International Journal of Mathematics and Computer Science, **19**(2024), no. 1, 5–11

$\begin{pmatrix} M \\ CS \end{pmatrix}$

Co-Lindelöf Open Sets

Fuad A. Abushaheen¹, Fadi Alrimawi², Hani Kawariq³

¹Basic Science Department Faculty of Arts and Educational Sciences Middle East University Amman, Jordan and Applied Science Research Center Applied Science Private University Amman, Jordan

> ²Basic Sciences Department Faculty of Arts and Sciences Al-Ahliyya Amman University Amman, Jordan

³Department of Mathematics Faculty of Science Philadelphia University Jerash, Jordan

email: Fshaheen@meu.edu.jo, f.rimawi@ammanu.edu.jo, hkawariq@philadelphia.edu.jo

(Received February 23, 2023, Accepted June 10, 2023, Published August 31, 2021)

Abstract

In this paper, we define a new type of open sets called co-Lindelöf open set (coL-open). Moreover, we obtain several results about co-Lindelöf open sets and study the relation among open set, coc-open set and coL-open. Furthermore, we define separation axioms via coLopen and prove some related results.

Key words and phrases: co-Lindelöf open sets, coL- T_i - spaces i = 0, 1, 2, coL- D_i - spaces i = 0, 1, 2. AMS (MOS) Subject Classifications: 54B05, 54B10, 54D20. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

1 Introduction

One of the interesting problems in topology is to define weaker and stronger forms of open sets. When topologists construct a new type of open sets, several definitions, theorems, examples and open problems appear. For example, Al ghour and Samarah [3] defined a co-compact open set as follows:

Definition 1.1. [3] A subset A of a topological space X is called a cocompact open set (in short, coc-open) if for every $x \in A$, there exists an open set $U \subseteq X$ and a compact subset K of X such that $x \in U - K \subseteq A$. The complement of a coc-open subset is called coc-closed. The family of all coc-open subsets of a topological space (X, τ) will be denoted by τ^k .

Theorem 1.2. [3] Let (X, τ) be a space. Then the collection $\mathcal{B}^k(\tau) = \{U - K : U \in \tau \text{ and } K \text{ is a compact subset of } X\}$ forms a base for τ^k .

For more papers about coc-compact spaces, see [1, 2, 5]. For terms and notations not explained in this paper, the reader is referred to [4].

Definition 1.3. A subset A of a topological space (X, τ) is called a co-Lindelöf open set (in short, coL-open) if for every $x \in A$, there exists an open set $U \subseteq X$ and a Lindelöf subset L of X such that $x \in U - L \subseteq A$. The complement of a coc-open subset is called coc-closed. The family of all coc-open subsets of a topological space (X, τ) will be denoted by τ^L .

Lemma 1.4. Let (X, τ) be a topological space. Then the collection τ^L forms a topology on X.

Proof. Let $V_1, V_2 \in \tau^L$ and let $x \in V_1 \cap V_2$. So there are open subsets W_1, W_2 of X and Lindelöf subsets L_1, L_2 of X with $x \in W_1 - L_1 \subseteq V_1$ and $x \in W_2 - L_2 \subseteq V_2$. Consider the subsets $W = W_1 \cap W_2$ and $L = L_1 \cup L_2$. Then W is open subset of X and L is Lindelöf subset of X with $x \in W - L \subseteq V_1 \cap V_2$. Let $\{V_\alpha | \alpha \in \Delta\}$ be a family of coL-open subsets of X. For $x \in \bigcup_{\alpha \in \Delta} V_\alpha$, there is $\alpha^* \in \Delta$ such that $x \in V_{\alpha^*}$ but $V_{\alpha^*} = U - L$, where U is an open subset of X and L is Lindelöf subset of X. So $x \in U - L \subseteq \bigcup_{\alpha \in \Delta} V_\alpha$.

Clearly $\phi, X \in \tau^L$ and hence the collection τ^L forms a topology on X.

Lemma 1.5. Let (X, τ) be a space. Then $\mathcal{B}^{L}(\tau) = \{U - L : U \in \tau, L \text{ is a Lindelöf subset of } X\}$ forms a base for τ^{L} .

