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Abstract

This paper’s primary objective is to expand the connection be-
tween the presence of a symplectic form on a Mock-Lie algebra and
the solution of the Yang-Baxter equation (YBE) into the realm of sym-
plectic Jacobi-Jordan algebras. The study establishes an equivalence
between the existence of an even symplectic form ω on a Mock-Lie
algebra and the existence of an r-matrix of J, which is a solution r of
the YBE.

1 Introduction

A Mock-Lie algebra is a vector space that has a bilinear product satisfying
the Jacobi identity and commutativity. The Jacobi identity is a relation
involving three elements of the algebra, which is the same as the one satisfied
by Lie algebras. This type of algebra has been known by different names in
the literature, depending on the perspective of the community. In some
Jordan-algebraic literature such as [9, 7, 11, 1, 6], they are referred to as
Jacobi-Jordan algebra. In [18], they are called ”Lie-Jordan algebras,” and
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this paper considers superalgebras as well. Finally, in [20], they are referred
to as mock-Lie algebras.

These types of algebras have a close relationship with Jordan algebras and
Lie algebras, providing a framework for exploring the connection between
these two algebraic structures. Some researchers refer to them as Jordan-Lie
algebras or mock-Lie algebras for this reason. Specifically, Mock-Lie algebras
can be seen as a special case of Jordan algebras. An automorphism R over
a vector space V is a solution of the Yang-Baxter equation if it satisfies the
following identity:

(R⊗ idV ) ◦ (idV ⊗ R) ◦ (R⊗ idV ) = (idV ⊗R) ◦ (R⊗ idV ) ◦ (idV ⊗R)

The connection between the above Yang Baxter equation and Jordan alge-
bras is particularly fascinating because it highlights the underlying algebraic
structure of the equation and its applications. In particular, Baklouti et al.
have explored related themes in their work [?, ?, ?, ?]

Symplectic forms found on Jordan algebras have numerous fascinating
properties and applications. They are closely linked to Kac-Moody algebra
theory and the geometry of certain homogeneous spaces. They also occur
naturally in the study of classical and quantum integrable systems, which
have crucial applications in engineering and mathematical physics (c.f [6, 5,
19]).

This work’s primary contribution is to extend the relationship between
the existence of a symplectic form on a Mock-Lie algebra J and the solution
of the Yang-Baxter equation (YBE) to the domain of symplectic Jordan
algebras. The paper establishes an equivalence between the existence of an
even symplectic form ω on a Mock-Lie algebra and the existence of an r-
matrix of J , which is a solution r of the YBE.

The correlation between symplectic forms and the Yang-Baxter equation
has significant ramifications for the investigation of integrable systems and
quantum groups, offering a potent mechanism for creating fresh examples of
YBE solutions and comprehending their algebraic and geometric features.

2 Exploring the Connection between the Yang-

Baxter Equation and Symplectic Forms: A

Deep Relationship

A symplectic form is a non-degenerate, closed 2-form on a smooth manifold.
It is a fundamental structure in symplectic geometry, which is the study
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of geometric structures that preserve the non-degenerate, closed 2-form. A
solution to the Yang-Baxter equation gives rise to a skew-symmetric bilinear
form on the Lie algebra, known as a r-matrix. It turns out that if the r-matrix
satisfies certain additional conditions, then it induces a symplectic form on
the manifold associated with the Lie algebra.

Conversely, given a symplectic form on a manifold, one can construct a
solution to the Yang-Baxter equation using a technique known as the classical
r-matrix construction.

Definition 2.1. A symplectic form on a Mock-Lie algebra is a nondegener-
ate bilinear form that satisfies certain axioms, which generalize the standard
properties of a symplectic form on a vector space. More precisely, let A be
a Jordan algebra, and let ω : A × A → R be a bilinear form. Then ω is a
symplectic form on A if it satisfies the following conditions:

Skew-symmetry: ω(x, y) = −ω(y, x) for all x, y ∈ A.

