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Abstract

In this paper, we introduce a new differential form of an asset price.

This form is proposed by considering various factors such as demand

and supply on the asset, stochastic volatility, transaction costs and

jumps. The new differential form extends an original logistic geometric

Brownian motion by adding transaction cost and jump terms. More-

over, we find a solution for the asset price related to the proposed
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form. Furthermore, we derive Black-Scholes partial differential equa-

tions based on the proposed price process.

1 Introduction

An option is a financial contract in which investors can take benefits in
different ways such as hedging, speculation and arbitrage. The benefits
are taken by transferring risks form the option holder to the option seller.
However, to do this agreement, the option holder has to pay a premium
instead of taking risks. Therefore, the fair premium of an option has gained
interest by many researchers such as Atzberger [1], Belze et al. [2] and
Ghanadian et al. [3]. The well-known model for pricing the option is the
Black-Scholes model which was introduced by Black and Scholes [4] and
Merton [5]. This model is based on a partial differential equation of two
independent variables: underlying asset price and time. However, a few
assumptions are required in the model such as European-style options, no
transaction costs, constant volatility and illiquid market. Also, it is focused
when the underlying asset price follows a geometric Brownian motion. Over
a few decades, many researchers have concentrated on developing the model
in various directions; for example, Amster et al. [6] relaxed the assump-
tion of no transaction costs and then used the hedging technique to find a
new option pricing model. In another direction, it is believed that positive
information may affect demand and supply of an asset. This leads to an over-
bought causing a rapid increase in the asset price. With this effect, Onyango
[7] introduced excess demand functions, which can be used to compute an
equilibrium price, and also introduced a new differential form of asset price
related to the equilibrium price. This asset price process is called a logistic
geometric Brownian motion. Under his differential form, Onyango assumed
various assumptions such as no transaction costs, constant volatility and no
dividend. After that, some researchers have tried to develop the original
logistic geometric Brownian motion by reducing several assumptions and
provided a differential equation model associated to their proposed process.
In 2018, Nyakinda [8] derived a differential equation model associated to the
price process given in [7] by considering transaction costs. In the same year,
Nyakinda [9] replaced the assumption of constant volatility in the original
logistic motion by a stochastic volatility satisfying a geometric Brownian mo-
tion.

For an illiquid market, the investor’s trading affects the asset price due
to a low trading volume. The impact of this trading is called a price impact
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which can be referred as the correlation between trading and the change in
the price of the asset. In 2005, Liu and Yong [10] proposed a price impact
function in an illiquid market and provided a differential form of risky asset
with a price impact term. In 2013, El-Khatib and Hatemi-J [11] extended Liu
and Yong model by adding a jump term due to changes in the asset price. In
2019, Mulambula et al. [12] proposed a logistic geometric Brownian motion
with a jump and also provided a differential equation model under the given
price process.

In this paper, we introduce a new logistic geometric Brownian motion
with a transaction cost and a jump. We also provide the partial differential
equations of the option price corresponding to the proposed process. The
models are derived under the assumptions of non-constant volatility and
stochastic volatility. In Section 2, we introduce the differential form of the
new logistic geometric Brownian motion and investigate the price process.
In Section 3, we formulate a jump diffusion model based on the proposed
motion in case of non-constant and stochastic volatility.

2 Logistic Geometric Brownian Motion

In this section, we introduce a new differential form of the asset price following
logistic geometric Brownian motion with stochastic volatility, transaction
costs and jumps. A logistic geometric Brownian motion of asset price was
first introduced by Onyango who gave the process as follows:

dSt = µSt(S
∗
− St)dt+ σSt(S

∗
− St)dBt, (2.1)

where St is the stock price at time t, S∗ is the equilibrium price, µ is the drift
rate of asset, σ is the constant volatility and Bt is the standard Brownian
motion. In 2018, Nyakinda [8] derived a logistic non-linear Black-Scholes-
Merton partial differential equation when St satisfies the process in equation
(2.1). He also considered a transaction cost in his derivation. Moreover,
it is well-known that the volatility of an asset price is an important factor
affecting the price. Therefore, some models focus on the volatility depending
on several factors, such as stock price and time. Furthermore, the process has
been developed under more general assumptions such as stochastic volatility
and jump of the asset price. In 2018, Nyakinda [9] reduced the constant
volatility assumption in the original logistic motion by assuming that St