Theorem 1.6. For a topological space (X, τ) , we have $\tau \subsetneqq \tau^k \subsetneqq \tau^L$.

In general, the converse of the second inclusion of the last theorem is not true as can be seen from the following example:

Example 1.7. Let $X = \mathbb{N}$ and $\tau = \{\phi, X\} \cup \{U_n : n \in \mathbb{N}\}$, where $U_n = \{n, n+1, n+2, \cdots\}$. Then $\tau^k = \tau \cup \{X - K : K \text{ finite}\}$ and $\tau^L = \tau_{dis}$ since for $U_n \in \tau$ and U_{n+1} a Lindelöf subset of X, we have $\{n\} = U_n - U_{n+1}$.

Definition 1.8. A topological space (X, τ) is called an LC space if every Lindelöf subset is closed.

Theorem 1.9. For a topological space (X, τ) , the following are equivalent:

- 1. (X, τ) is LC, 2. $\tau = \mathcal{B}^{L}(\tau),$
- 3. $\tau = \tau^k = \tau^L$.

Proof. (1) \rightarrow (2) For each $U \in \tau$, $U - \phi \in \mathcal{B}^{L}(\tau)$, and for $U - L \in \mathcal{B}^{L}(\tau)$, where $U \in \tau$ and L is Lindelöf and hence closed. As a result, $U - L \in \tau$. (2) \rightarrow (3) Since $\tau = \mathcal{B}^{L}(\tau)$, $\mathcal{B}^{L}(\tau)$ is a base for τ^{L} . Therefore, $\tau^{L} \subseteq \tau$. (3) \rightarrow (1) Let L be Lindelöf subset of X. Then $X - L \in \tau^{L} = \tau$ and so L is LC.

Definition 1.10. A topological space (X, τ) is called a p-space if the countable union of open subsets of X is open.

Corollary 1.11. If (X, τ) is a T_2 p-space, then $\tau = \tau^k = \tau^L$.

Theorem 1.12. If (X, τ) is a hereditarily Lindelöf space, then $\tau^L = \tau_{dis}$.

Proof. For $x \in X$, $X - \{x\}$ is Lindelöf. But $\{x\} = X - (X - \{x\})$. Therefore, the result follows.

Corollary 1.13. If (X, τ) is a hereditarily compact space, then $\tau^L = \tau_{dis}$.

2 coL-*T*-spaces and coL-*D*-spaces

Definition 2.1. A space (X, τ) is called a co-Lindelöf- T_0 - space (in short, coL- T_0 -space) if for all $x \neq y \in X$, there exists a coL-open set U containing one point but not the other.

It is clear that every T_0 -space is a coL- T_0 -space. The indiscrete topology with two points is an example of a coL- T_0 -space which is not a T_0 -space.

Lemma 2.2. If A is coL-closed subset of X, then $(\tau \mid_A)^L = \tau^L \mid_A$.

Proof. (\subseteq) Clear.

 (\supseteq) Let $V \in \tau^L \mid_A$ with $y \in V$. Then there is a τ^L subset W of X with $V = W \cap A$. Similarly for W, there is an open subset U and a Lindelöf subset L with $y \in U - L \subseteq W$. So $y \in (U \cap A) - (L \cap A)$. This means that $U \cap A \in \tau \mid_A$ and $L \cap A$ is Lindelöf in A. Consequently, the result follow.

Definition 2.3. A subset A of a topological space (X, τ) is called a coL-Dset if A = U - V, for some $U, V \in \tau^L$.

Definition 2.4. A space (X, τ) is called a co-Lindelöf- D_0 - space (in short, $coL-D_0$ -space) if, for all $x \neq y \in X$, there exists a coL-D-set U containing one point but not the other.

Theorem 2.5. A coL-closed subset of a coL- D_0 -space (X, τ) is a coL- D_0 -space.