Nondegeneracy: Ifω(x, y) = 0 for all y ∈ A, then x = 0.

Closer: ω(xy, z) = ω(yz, x) + µω(zx, y) for all x, y, z ∈ A.

Now, let A be a Mock-Lie algebra, and let R : A ⊗ A → A ⊗ A be a
linear operator that satisfies the Yang-Baxter equation. Then, we can define
a bilinear form ωR : A× A → R by

ωR(x, y) =
1

2
tr 1(R12x⊗ y),

where tr 1 denotes the partial trace over the first tensor factor, and R12 =
R⊗ id.

We show that ωR is a symplectic form on A, and that the converse is also
true: every symplectic form on A can be obtained in this way from a solu-
tion of the Yang-Baxter equation. Furthermore, we established a bijection
between the set of solutions of the Yang-Baxter equation and the set of iso-
morphism classes of symplectic Jordan algebras, which are Jordan algebras
equipped with a symplectic form.

Proposition 2.2. Let (J,B) be a pseudo-Euclidean Jordan algebra and let
r =

∑n

i=1
ai ⊗ bi be an antisymmetric r-matrix. Let U : J → J be the

endomorphism defined by U = R ◦ ϕ. Then, Im(U) = {U(x) : x ∈ J} is a
Jordan subalgebra. Furthermore, the bilinear form ω : Im(U) × Im(U) → K
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defined by ω(U(x), U(y)) = B(U(x), y), for all x, y ∈ J , is a symplectic form
on Im(U).

Proof. Let (J,B) be a pseudo-Euclidean Jordan algebra and let r =
∑n

i=1
ai⊗

bi be an antisymmetric r-matrix. Let U : J → J be the endomorphism de-
fined by U = R◦ϕ. We need to show that Im(U) = {U(x) : x ∈ J} is a Jordan
subalgebra and that ω : Im(U) × Im(U) → K defined by ω(U(x), U(y)) =
B(U(x), y), for all x, y ∈ J , is a symplectic form on Im(U).

To show that Im(U) is a Jordan subalgebra, we need to show that U(x) ⋄
U(y) ∈ Im(U) for all x, y ∈ J . Since U is a Jordan algebra morphism, we
have U(x) ⋄U(y) = U(x ⋄ y), so it suffices to show that x ⋄ y ∈ Im(U) for all
x, y ∈ J . But x ⋄ y = 1

2
(xy + yx)− 1

2
(xy − (−y)x) = U(x)y + xU(y), which

is a linear combination of elements in Im(U), so we have x ⋄ y ∈ Im(U).
To show that ω is a symplectic form on Im(U), we need to show that it

is nondegenerate and skew-symmetric. Nondegeneracy follows from the fact
that B is nondegenerate and U is surjective, so for any nonzero u ∈ Im(U),
we can choose x ∈ J such that U(x) = u, and then we have ω(u, Im(U)) =
{B(U(x), y) : y ∈ J} = {B(x, U−1(y)) : y ∈ Im(U)} 6= {0}. Skew-symmetry
follows from the fact that B is symmetric and U is B-antisymmetric, so we
have ω(U(x), U(y)) = B(U(x), y) = −B(x, U(y)) = −ω(U(y), U(x)) for all
x, y ∈ J .

Therefore, we have shown that Im(U) is a Jordan subalgebra of J and
that ω is a symplectic form on Im(U).

Corollary 2.3. Let (J,B) be a pseudo-Euclidean Jordan algebra and let
r =

∑n

i=1
ai ⊗ bi ∈ J ⊗ J such that τ(r) = −r, CJ(r) = 0, and r is non-

degenerate. Then, J equipped with the bilinear form ωU : J × J → K defined
by ωU(x, y) := B(U−1(x), y) for all x, y ∈ J is a symplectic Jordan algebra,
where U is the linear map induced by r via x ⋆ y = U(x)y + yU(y) and U is
B-antisymmetric and satisfies r =

∑n

i=1
U(ai)⊗ bi.

