Co-Lindelöf Open Sets

Fuad A. Abushaheen¹, Fadi Alrimawi², Hani Kawariq³

¹Basic Science Department
Faculty of Arts and Educational Sciences
Middle East University
Amman, Jordan
and
Applied Science Research Center
Applied Science Private University
Amman, Jordan

²Basic Sciences Department
Faculty of Arts and Sciences
Al-Ahliyya Amman University
Amman, Jordan

³Department of Mathematics
Faculty of Science
Philadelphia University
Jerash, Jordan

email: Fshaheen@meu.edu.jo, f.rimawi@ammanu.edu.jo,
hkawariq@philadelphia.edu.jo

(Received February 23, 2023, Accepted June 10, 2023,
Published August 31, 2021)

Abstract

In this paper, we define a new type of open sets called co-Lindelöf open set (coL-open). Moreover, we obtain several results about co-Lindelöf open sets and study the relation among open set, coc-open set and coL-open. Furthermore, we define separation axioms via coL-open and prove some related results.

Key words and phrases: co-Lindelöf open sets, coL-T_i- spaces $i = 0, 1, 2$, coL-D_i- spaces $i = 0, 1, 2$.

AMS (MOS) Subject Classifications: 54B05, 54B10, 54D20.

ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net
1 Introduction

One of the interesting problems in topology is to define weaker and stronger forms of open sets. When topologists construct a new type of open sets, several definitions, theorems, examples and open problems appear. For example, Alghour and Samarah [3] defined a co-compact open set as follows:

Definition 1.1. [3] A subset A of a topological space X is called a co-compact open set (in short, coc-open) if for every $x \in A$, there exists an open set $U \subseteq X$ and a compact subset K of X such that $x \in U - K \subseteq A$. The complement of a coc-open subset is called coc-closed. The family of all coc-open subsets of a topological space (X, τ) will be denoted by τ^k.

Theorem 1.2. [3] Let (X, τ) be a space. Then the collection $\mathcal{B}^k(\tau) = \{U - K : U \in \tau \text{ and } K \text{ is a compact subset of } X\}$ forms a base for τ^k.

For more papers about coc-compact spaces, see [1, 2, 5]. For terms and notations not explained in this paper, the reader is referred to [4].

Definition 1.3. A subset A of a topological space (X, τ) is called a co-Lindelöf open set (in short, coL-open) if for every $x \in A$, there exists an open set $U \subseteq X$ and a Lindelöf subset L of X such that $x \in U - L \subseteq A$. The complement of a coc-open subset is called coc-closed. The family of all coc-open subsets of a topological space (X, τ) will be denoted by τ^L.

Lemma 1.4. Let (X, τ) be a topological space. Then the collection τ^L forms a topology on X.

Proof. Let $V_1, V_2 \in \tau^L$ and let $x \in V_1 \cap V_2$. So there are open subsets W_1, W_2 of X and Lindelöf subsets L_1, L_2 of X with $x \in W_1 - L_1 \subseteq V_1$ and $x \in W_2 - L_2 \subseteq V_2$. Consider the subsets $W = W_1 \cap W_2$ and $L = L_1 \cup L_2$. Then W is an open subset of X and L is Lindelöf subset of X with $x \in W - L \subseteq V_1 \cap V_2$. Let $\{V_\alpha | \alpha \in \Delta\}$ be a family of coL-open subsets of X. For $x \in \bigcup_{\alpha \in \Delta} V_\alpha$, there is $\alpha^* \in \Delta$ such that $x \in V_{\alpha^*}$, but $V_{\alpha^*} = U - L$, where U is an open subset of X and L is Lindelöf subset of X. So $x \in U - L \subseteq \bigcup_{\alpha \in \Delta} V_\alpha$.

Clearly $\phi, X \in \tau^L$ and hence the collection τ^L forms a topology on X. \qed

Lemma 1.5. Let (X, τ) be a space. Then $\mathcal{B}^L(\tau) = \{U - L : U \in \tau, L \text{ is a Lindelöf subset of } X\}$ forms a base for τ^L.

