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Abstract

Due to its success in handling large optimization problems, the it-
erative alternating direction method of multipliers (ADMM) has gar-
nered attention. In this article, we discuss the ADMM algorithm’s
history, theoretical characteristics, and applications. Moreover, we
explore new ADMM improvements and their benefits over alternative
optimization approaches. Furthermore, we discuss ADMM research
gaps and future prospects.

1 Introduction

Mathematical models help optimize possible solutions. A model optimizes a
constrained objective function for engineering, resource allocation, logistics,
scheduling, and portfolio management [5].
Statistics collects, analyzes, interprets, summarizes, and organizes data. It
concludes, predicts, and infers. Statistics quantify variability, understands
ambiguity, and supports decision-making with limited facts.[5].
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Statistics estimate and assess model parameters and assumptions in opti-
mization. Statistical analysis reveals trends and informs objective func-
tions and limitations. Optimization optimizes statistical estimates and data
collecting[7].
Data science combines optimization and statistics. Big data provides useful
insights. Machine learning improves model parameters. Regression analysis,
hypothesis testing, and Bayesian inference analyze data, verify models, and
predicts[5].

Definition 1.1. [1] Convex Set: If the line segment between any two points
in C, lies in C. Then the set C is Convex Set

(θX1 + (1− θ)X2 ∈ C) , ∀ (X1, X2) ∈ C, ∀θ ∈ [0, 1] (1.1)

Definition 1.2. [5] Convex Funtion: A function f : Rn → R is Convex, if
for every x1, x2 ∈ Rn, 0 ≤ t ≤ 1 the following inequality is true:

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2) . (1.2)

2 ADMM Algorithm:

ADMM is an iterative algorithm that minimizes a composite objective func-
tion of the form:

minx,z p(x) + q(z)
s.t. Mx + Nz = a,

(2.3)

where p(x) and q(z) are the optimization variables, p and q are convex func-
tions, M and N are the constraint matrices, and a is the constraint vector
[4].
The ADMM algorithm operates by introducing a supplementary variable u
and transforming the original problem into a problem of equivalent form:

minx,z,u f(x) + g(z)
s.t Ax+Bz = c, x− z = u

(2.4)

The ADMM algorithm then iteratively resolves the subsequent subproblems
[2]:

1. Update x by minimizing the augmented Lagrangian function:

xk+1 = argmin
x

[

f(x) +
ρ

2

∥

∥x− zk + uk
∥

∥

2

2

]

(2.5)
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2. Update z by minimizing the augmented Lagrangian function:

zk+1 = argmin
z

[

g(z) +
ρ

2

∥

∥xk+1 − z + uk
∥

∥

2

2

]

(2.6)

3. Update the dual variable u by

uk+1 = uk + xk+1 − zk+1, (2.7)

where ρ is a positive scalar parameter called the penalty parameter,
and k is the iteration number.

2.1 A simple example

Let us use the Alternating Direction Method of Multipliers (ADMM) to solve
the following problem by hand:

Minimize : f(x, y) = x2 + y2

Subjectto : x+ y = 1
(2.8)

Step 1: Reformulate the problem using augmented Lagrangian. The augmented
Lagrangian for this problem is given by:

Lγ(x, y, u) = f(x, y) + u(x+ y − 1) + γ/2(x+ y − 1)2, (2.9)

where x and y are the variables, u is the dual variable (Lagrange mul-
tiplier), and γ is a positive penalty parameter.

Step 2: initialize variables Set an initial guess for x, y, and u. Let’s start with
x = 0, y = 0, and u = 0.

Step 3: Iterate until convergence
Repeat the following steps until convergence is achieved:

a) Update x :

x(k+1) = argminxx
2 + (γ/2) ∗ (x+ y(k)− 1 + u(k)/γ)2 (2.10)

b) Update y :

y(k + 1) = argminyy
2 + (γ/2) ∗ (x(k + 1) + y − 1 + u(k)/γ)2

(2.11)
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c) Update u :

u(k + 1) = u(k) + γ ∗ (x(k + 1) + y(k + 1)− 1) (2.12)

Step 4: Check for convergence:
Repeat steps 3 until the convergence criteria are met.

It will iterate and update x, y, and u until convergence is reached. We may
observe convergence at iteration No. 56.

3 Mathematical Model

In image processing, Gaussian models are often used to represent and analyze
the statistical properties of pixel intensities in an image. The Gaussian dis-
tribution, also known as the normal distribution, is a continuous probability
distribution that is characterized by its mean (µ) and variance (σ2) [12].
The Gaussian mathematical paradigm for image processing presupposes that
pixel intensities are Gaussian. Natural pictures have consistent intensity
changes and noise may be represented as random perturbations around the
genuine pixel values. [12].
Mathematically, the Gaussian distribution is defined by the probability den-
sity function (PDF):

f(x) =
(

1/
√

(2πσ2)
)

exp
(

−(x− µ)2/
(

2σ2
))

, (3.13)

where x is the pixel intensity value, µ is the mean of the distribution which
represents the average intensity value of the image, and σ2 is the variance
of the distribution, which measures the spread or variability of the pixel
intensities

4 Applications

Compressed sensing, image processing, and machine learning use ADMM.
ADMM recovers sparse signals from compressed sensing undersampled ob-
servations. The ADMM algorithm denoises and deblurs pictures. Support
vector machines and logistic regression are optimized using the ADMM tech-
nique [1].
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Figure 1: The preceding images illustrate the operation of the ADMM
algorithm in image processing.

Here is an example of using the ADMM algorithm in Python for image
denoising and deblurring using the cvxpy and numpy packages.

This example loads a picture, adds Gaussian noise and blur, and creates
a noisy-blurred image. We define ADMM-based denoising and deblurring
functions. Each function returns the denoised or deblurred picture from the
input and noisy-blurred image.
We then denoise and deblur the input picture and show the original, noisy-
blurred, denoised, and deblurred images using P.

5 Conclusions

In this study, we gave an overview of the Alternating Direction Method of
Multipliers algorithm, examining its history, theoretical features, practical
applications, current advances, and future prospects. ADMM solves com-
plex, large-scale issues through iterative optimization. Scalability, versatil-
ity, and systematic issue handling have made it useful in compressed sensing,
image processing, and machine learning. Recent breakthroughs address par-
ticular difficulties with algorithmic enhancements, theoretical advances, and
expansions. The study underlines ADMM’s relevance in numerous fields and
suggests further research and applications.



162 A. D. A. Al-Zamili, A. S. A. Aljilawi

References

[1] Stephen Boyd et al., ”Distributed optimization and statistical learning
via the alternating direction method of multipliers,” Foundations and
Trends in Machine learning, 3, no. 1, (2011), 1–122.

[2] Chengbo Li et al., ”An efficient augmented Lagrangian method with
applications to total variation minimization,” Computational Optimiza-
tion and Applications, 56, (2013), 507–530.

[3] Jianqiang Hu et al., ”Hierarchical interactive demand response power
profile tracking optimization and control of multiple EV aggregators,”
Electric Power Systems Research, 208, (2022), 107894.

[4] G. Steidl, T. Teuber, “Removing multiplicative noise by Douglas-
Rachford splitting methods,” Journal of Mathematical Imaging and Vi-
sion, 36, no. 2, (2010), 168–184.

[5] Stephen P. Boyd, Lieven Vandenberghe, Convex optimization, Cam-
bridge university press, 2004.

[6] James, Gareth et al., An introduction to statistical learning, 112,
Springer, New York, 2013.
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