Proof. Let (J,B) be a pseudo-Euclidean Jordan algebra and r =
∑n

i=1
ai ⊗

bi ∈ J ⊗ J such that τ(r) = −r, CJ(r) = 0, and r is non-degenerate. We
will show that (J, ωU) is a symplectic Jordan algebra, where ωU(x, y) :=
B(U−1(x), y) and U is the linear map induced by r via x⋆y = U(x)y+yU(y)
and U is B-antisymmetric and satisfies r =

∑n

i=1
U(ai)⊗ bi.

First, we show that ωU is a non-degenerate skew-symmetric bilinear form
on J . Since r is non-degenerate, we have U is invertible. Let x ∈ J be such
that ωU(x, y) = 0 for all y ∈ J . Then, we have B(U−1(x), y) = 0 for all
y ∈ J . Since U is invertible, this implies B(x, y) = 0 for all y ∈ J . Thus,
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x = 0 since B is non-degenerate. Therefore, ωU is non-degenerate. Moreover,
ωU is skew-symmetric since B is symmetric and U is B-antisymmetric.

Next, we show that (J, ωU) satisfies the defining property of a symplectic
Jordan algebra, namely, ωU([x, y], z) = ωU(x, [y, z]) for all x, y, z ∈ J . Using
the definition of U and r, we have

[x, y] ⋆ z = U([x, y])z + [x, y]U(z) = U(x)U(y)z + U(y)U(x)z + xU(y)z − yU(x)z

= (U(x)U(y)− U(y)U(x))z + x ⋆ y ⋆ z = r(U(x), U(y))z + x ⋆ y ⋆ z

=

n
∑

i=1

B(bi, U(x)U(y))z + x ⋆ y ⋆ z =

n
∑

i=1

B(U−1(U(x)U(y))ai, bi)z + x ⋆ y ⋆ z

=
n

∑

i=1

B(U(y), B(U(x), bi)ai)z + x ⋆ y ⋆ z =
n

∑

i=1

ωU(y, B(U(x), bi)ai)z + x ⋆ y ⋆ z

= ωU(y,

n
∑

i=1

B(U(x), bi)ai)z + x ⋆ y ⋆ z = ωU(y, U(r)(U(x)⊗ z)) + x ⋆ y ⋆ z

= ωU(x, [y, z]),

where we have used the properties of r and U in the fourth and fifth equalities,
respectively.

Therefore, (J, ωU) is a symplectic Jordan algebra.

Proposition 2.4. Let (J,B) be a pseudo-Euclidean Jordan algebra. J has
a symplectic form ω if and only if there exists an invertible B-antisymmetric
derivation D of J such that ω(x, y) = B(D(x), y) for all x, y ∈ J .

Proof. Suppose there exists an invertible B-antisymmetric derivation D of J
such that ω(x, y) = B(D(x), y) for all x, y ∈ J . Then, we can show that ω is
a symplectic form on J .

First, we show that ω is non-degenerate. Let x ∈ J be such that ω(x, y) =
0 for all y ∈ J . Then, we have B(D(x), y) = 0 for all y ∈ J . Since D is
invertible, this implies B(x, y) = 0 for all y ∈ J . Thus, x = 0 since B is
non-degenerate. Therefore, ω is non-degenerate.

Next, we show that ω is skew-symmetric. Let x, y ∈ J . Then, we have

ω(x, y) = B(D(x), y) = −B(y,D(x)) = −ω(y, x),

where we have used the B-antisymmetry of D in the second equality. There-
fore, ω is skew-symmetric.
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Finally, we show that ω satisfies the defining property of a symplectic
form, namely, ω([x, y], z) = ω(x, [y, z]) for all x, y, z ∈ J . Using the B-
antisymmetry and derivation properties of D, we have

ω([x, y], z) = B(D([x, y]), z) = B(D(x)y − xD(y), z) = B(D(x)y, z)− B(xD(y), z)

= B(y,D(x)∗z)− B(D(y)∗z, x) = ω(y,D(x)∗z)− ω(D(y)∗z, x)

= ω(y, [D(x)∗, z])− ω([D(y)∗, z], x) = ω(y, [z,D(x)])− ω([z,D(y)], x)

= ω(y,D([z, x]))− ω(D([z, y]), x) = ω(y, [z, x]∗D∗)− ω([z, y]∗D∗, x) = ω(x, [y, z]),

where we have used the B-antisymmetry of D and the fact that D is a
derivation in various steps.