Theorem 1.6. For a topological space (X, τ), we have $\tau \subseteq \tau^k \subseteq \tau^L$.

In general, the converse of the second inclusion of the last theorem is not true as can be seen from the following example:

Example 1.7. Let \(X = \mathbb{N} \) and \(\tau = \{ \emptyset, X \} \cup \{ U_n : n \in \mathbb{N} \} \), where \(U_n = \{ n, n+1, n+2, \cdots \} \). Then \(\tau^k = \tau \cup \{ X - K : K \text{ finite} \} \) and \(\tau^L = \tau_{\text{dis}} \) since for \(U_n \in \tau \) and \(U_{n+1} \) a Lindelöf subset of \(X \), we have \(\{ n \} = U_n - U_{n+1} \).

Definition 1.8. A topological space \((X, \tau) \) is called an \(LC \) space if every Lindelöf subset is closed.

Theorem 1.9. For a topological space \((X, \tau) \), the following are equivalent:

1. \((X, \tau) \) is LC,
2. \(\tau = B^L(\tau) \),
3. \(\tau = \tau^k = \tau^L \).

Proof. (1) \(\rightarrow \) (2) For each \(U \in \tau \), \(U - \phi \in B^L(\tau) \), and for \(U - L \in B^L(\tau) \), where \(U \in \tau \) and \(L \) is Lindelöf and hence closed. As a result, \(U - L \in \tau \).

(2) \(\rightarrow \) (3) Since \(\tau = B^L(\tau) \), \(B^L(\tau) \) is a base for \(\tau^L \). Therefore, \(\tau^L \subseteq \tau \).

(3) \(\rightarrow \) (1) Let \(L \) be Lindelöf subset of \(X \). Then \(X - L \in \tau^L = \tau \) and so \(L \) is LC.

Definition 1.10. A topological space \((X, \tau) \) is called a \(p \)-space if the countable union of open subsets of \(X \) is open.

Corollary 1.11. If \((X, \tau) \) is a \(T_2 \) \(p \)-space, then \(\tau = \tau^k = \tau^L \).

Theorem 1.12. If \((X, \tau) \) is a hereditarily Lindelöf space, then \(\tau^L = \tau_{\text{dis}} \).

Proof. For \(x \in X \), \(X - \{ x \} \) is Lindelöf. But \(\{ x \} = X - (X - \{ x \}) \). Therefore, the result follows.

Corollary 1.13. If \((X, \tau) \) is a hereditarily compact space, then \(\tau^L = \tau_{\text{dis}} \).

2 \ coL-\(T \)-spaces and coL-\(D \)-spaces

Definition 2.1. A space \((X, \tau) \) is called a co-Lindelöf-\(T_0 \) space (in short, coL-\(T_0 \)-space) if for all \(x \neq y \in X \), there exists a coL-open set \(U \) containing one point but not the other.
It is clear that every T_0-space is a coL-T_0-space. The indiscrete topology with two points is an example of a coL-T_0-space which is not a T_0-space.

Lemma 2.2. If A is coL-closed subset of X, then $(\tau|_A)^L = \tau^L|_A$.

Proof. (\subseteq) Clear.

(\supseteq) Let $V \in \tau^L|_A$ with $y \in V$. Then there is a τ^L subset W of X with $V = W \cap A$. Similarly for W, there is an open subset U and a Lindelöf subset L with $y \in U - L \subseteq W$. So $y \in (U \cap A) - (L \cap A)$. This means that $U \cap A \in \tau|_A$ and $L \cap A$ is Lindelöf in A. Consequently, the result follows.

Definition 2.3. A subset A of a topological space (X, τ) is called a coL-set if $A = U - V$, for some $U, V \in \tau^L$.

Definition 2.4. A space (X, τ) is called a co-Lindelöf-D_0-space (in short, coL-D_0-space) if, for all $x \neq y \in X$, there exists a coL-D_0-set U containing one point but not the other.

Theorem 2.5. A coL-closed subset of a coL-D_0-space (X, τ) is a coL-D_0-space.

