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Abstract

In this paper, we define a new type of open sets called co-Lindelöf
open set (coL-open). Moreover, we obtain several results about co-
Lindelöf open sets and study the relation among open set, coc-open
set and coL-open. Furthermore, we define separation axioms via coL-
open and prove some related results.
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1 Introduction

One of the interesting problems in topology is to define weaker and stronger
forms of open sets. When topologists construct a new type of open sets, sev-
eral definitions, theorems, examples and open problems appear. For example,
Al ghour and Samarah [3] defined a co-compact open set as follows:

Definition 1.1. [3] A subset A of a topological space X is called a co-
compact open set (in short, coc-open) if for every x ∈ A, there exists an
open set U ⊆ X and a compact subset K of X such that x ∈ U − K ⊆ A.
The complement of a coc-open subset is called coc-closed. The family of all
coc-open subsets of a topological space (X, τ) will be denoted by τk.

Theorem 1.2. [3] Let (X, τ) be a space. Then the collection Bk(τ) = {U −
K : U ∈ τ and Kis a compact subset of X} forms a base for τk.

For more papers about coc-compact spaces, see [1, 2, 5]. For terms and
notations not explained in this paper, the reader is referred to [4].

Definition 1.3. A subset A of a topological space (X, τ) is called a co-
Lindelöf open set (in short, coL-open) if for every x ∈ A, there exists an
open set U ⊆ X and a Lindelöf subset L of X such that x ∈ U − L ⊆ A.
The complement of a coc-open subset is called coc-closed. The family of all
coc-open subsets of a topological space (X, τ) will be denoted by τL.

Lemma 1.4. Let (X, τ) be a topological space. Then the collection τL forms
a topology on X.

Proof. Let V1, V2 ∈ τL and let x ∈ V1 ∩V2. So there are open subsets W1,W2

of X and Lindelöf subsets L1, L2 of X with x ∈ W1 − L1 ⊆ V1 and x ∈
W2−L2 ⊆ V2. Consider the subsets W = W1∩W2 and L = L1∪L2. Then W
is open subset of X and L is Lindelöf subset of X with x ∈ W −L ⊆ V1∩V2.

Let {Vα|α ∈ ∆} be a family of coL-open subsets of X . For x ∈
⋃

α∈∆

Vα, there

is α∗ ∈ ∆ such that x ∈ Vα∗ but Vα∗ = U − L, where U is an open subset of

X and L is Lindelöf subset of X. So x ∈ U − L ⊆
⋃

α∈∆

Vα.

Clearly φ,X ∈ τL and hence the collection τL forms a topology on X .

Lemma 1.5. Let (X, τ) be a space. Then
BL(τ) = {U − L : U ∈ τ, L is a Lindelöf subset of X} forms a base for τL.

Theorem 1.6. For a topological space (X, τ), we have τ $ τk $ τL.
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In general, the converse of the second inclusion of the last theorem is not
true as can be seen from the following example:

Example 1.7. Let X = N and τ = {φ,X} ∪ {Un : n ∈ N}, where Un =
{n, n+1, n+2, · · · }. Then τk = τ ∪{X−K : K finite} and τL = τdis since
for Un ∈ τ and Un+1 a Lindelöf subset of X, we have {n} = Un − Un+1.

Definition 1.8. A topological space (X, τ) is called an LC space if every
Lindelöf subset is closed.

Theorem 1.9. For a topological space (X, τ), the following are equivalent:

1. (X, τ) is LC,

2. τ = BL(τ),

3. τ = τk = τL.

Proof. (1) → (2) For each U ∈ τ , U − φ ∈ BL(τ), and for U − L ∈ BL(τ),
where U ∈ τ and L is Lindelöf and hence closed. As a result, U − L ∈ τ .
(2) → (3) Since τ = BL(τ), BL(τ) is a base for τL. Therefore, τL ⊆ τ .
(3) → (1) Let L be Lindelöf subset of X. Then X − L ∈ τL = τ and so L is
LC.

Definition 1.10. A topological space (X, τ) is called a p-space if the count-
able union of open subsets of X is open.

Corollary 1.11. If (X, τ) is a T2 p-space, then τ = τk = τL.