satisfies a logistic geometric Brownian motion being of the form:

dSt = µSt(S
∗
− St)dt+ σtSt(S

∗
− St)dB1(t),
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where σt is the stochastic volatility satisfying the following geometric Brownian
motion:

dσt = µσσtdt+ νσσtdB2(t), (2.2)

where µσ and νσ are the mean and variance of asset volatility, respectively,
and B2(t) is the standard Brownian motion. In 2019, Mulambula et al. [12]
proposed a logistic geometric Brownian motion with a jump term and also
derived the non-linear differential equation. The stochastic differential form
is given as:

dSt = (µ− λk)St(S
∗
− St)dt+ σSt(S

∗
− St)dBt + St(S

∗
− St)(qt − 1)dNt,

(2.3)

where µ is the drift rate, λ is the rate at which the jumps happen, qt is
absolute price jump size, k is the average jump size measured as a proportional
increase in the asset price, which is the average of qt − 1, Nt is the Poisson
process generating jumps. The parameter Nt is assumed to be λt. However,
the volatility σ in this process is still assumed to be a constant.

In this work, we combine the ideas of [13], [11], [12] and [9] to construct
a nonlinear Black-Scholes partial differential equation. This model is derived
based on more general assumptions. The differential form of the risky asset
St proposed is as follows:

dSt = (µ− λk)St(S
∗
− St)dt+ σtSt(S

∗
− St)dB1(t) + St(S

∗
− St)(qt − 1)dNt

+ κ(St, t)St(S
∗
− St)dθt,

where σt is the stochastic volatility defined in equation (2.2), B1(t) is stan-
dard Brownian motion, κ(St, t) is the transaction cost and θt is the number
of shares of the risky asset. We assume that the number of shares of the
risky asset satisfies the following condition:

dθt = ηtdt+ ζt
(

dB1(t) + bdMt

)

,

where ηt and ζt are adapted processes, b is a real constant,Mt = Nt−λt is the
compensated Poisson process associated to a Poisson process (Nt)t∈[0,T ] with
intensity λ. The equilibrium price S∗ is assumed to be a positive constant.
Therefore, we can write dSt as

dSt =
[

(µ− λk)St(S
∗
− St) + κ(St, t)St(S

∗
− St)ηt − λκ(St, t)St(S

∗
− St)bζt

]

dt

+
[

σtSt(S
∗
− St) + κ(St, t)St(S

∗
− St)ζt

]

dB1(t)

+
[

St(S
∗
− St)(qt − 1) + κ(St, t)St(S

∗
− St)bζt

]

dNt
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which can also br rewritten as

dSt = p(St, t)dt+ u(St, t)dB1(t) + v(St, t)dNt, (2.4)

where

p(St, t) = St(S
∗
− St)

(

(µ− λk) + κ(St, t)ηt − λκ(St, t)bζt

)

u(St, t) = St(S
∗
− St)

(

σt + κ(St, t)ζt

)

v(St, t) = St(S
∗
− St)

(

(qt − 1) + κ(St, t)bζt

)

.

Consequently, we can write dSt in the above equation as

dSt

St(S∗ − St)
=
p(St, t)dt+ u(St, t)dB1(t) + v(St, t)dNt

St(S∗ − St)
. (2.5)

Starting from the above equation, we can investigate the price process by
using partial fraction technique and Itô lemma. The result is provided in the
following theorem:

Theorem 2.1. Suppose that St satisfies the differential form in equation

(2.4) and is positive for all t ≥ 0. Then

St =















S∗S0

S0 −
∣

∣S0 − S∗

∣

∣ exp(C(t))
, St > S∗

S∗S0

S0 +
∣

∣S0 − S∗

∣

∣ exp(C(t))
, St < S∗,

where

C(t) =
1

2

∫ t

0

[ 1

S2
s

−
1

(Ss − S∗)2

]

u2(Ss, s)ds

+

∞
∑

n=2

(−1)n

n

∫ t

0

[ 1

Sn
s

−
1

(Ss − S∗)n

]

vn(Ss, s)dNs

+ S∗

∫ t

0

[p(Ss, s)ds+ u(Ss, s)dB1(s) + v(Ss, s)dNs

Ss(S∗ − Ss)

]

.