Proof. Let A be a coL-closed subset of X and let $x \neq y \in A$. So there exists a coL-D_0-set $D = U - V$ with $U, V \in \tau^k$ such that $x \in D$ and $y \notin D$. Now, $x \in D \cap A = (U - V) \cap A = (A \cap U) - (L \cap A)$ but $A \cap U$ and $A \cap V \in (\tau|_A)^L = \tau^L|_A$. The result now follows.

Theorem 2.6. A space (X, τ) is a coL-T_0-space if and only if it is a coL-D_0-space.

Proof. (\Rightarrow) This is clear since every proper coL-open subset of X is a coL-D-set.

(\Leftarrow) Let $x \neq y \in X$. Then there exists a coL-D_0-set U containing x with $U = U_1 - U_2$, where $U_1, U_2 \in \tau^L$; i.e., $x \in U_1$ and $x \notin U_2$. For y, we have the following cases:

(1) If $y \notin U_1$, then we are done.

(2) If $y \in U_1$ and $y \notin U_2$, then U_2 contains y but not x.

Definition 2.7. Let (X, τ) be a space and $A \subseteq X$. The coL-closure of A in X, denoted by $\overline{A}^{coL} = \cap\{B : B \text{ is a coL-closed in } X, A \subseteq B\}$.

Theorem 2.8. A space (X, τ) is a coL-T_0-space if and only if for all $x \neq y \in X$, we have $\overline{\{x\}}^{coL} \neq \overline{\{y\}}^{coL}$.
Proof. \((\Rightarrow)\) Let \(x \neq y \in X\). Then there exists a coL- open set \(U\) containing one point but not the other; say, \(x \in U\) and \(y \notin U\). Then \(X - U\) is a coL-closed set containing \(y\) and \(\{y\}^{coL} \subseteq X - U\). So \(x \notin \{y\}^{coL}\). Hence \(\{x\}^{coL} \neq \{y\}^{coL}\).

\((\Leftarrow)\) Let \(x \neq y \in X\). Clearly, \(X - \{y\}^{coL}\) is a coc-open set containing \(x\) but not \(y\). Hence \(X\) is coL-\(T_0\)-space.

\(\Box\)

Definition 2.9. A space \((X, \tau)\) is called a co-Lindelöf-\(T_1\)-space (in short, coL-\(T_1\)-space) if for all \(x \neq y \in X\), there exist coL-open sets \(U_x, V_y\) with \(\{U_x, V_y\} \cap \tau \neq \phi\) such that \(x \in U_x\), \(y \in V_y\) and \(y \notin U_x\), \(x \notin V_y\).

Definition 2.10. A space \((X, \tau)\) is called a co-Lindelöf-\(T_2\)-space (in short, coL-\(T_2\)-space) if for all \(x \neq y \in X\), there exist coL-open sets \(U_x, V_y\) with \(\{U_x, V_y\} \cap \tau \neq \phi\) such that \(x \in U_x\), \(y \in V_y\) and \(U_x \cap V_y = \phi\).

It is clear that if \((X, \tau)\) is a coL-\(T_1\)-space, then \((X, \tau^L)\) is \(T_1\)-space. In addition, every \(T_1\)-space is a coL-\(T_1\)-space. The converse need not be true as the following example shows:

Example 2.11. Let \(X = \mathbb{N}\) and \(\tau = \{\phi, X\} \cup \{U_n : n \in \mathbb{N}\}\), where \(U_n = \{n, n+1, n+2, \cdots\}\). Clearly, \((X, \tau)\) is not a \(T_1\)-space since for \(1, 2 \in X\) each open set containing 1 must contains 2. But \((X, \tau)\) is a coL-\(T_1\)-space and a coL-\(T_2\)-space since \(\tau^L = \tau\).

Theorem 2.12. A space \((X, \tau)\) is a coL-\(T_1\)-space if and only if every singleton is coL-closed.

Definition 2.13. A space \((X, \tau)\) is called co-Lindelöf-\(D_1\)-space (in short, coL-\(D_1\)-space) if for all \(x \neq y \in X\), there exist coL-\(D\)-sets \(U_x, V_y\) such that \(x \in U_x\), \(y \in V_y\) and \(y \notin U_x\), \(x \notin V_y\).