Therefore, if there exists an invertible B-antisymmetric derivation D of J
such that ω(x, y) = B(D(x), y) for all x, y ∈ J , then ω(x, y) = B(D(x), y) de-
fines a non-degenerate skew-symmetric bilinear form on J . We now show that
it satisfies the defining property of a symplectic form, namely, ω([x, y], z) =
ω(x, [y, z]) for all x, y, z ∈ J .

Using the definition of D, we have:

ω([x, y], z) = B(D([x, y]), z) = B(D(x)y − xD(y), z)

= B(D(x)y, z)−B(x,D(y)z) = ω(x, z ⋆ y)− ω(z ⋆ x, y) = ω(x, [z, y]).

Similarly, we have:

ω(x, [y, z]) = B(D(x), y ⋆ z − z ⋆ y) = B(D(x), y)z − B(D(x), z)y

= ω(y,D(x) ⋆ z)− ω(z,D(x) ⋆ y) = ω([x, y], z).

Therefore, ω satisfies the defining property of a symplectic form, and thus
(J, ω) is a symplectic Jordan algebra.

Corollary 2.5. Let (J,B, ω) be a symplectic pseudo-Euclidean Jordan alge-
bra. By the result above, there exists an invertible B-antisymmetric deriva-
tion D of J such that ω(x, y) = B(D(x), y) for all x, y ∈ J . We will show
that there exists a B-antisymmetric linear map U : J → J such that B = ωU ,
where ωU(x, y) = ω(U(x), y).

Proof. Let (J,B, ω) be a symplectic pseudo-Euclidean Jordan algebra. By
the result above, there exists an invertible B-antisymmetric derivation D of
J such that ω(x, y) = B(D(x), y) for all x, y ∈ J . We will show that there
exists a B-antisymmetric linear map U : J → J such that B = ωU , where
ωU(x, y) = ω(U(x), y).
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Let x, y ∈ J . SinceD is a derivation, we haveD(x⋆y) = D(x)⋆y+x⋆D(y).
Using Proposition 2.4 and the fact that D is B-antisymmetric we have

B(D(x) ⋆ y + x ⋆ D(y), z) = ω(x ⋆ y, z)

= B(D(y) ⋆ x+ y ⋆ D(x), z) = −B(y,D(x) ⋆ z + x ⋆ D(z)),

because D is skew-symmetric and B is associative. Now, Let us consider
u := D−1. We have

B(D(U(x) ⋆ U(y)), z) = B(d(U(x)) ⋆ U(y) + U(x) ⋆ D(U(y)), z)

because D is a derivation. By definition of U := D−1 we have,

B(D(U(x) ⋆ U(y)), z) = B(x ⋆ U(y) + U(x) ⋆ y), z)

Thus
B(D(U(x) ⋆ U(y)), z) = ω(U

(

x ⋆ U(y) + U(x) ⋆ y)
)

, z)

Moreover, we have

B(D(U(x) ⋆ U(y)), z) = ω(U(x) ⋆ U(y), z).

Consequently, the fact that ω is nondegenerate implies that we have shown
that there exists a B-antisymmetric linear map U : J → J such that ω = ωU

and U(U(x)y + xU(y)) = U(x) ⋆ U(y) for all x, y ∈ J , as desired

The previous corollary establishes the existence of a non-degenerate r-matrix
satisfying certain properties in a symplectic Jordan algebra. The following
theorem goes beyond this result and provides a more general condition for
the existence of such an r-matrix. Therefore, the following theorem can be
viewed as an extension or generalization of the previous corollary.