Theorem 1.12. If (X, τ) is a hereditarily Lindelöf space, then τL = τdis.

Proof. For x ∈ X , X−{x} is Lindelöf. But {x} = X−(X−{x}). Therefore,
the result follows.

Corollary 1.13. If (X, τ) is a hereditarily compact space, then τL = τdis.

2 coL-T -spaces and coL-D-spaces

Definition 2.1. A space (X, τ) is called a co-Lindelöf-T0- space (in short,
coL-T0-space) if for all x 6= y ∈ X, there exists a coL-open set U containing
one point but not the other.



8 F.A. Abushaheen, F. Alrimawi, H. Kawariq

It is clear that every T0-space is a coL-T0-space. The indiscrete topology
with two points is an example of a coL-T0-space which is not a T0-space.

Lemma 2.2. If A is coL-closed subset of X, then (τ |A)
L = τL |A.

Proof. (⊆) Clear.
(⊇) Let V ∈ τL |A with y ∈ V . Then there is a τL subset W of X with
V = W ∩ A. Similarly for W , there is an open subset U and a Lindelöf
subset L with y ∈ U − L ⊆ W. So y ∈ (U ∩ A)− (L ∩ A). This means that
U ∩A ∈ τ |A and L ∩A is Lindelöf in A. Consequently, the result follow.

Definition 2.3. A subset A of a topological space (X, τ) is called a coL-D-
set if A = U − V , for some U, V ∈ τL.

Definition 2.4. A space (X, τ) is called a co-Lindelöf-D0- space (in short,
coL-D0-space) if, for all x 6= y ∈ X, there exists a coL-D-set U containing
one point but not the other.

Theorem 2.5. A coL-closed subset of a coL-D0-space (X, τ) is a coL-D0-
space.

Proof. Let A be a coL-closed subset of X and let x 6= y ∈ A. So there exists
a coL-D-set D = U − V with U, V ∈ τk such that x ∈ D and y /∈ D.
Now, x ∈ D ∩ A = (U − V ) ∩ A = (A ∩ U) − (A ∩ V ) but A ∩ U and
A ∩ V ∈ (τ |A)

L = τL |A . The result now follows.

Theorem 2.6. A space (X, τ) is a coL-T0-space if and only if it is a coL-
D0-space.

Proof. (⇒) This is clear since every proper coL-open subset of X is a coL-
D-set.
(⇐) Let x 6= y ∈ X. Then there exists a coL-D0-set U containing x with
U = U1 −U2, where U1, U2 ∈ τL; i.e., x ∈ U1 and x /∈ U2. For y, we have the
following cases:
(1) If y /∈ U1, then we are done.
(2) If y ∈ U1 and y ∈ U2, then U2 contains y but not x.

Definition 2.7. Let (X, τ) be a space and A ⊆ X. The coL-closure of A in

X, denoted by A
coL

= ∩{B : B is a coL-closed in X, A ⊆ B}.

Theorem 2.8. A space (X, τ) is a coL-T0-space if and only if for all x 6=

y ∈ X, we have {x}
coL

6= {y}
coL

.
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Proof. (⇒) Let x 6= y ∈ X. Then there exists a coL- open set U containing
one point but not the other; say, x ∈ U and y /∈ U. Then X−U is a coL-closed

set containing y and {y}
coL

⊆ X −U. So x /∈ {y}
coL

. Hence {x}
coL

6= {y}
coL

.

(⇐) Let x 6= y ∈ X. Clearly, X − {y}
coL

is a coc-open set containing x but
not y. Hence X is coL-T0-space.

Definition 2.9. A space (X, τ) is called a co-Lindelöf-T1-space (in short,
coL-T1-space) if for all x 6= y ∈ X, there exist coL-open sets Ux, Vy with
{Ux, Vy} ∩ τ 6= φ such that x ∈ Ux, y ∈ Vy and y /∈ Ux, x /∈ Vy.

Definition 2.10. A space (X, τ) is called a co-Lindelöf-T2-space (in short,
coL-T2-space) if for all x 6= y ∈ X, there exist coL-open sets Ux, Vy with
{Ux, Vy} ∩ τ 6= φ such that x ∈ Ux, y ∈ Vy and Ux ∩ Vy = φ.

