Mathematics and Computer Science, **19**(2024), no. 1, 191–194

(M (M)

Modules whose δ -small epimorphisms are isomorphisms

Abderrahim El Moussaouy

Department of Mathematics Faculty of Sciences Mohammed First University Oujda, Morocco

email: a.elmoussaouy@ump.ac.ma

(Received July 5, 2023, Accepted August 16, 2023, Published August 31, 2023)

Abstract

An *R*-module *M* is called δ -weakly Hopfian if any δ -small surjective endomorphism of *M* is an automorphism. In this paper we explore various properties of δ -weakly Hopfian modules, shedding light on their distinct characteristics. Additionally, we examine the δ -weakly Hopficity of modules over polynomial and truncated polynomial rings.

1 Introduction

Throughout this paper all rings have identity and all modules are unital right modules. The concept of Hopfian modules was introduced by Hiremath [7]. An R-module M is Hopfian if every surjective endomorphism of M is an automorphism. Moreover, Co-Hopfian modules, introduced by Varadarajan, are modules where every injective endomorphism is an automorphism. Furthermore, generalized Hopfian modules, introduced and studied by Ghorbani and Haghany [6], are modules where any surjective endomorphism has a small kernel. Weakly Hopfian modules, a proper generalization of Hopfian modules, were defined in [8], a right R-module M is weakly Hopfian if any

Key words and phrases: Hopfian module, δ -weakly Hopfian module, Dedekind finite module.

AMS (MOS) Subject Classifications: 16D10, 16D40, 16D90. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

A. El Moussaouy

small surjective endomorphism of M is an automorphism. It was established that a right R-module M is Hopfian if and only if it is both generalized Hopfian and weakly Hopfian. These concepts, along with other generalizations, have been extensively studied by various authors ([2], [3], [4], [5]).

In [1], the authors introduced δ -weakly Hopfian modules, where a right R-module M is δ -weakly Hopfian if every δ -small surjective endomorphism of M is an automorphism.

2 Modules whose δ -small epimorphisms are isomorphism

Definition 2.1. [1] Let M be an R-module. We say that M is δ -weakly Hopfian if every δ -small surjective endomorphism of M is an automorphism.

Proposition 2.2. Every quasi-projective uniform right *R*-module is δ -weakly Hopfian.

Proof.

Let M be a quasi-projective uniform R-module. Suppose $M \cong M/K$ for some $K \ll_{\delta} M$. Let $\varphi : M/K \to M$ be an isomorphism. The map $\varphi \pi : M \to M$, where $\pi : M \to M/K$ is canonical epimorphism has kernel K; i.e., $Ker(\varphi \pi) = K$. Since M is quasi-projective, there is a $g : M \to M$ which makes the following diagram commutative.

Then $M = Ker(\varphi \pi) \oplus Im(g)$. Since M is uniform, $Im(g) \leq^{e} M$. Hence M/Im(g) is singular. Since $Ker(\varphi \pi) = K \ll_{\delta} M$, we must have K = 0 and so M is δ -weakly Hopfian by [1, Lemma 2.3].

Corollary 2.3. Let M be a quasi-projective right R-module such that every nonzero submodule of M is indecomposable. Then M is δ -weakly Hopfian.

Proof.

An *R*-module *M* is uniform if and only if every nonzero submodule of *M* is indecomposable. Then *M* is δ -weakly Hopfian by Proposition 2.2.

Modules whose δ -small epimorphisms are isomorphisms

Theorem 2.4. Let M be an R-module. If M[x] is a δ -weakly Hopfian R[x]-module, then M is a δ -weakly Hopfian R-module.

Proof.