Theorem 2.6. Let (J, ω) be a symplectic Jordan algebra. Then, there exists
a non-degenerate r-matrix satisfying τ(r) = −r and CJ(r) = 0 such that
ω = ωU , where U is the linear map induced by r via x ⋆ y = U(x)y + yU(y)
and U is B-antisymmetric and satisfies r =

∑n

i=1
U(ai)⊗ bi.

Proof. First, we apply the Skolem-Noether theorem type to the symplectic
Jordan algebra (J, ω). This theorem states that for any invertible linear
transformation g : J → J , there exists an invertible linear transformation
h : J → J such that h(x)y = xg(y) for all x, y ∈ J . Let J ′ = g(J) and define
the bilinear form ω′(x′, y′) = ω(g−1(x′), g−1(y′)) on J ′. We want to show that
(J ′, ω′) is also a symplectic Jordan algebra.



30 A. Assiry

To do this, we need to show that ω′ is non-degenerate and satisfies the
symplectic identity. First, we show that ω′ is non-degenerate. Suppose y′ ∈
J ′ is such that ω′(x′, y′) = 0 for all x′ ∈ J ′. Then, for any x ∈ J , we have
ω(g−1(x), y′) = 0. Since g is invertible, we can solve for x to get x = g−1(g(x))
and substitute to get ω(x, g−1(y′)) = 0. This holds for all x ∈ J , so by non-
degeneracy of ω, we must have g−1(y′) = 0, and therefore y′ = g(0) = 0.
Thus, ω′ is non-degenerate.

Next, we show that ω′ satisfies the symplectic identity. Let x′, y′, z′ ∈ J ′.
Then, we have:

ω′(x′, y′z′) = ω(g−1(x′), g−1(y′z′)) = ω(g−1(x′), g−1(y)g−1(z))

= ω(g−1(x′), g−1(z)g−1(y)) = ω′(x′, z′y′)

where we used the fact that g−1 is a linear transformation and therefore
commutes with multiplication in J ′. Thus, ω′ satisfies the symplectic identity
and (J ′, ω′) is a symplectic Jordan algebra.

Now, by Corollary 2.5, there exists a non-degenerate r′-matrix on J ′ sat-
isfying τ(r′) = −r′ and CJ ′(r′) = 0 such that ω′ = ω′U ′, where U ′ is the
endomorphism associated with r′. We want to use this result to find a non-
degenerate r-matrix on J satisfying τ(r) = −r and CJ(r) = 0 such that
ω = ωU , where U is the endomorphism associated with r.

To do this, let r = g−1(r′). Then r is a non-degenerate r-matrix on J

satisfying τ(r) = −r and CJ(r) = 0 (since CJ(r) = g−1(CJ ′(g(r))) = 0).
Moreover, we have ω = ωU , where U is the endomorphism associated with
r. This can be shown as follows:

ω(x, y) = ω′(g(x), g(y)) = ω′(x, yU ′) = ω(xU, y),

where U = g−1(U ′). Therefore, we have found the desired r-matrix that
satisfies the conditions of the theorem.

3 Yang-Baxter-likeMatrix Equation (YBME)

The Yang-Baxter-like Matrix Equation (YBME): AXA = XAX , is a matrix
equation that involves a symmetric matrix A and another matrice X , one of
which is known and the other is unknown. While the equation may appear
simple, it is a challenging task to solve it for a general matrix A, as it is
equivalent to solving a quadratic system with n2 equations in n2 variables.
This means that for an n x n matrix A, there are n4 variables to solve for,
making the problem computationally intensive.
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Despite the difficulty of solving YBME for a general matrix A, some
progress has been made in finding solutions for specific matrices with certain
structures. Only a limited number of such matrices have had all their com-
mutable solutions of Equation (1) found. Commutable solutions are those
that satisfy AX = XA, and are of particular interest in applications such as
quantum mechanics and statistical physics.