Theorem 2.14. A coL-closed subspace of a coL-\(D_1\)-space \((X, \tau)\) is coL-\(D_1\)-space.

Definition 2.15. A space \((X, \tau)\) is called co-Lindelöf-\(D_2\)-space (in short, coL-\(D_2\)-space) if for all \(x \neq y \in X\), there exist disjoint coL-\(D\)-sets \(U_x, V_y\) such that \(x \in U_x\), \(y \in V_y\) and \(y \notin U_x\), \(x \notin V_y\).

Theorem 2.16. Let \((X, \tau)\) be a topological space. Then

1. If \((X, \tau)\) is a coL-\(T_i\)-space, then \((X, \tau)\) is a coL-\(T_{i-1}\)-space for \(i = 1, 2\).

2. If \((X, \tau)\) is a coL-\(T_i\)-space, then \((X, \tau)\) is a coL-\(D_i\)-space for \(i = 1, 2\).
3. If \((X, \tau)\) is a coL-D\(_i\)-space, then \((X, \tau)\) is a coL-D\(_{i-1}\)-space for \(i = 1, 2\).

4. If \((X, \tau)\) is a coL-D\(_1\)-space, then \((X, \tau)\) is a coL-T\(_0\)-space.

5. \((X, \tau)\) is a coL-D\(_1\)-space if and only if \((X, \tau)\) is a coL-D\(_2\)-space.

Proof. We will prove 5.

\((\Rightarrow)\) Obvious.

\((\Leftarrow)\) For \(x \neq y \in X\), there exist coL-D-sets \(U_1, U_2\) with \(x \in U_1, y \notin U_1\) and \(y \in U_2, x \notin U_1\). Assume \(U_1 = V_1 - W_1, U_2 = V_2 - W_2\), where \(V_1, W_1, V_2, W_2 \in \tau^L\). Then, for \(x \notin U_2\), we have the following cases:

1. \(x \notin V_2\),
2. \(x \in V_2\) and \(x \in W_2\).

For (1), if \(x \notin V_2\), we have:

(i) \(y \notin V_1, x \in V_1 - W_1\). Then \(x \in V_1 - (V_2 \cup W_1)\) and \(y \in V_2 - W_2\), so \(y \in V_2 - (V_1 \cup W_2)\) and \((V_1 - (V_2 \cup W_1)) \cap (V_2 - (V_1 \cup W_2)) = \phi\).

(ii) \(y \in V_1\) and \(y \in W_1\), we have \(x \in U_1 - U_2, y \in U_2\) and \((U_1 - U_2) \cap U_2 = \phi\).

For (2) If \(y \in U_2 = V_2 - W_2\), \(x \in W_2\) and \((V_2 - W_2) \cap W_2 = \phi\), from (1) and (2) \((X, \tau)\) is a coL-D\(_2\)-space.

Theorem 2.17. A space \((X, \tau)\) is a coL-D\(_1\)-space if and only if \((X, \tau)\) is a coL-T\(_0\)-space and \(\text{int}_{coL}(A_x) \neq X\) for all \(x \in A_x \subseteq X\).

Proof. \((\Rightarrow)\) For \(x \in X\), there exists a coL-D-set \(O_x = U - V\) with \(U, V \in \tau^L\) and \(x \in O_x\). But \(U \neq X\). So \(\text{int}_{coL}(U) \neq X\). Hence the result follows.

\((\Leftarrow)\) For \(x \neq y \in X\), without loss of generality, there exists a coL-open set \(U\) containing \(x\) but not \(y\) and there exists coc-open set \(V\) containing \(y\) and \(\text{int}_{coL}(V) \neq X\). Hence \(y \in V - U\). Therefore, \((X, \tau)\) is a coLD\(_1\)-space.

Acknowledgment. The authors are grateful to the Middle East University, Amman, Jordan for the financial support granted to cover the publication fee of this research article.
References