It is clear that if (X, τ) is a coL-T1-space, then (X, τL) is T1-space. In
addition, every T1-space is a coL-T1-space. The converse need not be true as
the following example shows:

Example 2.11. Let X = N and τ = {φ,X} ∪ {Un : n ∈ N}, where Un =
{n, n+1, n+2, · · · }. Clearly, (X, τ) is not a T1-space since for 1, 2 ∈ X each
open set containing 1 must contains 2. But (X, τ) is a coL-T1-space and a
coL-T2-space since τL = τ .

Theorem 2.12. A space (X, τ) is a coL-T1-space if and only if every sin-
gleton is coL-closed.

Definition 2.13. A space (X, τ) is called co-Lindelöf-D1-space (in short,
coL-D1-space) if for all x 6= y ∈ X, there exist coL-D-sets Ux, Vy such that
x ∈ Ux , y ∈ Vy and y /∈ Ux, x /∈ Vy.

Theorem 2.14. A coL-closed subspace of a coc-D1-space (X, τ) is coL-D1-
space.

Definition 2.15. A space (X, τ) is called a co-Lindelöf-D2-space (in short,
coL-D2-space) if for all x 6= y ∈ X, there exist disjoint coL-D- sets Ux, Vy

such that x ∈ Ux, y ∈ Vy and y /∈ Ux, x /∈ Vy.

Theorem 2.16. Let (X, τ) be a topological space. Then

1. If (X, τ) is a coL-Ti-space, then (X, τ) is a coL-Ti−1-space for i = 1, 2.

2. If (X, τ) is a coL-Ti-space, then (X, τ) is a coL-Di-space for i = 1, 2.
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3. If (X, τ) is a coL-Di-space, then (X, τ) is a coL-Di−1-space for i = 1, 2.

4. If (X, τ) is a coL-D1-space, then (X, τ) is a coL-T0-space.

5. (X, τ) is a coL-D1-space if and only if (X, τ) is a coL-D2-space .

Proof. We will prove 5.
(⇐) Obvious.
(⇒) For x 6= y ∈ X , there exist coL-D-sets U1, U2 with x ∈ U1, y /∈ U1 and
y ∈ U2, x /∈ U1. Assume U1 = V1 −W1, U2 = V2 −W2, where V1,W1, V2,W2 ∈
τL. Then, for x /∈ U2, we have the following cases:
(1) x /∈ V2,
(2) x ∈ V2 and x ∈ W2.
For (1), if x /∈ V2, we have:
(i) y /∈ V1, x ∈ V1 − W1. Then x ∈ V1 − (V2 ∪ W1) and y ∈ V2 − W2, so
y ∈ V2 − (V1 ∪W2) and

(

V1 − (V2 ∪W1)
)

∩
(

V2 − (V1 ∪W2)
)

= φ.
(ii) y ∈ V1 and y ∈ W1, we have x ∈ U1−U2, y ∈ U2 and

(

U1−U2

)

∩U2 =
φ.
For (2) If y ∈ U2 = V2 −W2 , x ∈ W2 and

(

V2 −W2

)

∩W2 = φ, from (1) and
(2) (X, τ) is a coL-D2- space .

Theorem 2.17. A space (X, τ) is a coL-D1-space if and only if (X, τ) is a
coL-T0-space and intcoL(Ax) 6= X for all x ∈ Ax ⊆ X.

Proof. (⇒) For x ∈ X , there exists a coL-D-set Ox = U − V with U, V ∈ τL

and x ∈ Ox. But U 6= X. So intcoL(U) 6= X. Hence the result follows.
(⇐) For x 6= y ∈ X , without loss of generality, there exists a coL-open set
U containing x but not y and there exists coc-open set V containing y and
intcoL(V ) 6= X. Hence y ∈ V − U. Therefore, (X, τ) is a coLD1-space.

Acknowledgment. The authors are grateful to the Middle East Uni-
versity, Amman, Jordan for the financial support granted to cover the pub-
lication fee of this research article.
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