Several references have presented solutions for specific matrices, includ-
ing Hietarinta and Viallet’s work on the general solution of YBME for 3x3
matrices [14], and Hlavaty’s work on commutable solutions of the YBME for
a class of matrices [15]. However, finding solutions for a general matrix A
remains an open problem. We can also refer to [2, 13, 12]

Example 3.1. [17] For a ∈ R∗, we consider the following matrix









0 0 0 i
a

0 0 i 0
0 i 0 0
ai 0 0 0









.

The following formula holds:

eπN + I2 = 04, N, I2, 04 ∈ M4(C) (3.1)

For x ∈ C, let R(x) = cosxI2+sin xN = exN : (C×C)⊗2 → (C×C)⊗2.
It satisfies the colored Yang-Baxter equation:

R12(x) ◦R23(x+ y) ◦R12(y) = R23(y) ◦R12(x+ y) ◦R23(x) ∀x, y ∈ C (3.2)

In [16], the authors create algorithms that can effectively solve the ra-
tional YB-like matrix equation XAX = AXA.. We have developed these
algorithms based on newly derived solution representations to the desired
matrix equation. To accomplish this, we have employed a novel approach
utilizing the class of {2, 5}-inverses of a nonzero matrix M, which we refer to
as commuting outer inverses of M. These algorithms involve solving a system
of linear matrix equations subject to exact rank conditions, which can be
approached using various methods. In our study, we have utilized exact and
numerical solutions to these matrix equations in a computer algebra system.
We then utilized commuting outer inverses of M to define a relevant projector
P and two appropriate choices of a matrix B, which we then used to define a
collection of solutions to the YB-like matrix equation. Our research outcomes
include several equivalent characterizations and initiated representations of
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M(2, 5)R(E), N(F ), the investigation of necessary and sufficient conditions
when M(2)R(E), N(F ) becomes M(2, 5)R(E), N(F ), proposed results about
the requirement M(2)R(E), N(F ) ∈ M{2, 5} as well as computational pro-
cedures for obtaining M(2, 5)R(E), N(F ), algorithms for solving YB-like ma-
trix equations with constant entries or entries given as rational functions with
several variables, and the implementation of the proposed algorithms in the
MATHEMATICA computer algebra system.

Now, Lie algebras and Jordan algebras are the two primary non-associative
structures, with Jordan algebras being less widely known but having various
applications in fields such as physics, differential geometry, ring geometries,
quantum groups, analysis, and biology. The formulas above provide a way
to unify associative algebras and Lie (super-)algebras through the concept of
Yang-Baxter structures. When dealing with invertible elements of a Jordan
algebra, one can link them to a symmetric space and ultimately a Yang-
Baxter operator, thereby treating the Yang-Baxter equation as a unifying
equation. Another approach to unify these structures will be introduced
later.

Definition 3.2. A ”UJLA structure” ( unification of associative algebras
and Lie) is a pair (E, η), where E is a vector space and η : E ⊗E → E is a
linear map defined as η(x⊗y) = xy for all x, y ∈ E. The following equations
must hold for all x, y, z ∈ E:

(xy)z + (yz)x+ (zx)y = x(yz) + y(zx) + z(xy), (13)

x2yx = x2(yx), (xy)x2 = x(yx2), (yx2)x = (yx)x2, x2(xy) = x(x2y).

The properties of UJLA structures can be decoded in the characteris-
tics of Jordan algebras, Lie algebras, and (non-unital) associative algebras,
which unifies these structures. This unification is similar to the way quantum
computers operate.

