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Abstract

Metallic ratios define a set of related ratios that are among the

most significant real numbers and are used, in this paper, to solve

several Diophantine Equations. The method used to solve the supplied

problems is simple and provides direction for solving countless other

analogous equations.

1 Introduction

In this paper, we shall be mainly concerned with the integer solutions of the
Diophantine equations

x2 − 5kxy + (6k2 − 1)y2 = ±1 (1.1)
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It should be noted that solving (1.1) in its current form is extremely
difficult; that is, we cannot determine how many solutions (1.1) has and
what they are. As a result, depending on the methods used in [1, 2], we
must convert (1.1) into a suitable Diophantine equation that can be solved
easily.

We present a pair of equations and provide their solutions using successive
convergence of continued fraction expansion corresponding to the kth metallic
ratio. Then we transform the Diophantine equations (1.1) into the provided
equation form.

2 The Diophantine equations x2−kxy−y2 = ±1

The main goal of this section is to solve the equations

x2 − kxy − y2 = ±1, (2.2)

where x and y are both positive integers.

The pair of Diophantine Equations (2.2) can be solved using a variety of
methods. However, we will adopt the which is continued fraction expansion
method.

Theorem 2.1. The continued fraction expansion of the kth metallic ratio is:√
k2 + 4 + k

2
= [k, k].

Proof. Let

√
k2 + 4 + k

2
be the kth metallic ratio, the largest root of the

equation x2 − kx − 1 = 0. In the following, we will derive the continued
fraction expansion of this number. Recall that, the kth metallic ratio is the

reciprocal of the real number

√
k2 + 4− k

2
, which we can derive its continued

fraction expansion easily.
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Let √
k2 + 4− k

2
=

1√
k2 + 4 + k

2

=
1

k +

√
k2 + 4− k

2

=
1

k +
1

k +

√
k2 + 4− k

2

=
1

k +
1

k +
1

k +
1

k +
1

k + · · ·

Then the desired continued fraction expansion of the kth metallic ratio
ratio is:

√
k2 + 4 + k

2
= 4 +

1

k +
1

k +
1

k +
1

k +
1

k + · · ·

= [k, k].

(2.3)

Theorem 2.2. Let
p2n

q2n
and

p2n+1

q2n+1

be the even and the odd convergence of

the continued fraction expansion of the kth metallic ratio ratio, respectively.

Then

p22n+1 − kp2n+1q2n+1 − q22n+1 = 1 and p22n − kp2nq2n − q22n = −1
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Proof. It is clear that

pn+2

qn+2

= [k, k, . . . , k
︸ ︷︷ ︸

n times

, k, k]

= [k, k, k, k, . . . , k
︸ ︷︷ ︸

n times

]

= k +
1

k +
1
pn

qn

=
(k2 + 1)pn + kqn

kpn + qn

.

Then
p2
n+2 − kpn+2qn+2 − q2

n+2

= ((k2 + 1)pn + kqn)
2 − k((k2 + 1)pn + kqn)(kpn + qn)

−(kpn + qn)
2

= (k2 + 1)2p2
n
+ 2k(k2 + 1)pnqn + k2q2

n
− k2(k2 + 1)p2

n

−k3pnqn − k(k2 + 1)pnqn − k2q2
n
− k2p2

n
− 2kpnqn − q2

n

= p2
n
− kpnqn − q2

n
.

Since c0 =
p0

q0
=

k

1
and c1 = [k, k] =

p1

q1
=

k2 + 1

k
, p0 = k, q0 = 1, p1 =

k2 + 1, q1 = k. Therefore,

p20 − kp0q0 − q20 = −1 and p21 − kp1q1 − q21 = 1.

We get

p22n+1 − kp2n+1q2n+1 − q22n+1 = 1

and

p22n − kp2nq2n − q22n = −1.

Using the successive convergence of the continued fraction expansion of the
kth metallic ratio, we had determined all possible solutions in the positive
integers for these two Diophantine equations described in (1.1).

In fact, let
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c0 =
p0

q0
=

k

1
,

c1 = [k, k] =
p1

q1
= k +

1

k
=

k2 + 1

k
,

c2 = [k, k, k] =
p2

q2
= k +

1

k +
1

k

=
k3 + 2k

k2 + 1
,

c3 = [k, k, k, k] =
p3

q3
= k +

1

k +
1

k +
1

k

=
k4 + 3k2 + 1

k3 + 2k
,

c4 = [k, k, k, k, k] =
p4

q4
=

k5 + 4k3 + 3k

k4 + 3k2 + 1
,

c5 = [k, k, k, k, k, k] =
p5

q5
=

k6 + 5k4 + 6k2 + 1

k5 + 4k3 + 3k
,

. . . etc.

We can see that c0, c2, c4, . . . , c2n, . . . provides solutions to

x2 − kxy − y2 = −1,

and c1, c3, c5, . . . , c2n+1, . . . provides solutions to

x2 − kxy − y2 = 1.

Moreover, by induction, we can prove the following result using induction:

Theorem 2.3. For all n ≥ 1, the above solutions for both sequences c0, c2, c4, . . . , c2n, . . .

and c1, c3, c5, . . . , c2n+1, . . ., fulfill the recurrence relations:

xn+2 = (k2 + 2)xn+1 − xn

yn+2 = (k2 + 2)yn+1 − yn.