Proof. Equation (2.5) can be simplified to;

1

S∗

[

1

St − S∗
−

1

St

]

dSt =
p(St, t)dt+ u(St, t)dB1(t) + v(St, t)dNt

St(S∗ − St)
. (2.6)
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By applying the multidimensional Itô lemma, we have

d ln(St) =
1

St

dSt −
1

2S2
t

(dSt)
2 +

1

3S3
t

(dSt)
3
−

1

4S4
t

(dSt)
4
− ...

which implies that

1

St

dSt = d ln(St) +
1

2S2
t

(dSt)
2
−

1

3S3
t

(dSt)
3 +

1

4S4
t

(dSt)
4
− ...

= d ln(St) +
1

2S2
t

(

u2(St, t)dt+ v2(St, t)dNt

)

−
1

3S3
t

v3(St, t)dNt

+
1

4S4
t

v4(St, t)dNt + ... (2.7)

Similarly, applying the multidimensional Itô lemma, we obtain

1

St − S∗
dSt = d ln(St − S∗) +

1

2(St − S∗)2

(

u2(St, t)dt+ v2(St, t)dNt

)

−
1

3(St − S∗)3
v3(St, t)dNt +

1

4(St − S∗)4
v4(St, t)dNt − ...

(2.8)

From equations (2.6), (2.7) and (2.8), we obtain

d ln(St − S∗)− d ln(St) =
1

2

[ 1

S2
t

−
1

(St − S∗)2

]

u2(St, t)dt

+

∞
∑

n=2

(−1)n

n

[ 1

Sn
t

−
1

(St − S∗)n

]

vn(St, t)dNt

+ S∗

[

p(St, t)dt+ u(St, t)dB1(t) + v(St, t)dNt

St(S∗ − St)

]

.

Integrating this equation over the interval [0, t], we get

ln

∣

∣

∣

∣

St − S∗

St

∣

∣

∣

∣

= ln

∣

∣

∣

∣

S0 − S∗

S0

∣

∣

∣

∣

+ C(t), (2.9)

where

C(t) =
1

2

∫ t

0

[ 1

S2
s

−
1

(Ss − S∗)2

]

u2(Ss, s)ds

+

∞
∑

n=2

(−1)n

n

∫ t

0

[ 1

Sn
s

−
1

(Ss − S∗)n

]

vn(Ss, s)dNs

+ S∗

∫ t

0

[p(Ss, s)ds+ u(Ss, s)dB1(s) + v(Ss, s)dNs

Ss(S∗ − Ss)

]

.
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By deriving the above equation for the cases St > S∗ and St < S∗, the proof
of the theorem is complete.

Corollary 2.2. Suppose that St satisfies the differential form in equation

(2.3) and is positive for all t ≥ 0. Then

St =















S∗S0

S0 −
∣

∣S0 − S∗

∣

∣ exp(C(t))
, St > S∗

S∗S0

S0 +
∣

∣S0 − S∗

∣

∣ exp(C(t))
, St < S∗,

where

C(t) =
1

2

∫ t

0

σ2S∗(S∗
− 2Ss)ds+

∞
∑

n=2

(−1)n

n

∫ t

0

(

(S∗
− Ss)

n
− Sn

s

)

(qs − 1)ndNs

+ S∗

∫ t

0

[

(µ− λk)ds+ σdBs + (qs − 1)dNs

]

.

Proof. The proof follows immediately by replacing κ(Ss, s) = 0 in the above
theorem.

Remark 2.3. From equation (2.9), note that if S0 > S∗ and St > S∗ for

t > 0, then the equation can be rewritten as

ln

(

St

S0

)

= ln

(

St − S∗

S0 − S∗

)

− C(t).

From the above equation, the expected log-return equals the expected log-
return adjusted by S∗ minus E(C(t)). For example, if St satisfies equation
(2.1), then

C(t) = µt+ σB(t) +
σ2

2

∫ t

0

(S∗
− 2Ss)ds.

Therefore,

E(Rt) = E(R∗

t )− µt−
σ2S∗t

2
− σ2

∫ t

0

E(Ss)ds,

where Rt and R∗

t are the log-return and the log-return adjusted by S∗,
respectively.
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3 Derivation of Logistic Black-Scholes Partial

Differential Equation

In this section, we derive generalized versions of logistic Black-Scholes partial
differential equation in two cases. With the assumption of non-constant
volatility, the equation is derived based on hedging technique in section 3.1.
For the assumption of stochastic volatility, it is investigated via the arbitrage
approach in section 3.2. In the above two cases, transaction cost and price
jump are also considered.