Theorem 3.3. Given a vector space E, a linear map f : E → k with e ∈ E

such that f(e) = 1, and α, β ∈ k, we can associate the following structures:
(i) (E,M, e), which is a unital associative algebra with M(x ⊗ y) := x.y :=
f(x)y + xf(y)− f(x)f(y)e; (ii) (E, [, ]), a Lie algebra where [a, b] = f(a)b−
af(b); (iii) (E, µ), a Jordan algebra where µ(x ⊗ y) = f(x)y + xf(y); (iv)
(E,Mα,β), a UJLA structure where Mα,β(x⊗ y) = αf(x)y + βxf(y).

These structures possess the properties of unital associative algebras, Lie
algebras, Jordan algebras, and UJLA structures, and can be applied to the
study of various mathematical and physical systems.
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Proof. Let us consider the algebra with the operation ”·” (defined above as
M(x⊗y)) and the identity element e. We want to show that ”·” is associative
and that the Jacobi identity holds for the given case.

(i) Associativity:
To prove that ”·” is associative, we need to show that (a · b) · c = a · (b · c)

for all a, b, c in the algebra. Using the definition of ”·”, we have:

(a · b) · c = f(a)f(b)c+ f(a)f(c)b− f(a)f(b)f(c)e

+ f(a)f(b)c+ af(b)f(c)− f(a)f(b)f(c)e− f(a)f(b)z

a · (b · c) = f(a)f(b)c+ f(a)bf(c)− f(a)f(b)f(c)e

+ af(b)f(c)− f(a)f(b)f(c)e− f(a)f(b)z

Thus, we can see that (a · b) · c = a · (b · c), and ”·” is associative.
(ii) Jacobi identity:
To show that the Jacobi identity holds, we need to verify that:
(a · b) · c+ (b · c) · a + (c · a) · b = 0
Using the definition of ”·”, we have:
(a · b) · c = f(a)f(b)c+ f(a)f(c)b− f(a)f(b)f(c)e− f(a)f(b)z
(b · c) · a = f(b)f(c)a+ f(b)f(a)c− f(b)f(a)f(c)e− f(b)f(a)z
(c · a) · b = f(c)f(a)b+ f(c)f(b)a− f(c)f(a)f(b)e− f(c)f(a)z
Adding the above equations, we get:

(a · b) · c+ (b · c) · a+ (c · a) · b =

(f(a)f(b)c+ f(a)f(c)b− f(a)f(b)f(c)e− f(a)f(b)z) + (f(b)f(c)a

+ f(b)f(a)c− f(b)f(a)f(c)e− f(b)f(a)z) + (f(c)f(a)b+ f(c)f(b)a

− f(c)f(a)f(b)e− f(c)f(a)z)

Simplifying this equation, we get:
(a · b) · c+ (b · c) · a + (c · a) · b = f(a)f(b)c− f(b)f(c)a+ f(c)f(a)b = 0
Thus, we can see that the Jacobi identity holds, and the proof is complete.
(iii) and (iv) cases are left as an exercise for the reader.

The theorem mentioned above states that given a set S and a function
f : S → S, the operation defined by a · b = f(a)b + af(b) − f(a)f(b) for
all a, b ∈ S give a rise to a non-associative algebraic structure like Lie alge-
bras. This means that the operation bracket [., .] does not necessarily satisfy
the associative property, which is a defining characteristic of many familiar
algebraic structures, such as groups, rings, and fields.
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By constructing non-associative structures using this operation, the the-
orem provides new examples of algebraic structures beyond the usual asso-
ciative ones. Moreover, the fact that the theorem produces such structures
using a general function f implies that there is a wide variety of possible
non-associative structures that can be created, depending on the choice of f .

Furthermore, despite the non-associativity of these structures, the theo-
rem reveals that they all share some common information. Specifically, the
Jacobi identity holds for any triple of elements a, b, c ∈ S, where · is de-
fined by a · b = f(a)b + af(b) − f(a)f(b). The Jacobi identity is a property
that appears in a variety of mathematical contexts and is often associated
with certain kinds of symmetry and structure. The fact that this property is
present in all structures defined by the operation · suggests that there may
be deeper connections between these structures and other mathematical con-
cepts.
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