3 The Diophantine equations x2−5kxy+(6k2−
1)y2 = ±1

The principal goal of this section is to solve the Diophantine equations

x2 − 5kxy + (6k2 − 1)y2 = ±1 (3.4)
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Note that the Diophantine equations (3.4) can be written as

x2 − 4kxy + 4k2y2 − kxy + 2k2y2 − y2 = ±1

which give

(x− 2ky)2 − k(x− 2ky)y − y2 = ±1.

Let z = x− 2ky. Thus (3.4) becomes

z2 − kzy − y2 = ±1, (3.5)

which takes the same form as equations (2.2).
As a result, the solutions of (3.4) are deduced from the solutions of (3.5)

as follows:
Let (x, y) be solution of (3.5). Then (x+ 2ky, y) is a solution of (3.4).
So (p0+2kq0, q0) (p2+2kq2, q2), (p4+2kq4, q4), . . . , (p2n+2q2n, q2n), . . .

provides solutions to

x2 − 5kxy + (6k2 − 1)y2 = −1

and (p1+2kq1, q1) (p3+2kq3, q3), (p5+2kq5, q5), . . . , (p2n+1+2kq2n+1, q2n+1), . . .
provides solutions to

x2 − 5kxy + (6k2 − 1)y2 = 1,

where
p0

q0
,
p1

q1
,
p2

q2
, . . . ,

p2n

q2n
,
p2n+1

q2n+1

, . . . are the successive convergence of

continued fraction expansion corresponding to the kth metallic ratio.
Furthermore, we see that for n ≥ 1 that the above solutions for both

sequences fulfill the same recurrence relations:

xn+2 = (k2 + 2)xn+1 − xn

yn+2 = (k2 + 2)yn+1 − yn.

4 The Diophantine equations x2 − (k + 4)xy +

(2k + 3)y2 = ±1

Let us solve the Diophantine equations

x2 − (k + 4)xy + (2k + 3)y2 = ±1 (4.6)
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We note that the Diophantine equations (4.6) can be written as

x2 − kxy + 4y2 − kxy + 2ky2 − y2 = ±1

which gives
(x− 2y)2 − k(x− 2y)y − y2 = ±1

Let z = x− 2y. Thus (4.6) becomes

z2 − kzy − y2 = ±1,

which is the same equations of the previous section.
Then, the solutions of (4.6) are deduced as follows:
Let (x, y) be a solution of (3.5). Then (x+ 2y, y) is a solution of (4.6).
So (p0 + 2q0, q0) (p2 + 2q2, q2), (p4 + 2q4, q4), . . . , (p2n + 2q2n, q2n), . . .

provides solutions to

x2 − (k + 4)xy + (2k + 3)y2 = −1

and (p1+2q1, q1) (p3+2q3, q3), (p5+2q5, q5), . . . , (p2n+1+2q2n+1, q2n+1), . . .
provides solutions to

x2 − (k + 4)xy + (2k + 3)y2 = 1,

where
p0

q0
,
p1

q1
,
p2

q2
, . . . ,

p2n

q2n
,
p2n+1

q2n+1

, . . . are the successive convergence of

continued fraction expansion corresponding to the kth metallic ratio.

5 Examples

Example 1
Let us solve the Diophantine equations

x2 − 20xy + 95y2 = ±1. (5.7)

Note that the Diophantine equations (5.7) are particular cases of the
equation (3.4) with k = 4, that can be solved using the 4th metallic ratio
continued fraction expansion.

Using (2.3), it is clear now that the desired continued fraction expansion
of the 4th metallic ratio ratio is provided by the equation:

√
20 + 4

2
= [4, 4].
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Using the successive convergence of the continued fraction expansion of
the 4th metallic ratio, one can determine all possible solutions in the positive
integers of these two Diophantine equations described in (5.7).

In fact, let

c0 =
p0

q0
=

4

1
,

c1 = [4, 4] =
p1

q1
=

17

4
,

c2 = [4, 4, 4] =
p2

q2
=

72

17
,

c3 = [4, 4, 4, 4] =
p3

q3
=

305

72
,

c4 = [4, 4, 4, 4, 4] =
p4

q4
=

1292

305
,

c5 = [4, 4, 4, 4, 4, 4] =
p5

q5
=

5473

1292
, . . .

We can see that c0, c2, c4, . . . , c2n, . . . provides solutions to

x2 − 4xy − y2 = −1,

and c1, c3, c5, . . . , c2n+1, . . . provides solutions to

x2 − 4xy − y2 = 1.

Specifically, (4, 1), (72, 17), (1292, 305), . . . are solutions of

x2 − 4xy − y2 = −1,

and (17, 4), (305, 72), (5473, 1292), . . . are solutions of

x2 − 4xy − y2 = 1.

Then (12, 1), (208, 17), (3732, 305), . . . , (p2n + 8q2n, q2n), . . . are solutions of

x2 − 20xy + 95y2 = −1,

and (49, 4), (881, 72), (15809, 1292), . . . , (p2n+1 + 8q2n+1, q2n+1), . . . are solu-
tions of

x2 − 20xy + 95y2 = 1.
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Example 2 Let us solve the Diophantine equations

x2 − 8xy + 11y2 = ±1. (5.8)

Note that the Diophantine equations (5.8) are particular cases of the
equation (4.6) with k = 4, that can be solved using the 4th metallic ratio
continued fraction expansion.

Then

(6, 1), (106, 17), (1902, 305), . . . , (p2n + 2q2n, q2n), . . .

are solutions of
x2 − 8xy + 11y2 = −1,

and

(17, 4), (305, 72), (5473, 1292), . . . , (p2n+1 + 2q2n+1, q2n+1), . . .

are solutions of
x2 − 8xy + 11y2 = 1.
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