3.1 Logistic Black-Scholes Equation with Non-constant

Volatility

In this section, the Logistic Black-Scholes equation is derived when the asset
price St follows the proposed process in equation (2.4) and its volatility is
not assumed to be a constant. This model is derived based on a hedging
approach consisting of several steps. To investigate the equation, we first
need an Itô formula of a function of an asset price associated to equation
(2.4). The statement and proof are given as follows:

Proposition 3.1. Let f(St, t) be at least a twice differentiable function where

St satisfies equation (2.4). If the asset price jumps from St to qtSt in the small

time interval dt, then the differential of f(St, t) is given by

df(St, t) =
∂f(St, t)

∂t
dt+ p(St, t)

∂f(St, t)

∂St

dt+ u(St, t)
∂f(St, t)

∂St

dB1(t)

+
1

2
u(St, t)

2∂
2f(St, t)

∂S2
t

dt+
[

f(qtSt, t)− f(St, t)
]

dNt.

Proof. Let f(St, t) be at least a twice differentiable function. By Taylor’s
expansion and the properties that (dt)2 = 0 and dStdt = 0, we have

df(St, t) =
∂f(St, t)

∂t
dt+

∂f(St, t)

∂St

dSt +
1

2

∂2f(St, t)

∂S2
t

(dSt)
2.
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Substituting equation (2.4) into the above equation, we obtain

df(St, t) =
∂f(St, t)

∂t
dt+ p(St, t)

∂f(St, t)

∂St

dt

+ u(St, t)
∂f(St, t)

∂St

dB1(t) +
1

2
u(St, t)

2∂
2f(St, t)

∂S2
t

dt

+

[

v(St, t)
∂f(St, t)

∂St

+
1

2
v(St, t)

2∂
2f(St, t)

∂S2
t

]

dNt. (3.10)

The last term in equation (3.10) is considered as the difference in the option
value when a jump occurs. By the assumption, the last term can be written

as
[

f(qtSt, t)− f(St, t)
]

dNt; that is,

df(St, t) =
∂f(St, t)

∂t
dt+ p(St, t)

∂f(St, t)

∂St

dt+ u(St, t)
∂f(St, t)

∂St

dB1(t)

+
1

2
u(St, t)

2∂
2f(St, t)

∂S2
t

dt+
[

f(qtSt, t)− f(St, t)
]

dNt.

The proof is now complete.

Now, we are ready to construct the option pricing model using a hedging
technique. The steps of this approach consist of the following. First, we set
up a self-financing portfolio Π with a long position in the option f(St, t) and
short position in some quantity ∆ of the underlying asset St; that is,

Π = f(St, t)−∆St.

Also, by the idea of hedging, this portfolio is supposed to be risk-free.
As time changes from t to t+ dt, the self-financing portfolio means that the
change in the value of the portfolio is due only to changes in the value of the
assets. This assumption implies that

dΠ = df(St, t)−∆dSt.

Next, by the risk-free property of the portfolio, we choose ∆ in the equation
so that the term relating to randomness is zero.
Finally, the portfolio must earn the risk-free interest rate due to the risk-free
property of the portfolio. Thus

dΠ = rΠdt,

where r is the risk-free interest rate. The model is provided in the following
Theorem:
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Theorem 3.2. Let f(St, t) be an option price at time t. Suppose that St sat-

isfies equation (2.4). Then the partial differential equation for the European

call option price is as follows:

∂f(St, t)

∂t
− St

[

(S∗
− St)

(

λ[qt − 1] + κ(St, t)bζtλ
)

− r
]∂f(St, t)

∂St

+
1

2

[

σtSt(S
∗
− St) + κ(St, t)St(S

∗
− St)ζt

]2∂2f(St, t)

∂S2
t

− rf(St, t)

+ λE
[

f(qtSt, t)− f(St, t)
]

= 0.