Proof. Let A be a coL-closed subset of X and let $x \neq y \in A$. So there exists a coL-D-set D = U - V with $U, V \in \tau^k$ such that $x \in D$ and $y \notin D$. Now, $x \in D \cap A = (U - V) \cap A = (A \cap U) - (A \cap V)$ but $A \cap U$ and $A \cap V \in (\tau \mid_A)^L = \tau^L \mid_A$. The result now follows.

Theorem 2.6. A space (X, τ) is a coL-T₀-space if and only if it is a coL- D_0 -space.

Proof. (\Rightarrow) This is clear since every proper coL-open subset of X is a coL-D-set.

(\Leftarrow) Let $x \neq y \in X$. Then there exists a coL- D_0 -set U containing x with $U = U_1 - U_2$, where $U_1, U_2 \in \tau^L$; i.e., $x \in U_1$ and $x \notin U_2$. For y, we have the following cases:

(1) If $y \notin U_1$, then we are done.

(2) If $y \in U_1$ and $y \in U_2$, then U_2 contains y but not x.

Definition 2.7. Let (X, τ) be a space and $A \subseteq X$. The coL-closure of A in X, denoted by $\overline{A}^{coL} = \cap \{B : B \text{ is a coL-closed in } X, A \subseteq B\}.$

Theorem 2.8. A space (X, τ) is a coL-T₀-space if and only if for all $x \neq y \in X$, we have $\overline{\{x\}}^{coL} \neq \overline{\{y\}}^{coL}$.

Co-Lindelöf Open Sets

Proof. (⇒) Let $x \neq y \in X$. Then there exists a coL- open set U containing one point but not the other; say, $x \in U$ and $y \notin U$. Then X - U is a coL-closed set containing y and $\overline{\{y\}}^{coL} \subseteq X - U$. So $x \notin \overline{\{y\}}^{coL}$. Hence $\overline{\{x\}}^{coL} \neq \overline{\{y\}}^{coL}$. (⇐) Let $x \neq y \in X$. Clearly, $X - \overline{\{y\}}^{coL}$ is a coc-open set containing x but not y. Hence X is coL- T_0 -space.

Definition 2.9. A space (X, τ) is called a co-Lindelöf- T_1 -space (in short, coL- T_1 -space) if for all $x \neq y \in X$, there exist coL-open sets U_x, V_y with $\{U_x, V_y\} \cap \tau \neq \phi$ such that $x \in U_x, y \in V_y$ and $y \notin U_x, x \notin V_y$.

Definition 2.10. A space (X, τ) is called a co-Lindelöf- T_2 -space (in short, coL- T_2 -space) if for all $x \neq y \in X$, there exist coL-open sets U_x, V_y with $\{U_x, V_y\} \cap \tau \neq \phi$ such that $x \in U_x, y \in V_y$ and $U_x \cap V_y = \phi$.

It is clear that if (X, τ) is a coL- T_1 -space, then (X, τ^L) is T_1 -space. In addition, every T_1 -space is a coL- T_1 -space. The converse need not be true as the following example shows:

Example 2.11. Let $X = \mathbb{N}$ and $\tau = \{\phi, X\} \cup \{U_n : n \in \mathbb{N}\}$, where $U_n = \{n, n+1, n+2, \cdots\}$. Clearly, (X, τ) is not a T_1 -space since for $1, 2 \in X$ each open set containing 1 must contains 2. But (X, τ) is a coL- T_1 -space and a coL- T_2 -space since $\tau^L = \tau$.

Theorem 2.12. A space (X, τ) is a coL- T_1 -space if and only if every singleton is coL-closed.

Definition 2.13. A space (X, τ) is called co-Lindelöf- D_1 -space (in short, coL- D_1 -space) if for all $x \neq y \in X$, there exist coL-D-sets U_x, V_y such that $x \in U_x$, $y \in V_y$ and $y \notin U_x$, $x \notin V_y$.

Theorem 2.14. A coL-closed subspace of a coc- D_1 -space (X, τ) is coL- D_1 -space.