Let $f: M \to M$ be any δ -small epimorphism in R-module. Then $\alpha: M[x] \to M[x]$ defined by $\alpha(\sum_{i=0}^{n} a_i x^i) = \sum_{i=0}^{n} f(a_i) x^i$ is a surjective endomorphism in an R[x]-module and $Ker\alpha = Ker(f)[x]$. Assume that $Ker\alpha + N = M[x]$ for all submodule N of M[x] with a singular factor over R[x]. Therefore, Kerf + N' = M where N' is the submodule of M which is generated by the constant polynomials of N. We show that M/N' is a singular R-module. Let $m \in M$. Since M[x]/N is singular, there exists $I[x] \leq^e R[x]$ (essential), such that $mI[x] \subseteq N$. Therefore, $I \leq^e R$ and $mI \subseteq N'$. Then M/N' is singular. Since Kerf is δ -small in M, M = N'. Hence M[x] = N and $Ker\alpha = Kerf[x]$ is δ -small in M[x]. Consequently, f is an automorphism in M, and finally M is δ -weakly Hopfian.

Corollary 2.5. Let M be an R-module. If $M[x_1, ..., x_k]$ is δ -weakly Hopfian $R[x_1, ..., x_k]$ -module, then M is δ -weakly Hopfian R-module.

Proof.

Use induction and the $R[x_1, ..., x_{k-1}][x_k]$ -module isomorphism $M[x_1, ..., x_{k-1}][x_k] \simeq M[x_1, ..., x_k]$, and ring isomorphism $R[x_1, ..., x_{k-1}][x_k] \simeq R[x_1, ..., x_k]$.

Theorem 2.6. Let M be an R-module. If $M[x]/(x^{n+1})$ is δ -weakly Hopfian $R[x]/(x^{n+1})$ -module, then M is δ -weakly Hopfian R-module.

Proof.

The proof is similar to that of theorem 2.4.

Corollary 2.7. Let M be an R-module. If $M[x_1, ..., x_k]/(x_1^{n_1+1}, ..., x_k^{n_k+1})$ is δ -weakly Hopfian $R[x_1, ..., x_k]/(x_1^{n_1+1}, ..., x_k^{n_k+1})$ -module, then M is δ -weakly Hopfian R-module.

Proof.

Use induction and the $(R[x_1, ..., x_{k-1}]/(x_1^{n_1+1}, ..., x_{k-1}^{n_{k-1}+1}))[x_k]/(x_k^{n_k+1}) \text{-module isomorphism}$ $(M[x_1, ..., x_{k-1}]/(x_1^{n_1+1}, ..., x_{k-1}^{n_{k-1}+1}))[x_k]/(x_k^{n_k+1}) \simeq M[x_1, ..., x_k]/(x_1^{n_1+1}, ..., x_k^{n_k+1})$ and ring isomorphism $(R[x_1, ..., x_{k-1}]/(x_1^{n_1+1}, ..., x_{k-1}^{n_{k-1}+1}))[x_k]/(x_k^{n_k+1}) \simeq R[x_1, ..., x_k]/(x_1^{n_1+1}, ..., x_k^{n_k+1}).$

References

- A. El Moussaouy, M. Khoramdel, A. R. Moniri Hamzekolaee, M. Ziane, Weak Hopficity and singular modules, Annali dell' Università di Ferrara, 68, (2022), 69–78.
- [2] A. El Moussaouy, A. R. Moniri Hamzekolaee, M. Ziane, Jacobson Hopfian Modules, Algebra and Discrete Mathematics, 33, no. 1, (2022), 116–127.
- [3] A. El Moussaouy, M. Ziane, Modules whose surjective endomorphisms have a γ-small kernels, Algebraic Structures and Their Applications, 9, no. 2, (2022) 121–133.
- [4] A. El Moussaouy, Hopfcity and Jacobson small submodules, Algebraic Structures and Their Applications, 10, no. 2, (2023), 31–40.
- [5] A. El Moussaouy, M. Ziane, Modules in which every surjective endomorphism has a μ -small kernel, Ann. Univ. Ferrara, **66**, (2020), 325–337.
- [6] A. Ghorbani, A. Haghany, Generalized Hopfian modules, J. Algebra, 255, no. 2, (2002), 324–341.
- [7] V. A. Hiremath, Hopfian rings and Hopfian modules, Indian J. Pure Appl. Math., 17, no. 7, (1986), 895–900.
- [8] Y. Wang, Generalizations of Hopfian and co-Hopfian modules, Int. J. Math. Sci., 9, (2005), 1455–1460.