Proof. First, we construct a self-financing portfolio Π. Consider the situation
that we buy one option at f(St, t) and hedge with ∆ shares of St, the portfolio
Π will be set as

Π = f(St, t)−∆St, (3.11)

where St is the underlying asset price, ∆ is number of shares of St and f(St, t)
is the option price. By assuming self-financing portfolio, the change in the
portfolio value over dt is

dΠ = df(St, t)−∆dSt. (3.12)

Substituting (2.4) and Proposition (3.1) into (3.12), we get

dΠ = df(St, t)−∆dSt

=

(

∂f(St, t)

∂St

−∆

)

[

p(St, t)dt+ u(St, t)dB1(t)
]

+
∂f(St, t)

∂t
dt

+
1

2
u(St, t)

2∂
2f(St, t)

∂S2
t

dt+
[

f(qtSt, t)− f(St, t)
]

dNt −∆v(St, t)dNt.

(3.13)

Next, we consider the risk-free property of this portfolio. Thus the term
involving the Brownian motion dB1(t) is zero. This implies that

∆ =
∂f(St, t)

∂St

. (3.14)

Substituting (3.14) into (3.13), we have

dΠ =
∂f(St, t)

∂t
dt+

1

2
u(St, t)

2∂
2f(St, t)

∂S2
t

dt

+
[

f(qtSt, t)− f(St, t)
]

dNt −
∂f(St, t)

∂St

v(St, t)dNt. (3.15)
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Finally, by the risk-free condition, the portfolio earns the risk-free rate. We
have the equation dΠ = rΠdt. By (3.11), (3.15) and (3.14), the equation
becomes

∂f(St, t)

∂t
dt+

1

2
u(St, t)

2∂
2f(St, t)

∂S2
t

dt+
[

f(qtSt, t)− f(St, t)
]

dNt

−
∂f(St, t)

∂St

v(St, t)dNt = r
(

f(St, t)−
∂f(St, t)

∂St

St

)

dt.

Taking the expectation to the above equation, we get

∂f(St, t)

∂t
− St

[

(S∗
− St)

(

λ[qt − 1] + κ(St, t)bζtλ
)

− r
]∂f(St, t)

∂St

+
1

2
u(St, t)

2∂
2f(St, t)

∂S2
t

− rf(St, t) + λE
[

f(qtSt, t)− f(St, t)
]

= 0. (3.16)

The proof is now complete.

From equation (3.16), note that if there is no transaction cost term, then
equation (3.16) reduces to equation (34) given in [12]. In the next section,
we extend the Black-Scholes model by considering a random part of the
asset volatility. The stochastic volatility is assumed to satisfy a geometric
Brownian motion given in (2.2).

3.2 Derivation of logistic Black-Scholes partial

differential equation with stochastic volatility,

transaction costs and jumps

In this section, we derive the stochastic differential equation of the op-
tion price when the stochastic volatility is assumed to satisfy a geometric
Brownian motion in equation (2.2). We derive this model based on an arbi-
trage technique consisting of several steps. First, we construct a self-financing
portfolio Vt with the risk-free asset and the risky asset. By the idea of this
method, we assume that, at each time t, the value of the option f(St, σt, t)
must be equal to the value of the self-financing portfolio Vt and so are their
differential forms. Thus the differential form of portfolio Vt and option price
f(St, σt, t) are also investigated. In the last step, the coefficients in the dif-
ferential forms are compared in both random and non-random parts.

Let T be a maturity date and let (Vt)t∈[0,T ] be a wealth process of a self-
financing portfolio, At is the risk-free asset, (ψt)t∈T and θt denote the number
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of units invested in the risk-free and risky assets, respectively. Then the value
of the portfolio is given by

Vt = ψtAt + θtSt.

Assume that the price of the risk-free asset is

dAt = r(St, t)Atdt, t ∈ [0, T ].

By the self-financing assumption, this implies that

dVt = ψtdAt + θtdSt.

By the above equations and (2.4), we get

dVt =

(

Vt − θtSt

At

)

(

r(St, t)Atdt
)

+ θtdSt

=

[

r(St, t)Vt − r(St, t)θtSt + θtp(St, t)

]

dt

+ θtu(St, t)dB1(t) + θtv(St, t)dNt. (3.17)

In order to prove the main theorem, we need a multivariate Itô lemma for
jump-diffusion processes in the case that St satisfies equation (2.4). This
lemma aims to find a differential form of option price f(St, σt, t). We prove
Proposition (3.3) by combining an idea in Itô lemma for jump-diffusion
processes in [11] and multivariate Itô lemma in [14]. Our proposition is
stated as follows:

Proposition 3.3. Let f(St, σt, t) be the price of a European option and con-

tinuously twice differentiable function where St and σt satisfy equations (2.4)
and (2.2), respectively. If the asset price jumps from St to qtSt in the small

time interval dt, then the differential of f(St, σt, t) is given by

df(St, σt, t) =
∂f(St, σt, t)

∂St

k(St, σt, t) +
∂f(St, σt, t)

∂σt

[

µσσtdt + νσσtdB2(t)

]

+
∂f(St, σt, t)

∂t
dt+

∂2f(St, σt, t)

∂St∂σt
u(St, t)νσσtρdt

+
1

2

∂2f(St, σt, t)

∂S2
t

u(St, t)
2dt+

1

2

∂2f(St, σt, t)

∂σ2
t

ν2σσ
2
t dt

+

[

f(qtSt, σt, t)− f(St, σt, t)

]

dNt, (3.18)

where k(St, σt, t) = dSt − v(St, t)dNt.
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Proof. By Taylor expansion, we have

df(St, σt, t) =
∂f(St, σt, t)

∂St

dSt +
∂f(St, σt, t)

∂σt
dσt +

∂f(St, σt, t)

∂t
dt

+
1

2

∂2f(St, σt, t)

∂S2
t

(dSt)
2 +

∂2f(St, σt, t)

∂St∂σt
dStdσt

+
1

2

∂2f(St, σt, t)

∂σ2
t

(dσt)
2. (3.19)

Next, we compute (dSt)
2, dStdσt and (dσt)

2. We apply Itô multiplication
table for the Poisson process into (dSt)

2, dStdσt and (dσt)
2. We get

(dSt)
2 = u(St, t)

2dt+v(St, t)
2dNt, dStdσt = u(St, t)νσσtρdt, (dσt)

2 = ν2σσ
2
t dt.

By plugging equations (2.2), (2.4) and the above three equations into equa-
tion (3.19) and applying the assumption that the jump term dNt can be
written as

(

f(qtSt, σt, t)− f(St, σt, t)
)

dNt into such an equation, our proof is
complete.

The following theorem gives the logistic Black-Scholes partial differential
equation for option pricing with stochastic volatility, transaction costs and
jumps.

Theorem 3.4. Let f(St, σt, t) be a continuously twice differentiable func-

tion. Suppose that St and σt satisfy equations (2.4) and (2.2), respectively.
Then the partial differential equation for the European call option price is as

follows:

r(St, t)Vt − r(St, t)θtSt + θtp(St, t) =
∂f(St, σt, t)

∂St

p(St, t) +
∂f(St, σt, t)

∂t

+
1

2

∂2f(St, σt, t)

∂S2
t

u(St, t)
2 (3.20)

with the terminal condition f(ST , σT , T ) = h(ST ).

Proof. By the arbitrage technique, at each time t, the value of the option
f(St, σt, t) is equal to the value of the portfolio Vt; that is, f(St, σt, t) =
Vt for all t ∈ [0, T ]. This implies that dVt = df(St, σt, t, ) for all t ∈

(0, T ). By comparing the random part dB2(t) in (3.17) and (3.18), we have
∂f(St, σt, t)

∂σt
= 0. With this fact, we consider the given equation by com-

paring the coefficient term of dt in (3.17) and (3.18). We get the partial
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differential equation for the European call option price:

r(St, t)Vt − r(St, t)θtSt + θtp(St, t) =
∂f(St, σt, t)

∂St

p(St, t) +
∂f(St, σt, t)

∂t

+
1

2

∂2f(St, σt, t)

∂S2
t

u(St, t)
2

with the terminal condition f(ST , σT , T ) = h(ST ).

In replicating portfolio Vt, there is the number of unit invested in the risky
asset θt which depends on t. Due to the arbitrage approach, we compare
the coefficients for dB1(t) and dNt in equations (3.17) and (3.18). For the
coefficient of dB1(t), we get

θtSt(S
∗
− St)

[

σt + κ(St, t)ζt

]

=
∂f(St, σt, t)

∂St

St(S
∗
− St)

[

σt + κ(St, t)ζt

]

.

For the coefficient of dNt, we similarly have

θtSt(S
∗
− St)

[

(qt − 1) + κ(St, t)bζt

]

=
[

f(qtSt, σt, t)− f(St, σt, t)
]

.