Definition 2.15. A space (X, τ) is called a co-Lindelöf- D_2 -space (in short, $coL-D_2$ -space) if for all $x \neq y \in X$, there exist disjoint coL-D- sets U_x, V_y such that $x \in U_x, y \in V_y$ and $y \notin U_x, x \notin V_y$.

Theorem 2.16. Let (X, τ) be a topological space. Then

- 1. If (X, τ) is a coL-T_i-space, then (X, τ) is a coL-T_{i-1}-space for i = 1, 2.
- 2. If (X, τ) is a coL-T_i-space, then (X, τ) is a coL-D_i-space for i = 1, 2.

- 3. If (X, τ) is a coL-D_i-space, then (X, τ) is a coL-D_{i-1}-space for i = 1, 2.
- 4. If (X, τ) is a coL-D₁-space, then (X, τ) is a coL-T₀-space.
- 5. (X, τ) is a coL-D₁-space if and only if (X, τ) is a coL-D₂-space.

Proof. We will prove 5.

(\Leftarrow) Obvious. (\Rightarrow) For $x \neq y \in X$, there exist coL-*D*-sets U_1, U_2 with $x \in U_1, y \notin U_1$ and $y \in U_2, x \notin U_1$. Assume $U_1 = V_1 - W_1, U_2 = V_2 - W_2$, where $V_1, W_1, V_2, W_2 \in \tau^L$. Then, for $x \notin U_2$, we have the following cases: (1) $x \notin V_2$, (2) $x \in V_2$ and $x \in W_2$. For (1), if $x \notin V_2$, we have: (i) $y \notin V_1, x \in V_1 - W_1$. Then $x \in V_1 - (V_2 \cup W_1)$ and $y \in V_2 - W_2$, so $y \in V_2 - (V_1 \cup W_2)$ and $(V_1 - (V_2 \cup W_1)) \cap (V_2 - (V_1 \cup W_2)) = \phi$. (ii) $y \notin V_1$ and $y \in W_1$, we have $x \in U_1 - U_2, y \in U_2$ and $(U_1 - U_2) \cap U_2 = \phi$. For (2) If $y \in U_2 = V_2 - W_2$, $x \in W_2$ and $(V_2 - W_2) \cap W_2 = \phi$, from (1) and

For (2) If $y \in U_2 = V_2 - W_2$, $x \in W_2$ and $(V_2 - W_2) + W_2 = \phi$, from (1) and (2) (X, τ) is a coL- D_2 - space.

Theorem 2.17. A space (X, τ) is a coL- D_1 -space if and only if (X, τ) is a coL- T_0 -space and $int_{coL}(A_x) \neq X$ for all $x \in A_x \subseteq X$.

Proof. (\Rightarrow) For $x \in X$, there exists a coL-D-set $O_x = U - V$ with $U, V \in \tau^L$ and $x \in O_x$. But $U \neq X$. So $int_{coL}(U) \neq X$. Hence the result follows. (\Leftarrow) For $x \neq y \in X$, without loss of generality, there exists a coL-open set

U containing x but not y and there exists coc-open set V containing y and $int_{coL}(V) \neq X$. Hence $y \in V - U$. Therefore, (X, τ) is a coLD₁-space.

Acknowledgment. The authors are grateful to the Middle East University, Amman, Jordan for the financial support granted to cover the publication fee of this research article.

References

- Fuad A. Abushaheen, Fadi Alrimawi, Weakly Covering Spaces in Cocopen Sets, European Journal of Pure and Applied Mathematics, 15, no. 1, (2022), 199–206.
- [2] Fuad A. Abushaheen, Some Properties of Weak Separation Axioms in Coc-Compact Sets, European Journal of Pure and Applied Mathematics, 15, no. 2, (2022), 589–601.
- [3] S. Al Ghour, S. Samarah, Cocompact open sets and continuity, Abstarct and Applied Analysis, **P548612**, (2012).
- [4] R. Engelking *General Topology*, revised and completed edition, Heldermann Verlag, Berlin, 1989.
- [5] H. Kawariq, Fuad A. Abushaheen, Paracompantess in Coc-open Sets, J. Appl. Math. and Informatics, 41, no. 3, (2023), 569–575.