By comparing the coefficients of dB1(t) and dNt, we obtain the different
values of the number of shares θt. Thus we can not find the number of shares
θt that lead to the value VT = h(ST ) = f(ST , σT , T ). However, we can find
the number of shares θt that minimizes the difference between h(ST ) and VT
when the correlation between dB1(t) and dB2(t) is zero. The result is stated
in the following proposition:

Proposition 3.5. Suppose that the the correlation between dB1(t) and dB2(t)
is zero. Then the number of shares θt that minimizes the variance is given

by

θt =

∂f(St, σt, t)

∂St

u(St, t)
2 + λ

(

f(qtSt, σt, t)− f(St, σt, t)
)

v(St, t)

u(St, t)2 + λv(St, t)2
.

Proof. In this proposition, we find the number of shares θt that minimizes
the distance between payoff of option and portfolio at maturity date T ; that
is, we need to find the θt that solves the following problem:

min
θt

E

[

(h(ST )− VT )
2
]

.
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By using equations (3.17), (3.18) with
∂f(St, σt, t)

∂σt
= 0, we have

VT = V0 +

∫ T

0

[

r(St, t)Vt − r(St, t)θtSt + θtp(St, t)
]

dt+

∫ T

0

θtu(St, t)dB1(t)

+

∫ T

0

θtv(St, t)dNt (3.21)

and

f(ST , σT , T ) = f(S0, σ0, 0) +

∫ T

0

∂f(St, σt, t)

∂St

p(St, t)dt

+

∫ T

0

∂f(St, σt, t)

∂St

u(St, t)dB1(t) +

∫ T

0

∂f(St, σt, t)

∂t
dt

+
1

2

∫ T

0

∂2f(St, σt, t)

∂S2
t

u(St, t)
2dt

+

∫ T

0

[

f(qtSt, σt, t)− f(St, σt, t)
]

dNt. (3.22)

From the terminal condition f(ST , σT , T ) = h(ST ), (3.21) and (3.22), we
have

h(ST )− VT =

∫ T

0

(∂f(St, σt, t)

∂St

− θt

)

u(St, t)dB1(t)

+

∫ T

0

[

f(qtSt, σt, t)− f(St, σt, t)− θtv(St, t)
]

dNt.

In the above equation, the term related to dt vanishes due to the equation
(3.20). By the assumption that the correlation between dB1(t) and dB2(t) is

zero, dB1(t) and dNt are independent, we have E

[

h(ST ) · VT

]

=0. Therefore,

E

[

(

h(ST )− VT
)2
]

= E

[(

∫ T

0

(∂f(St, σt, t)

∂St

− θt
)

u(St, t)dB1(t)
)2]

+ E

[(

∫ T

0

(

f(qtSt, σt, t)− f(St, σt, t)− θtv(St, t)
)

dNt

)2]

= E

[

∫ T

0

(

(∂f(St, σt, t)

∂St

− θt
)

u(St, t)
)2

dt
]

+ E

[

∫ T

0

λ
(

f(qtSt, σt, t)− f(St, σt, t)− θtv(St, t)
)2

dt
]

.
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We will find θt that minimizes the variance by using the derivative test. From
Leibniz integral rule, we can find a critical point by considering an equation:

−2
[∂f(St, σt, t)

∂St

u(St, t)
2 + λ

(

f(qtSt, σt, t)− f(St, σt, t)
)

v(St, t)
]

+ 2θt

[

u(St, t)
2 + λv(St, t)

2
]

= 0

which implies that

θt =

∂f(St, σt, t)

∂St

u(St, t)
2 + λ

(

f(qtSt, σt, t)− f(St, σt, t)
)

v(St, t)

u(St, t)2 + λv(St, t)2
.

Thus we have a critical point. For the second derivative test, we have

2u(St, t)
2 + 2λv(St, t)

2 > 0.

Hence, we get θt as required.

4 Conclusions

An extended version of the differential form of an asset price satisfying a
logistic geometric Brownian motion was introduced by adding terms related
to transaction costs and jumps. Moreover, a solution for the proposed process
was also derived. Furthermore, two logistic Black-Scholes partial differential
equations were constructed when the asset volatility was assumed to be non-
constant and stochastic, respectively. Our results differed from previous stud-
ies in which the asset price was more general and realistic than the previous
ones. As a result, this research contributes knowledge to researchers in the
area of Financial Mathematics.
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