International Journal of Mathematics and Computer Science, **19**(2024), no. 1, 125–129

On $S\Lambda_s$ -regular spaces and $S\Lambda_s$ -normal spaces

Jeeranunt Khampakdee, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

email: jeeranunt.k@msu.ac.th, chawalit.b@msu.ac.th

(Received May 20, 2023, Accepted July 21, 2023, Published August 31, 2023)

Abstract

In this paper, we deal with the concepts of $S\Lambda_s$ -regular spaces and $S\Lambda_s$ -normal spaces. Moreover, we investigate several characterizations of $S\Lambda_s$ -regular spaces and $S\Lambda_s$ -normal spaces.

1 Introduction

Singal and Arya [8] defined a new separation axiom called almost regularity which is weaker than regularity. El-Deeb et al. [4] introduced and studied the notion of *p*-regular spaces. Malghan and Navalagi [5] introduced and investigated the concept of almost *p*-regular spaces as a generalization of *p*-regularity. Noiri [6] defined a new class of sets called *rgp*-closed sets and investigated some properties of almost *p*-regular spaces by utilizing *rgp*closed sets. Ekici [3] introduced a new class of spaces, called γ -normal spaces and investigated the relationships among *s*-normal spaces, *p*-normal spaces and γ -normal spaces. Ekici and Noiri [2] introduced and studied the notions of δp -normal spaces, almost δp -normal spaces and mildly δp -normal spaces. Torton et al. [11] introduced and investigated the concepts of $\mu_{(m,n)}$ -regular

Key words and phrases: $S\Lambda_s$ -regular space, $S\Lambda_s$ -normal space. Corresponding author: Jeeranunt Khampakdee. AMS (MOS) Subject Classifications: 54A05, 54D10. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net spaces and $\mu_{(m,n)}$ -normal spaces. In [1], the present authors introduced the concept of $s(\Lambda, s)$ -open sets. Pue-on and Boonpok [7] introduced and studied the concepts of $\delta s(\Lambda, s)$ -closed sets and $\delta s(\Lambda, s)$ -open sets. In this paper, we introduce the notions of $S\Lambda_s$ -regular spaces and $S\Lambda_s$ -normal spaces. Furthermore, several properties of $S\Lambda_s$ -regular spaces and $S\Lambda_s$ -normal spaces are discussed.

2 Preliminaries

Let A be a subset of a topological space (X, τ) . A subset A is called $s(\Lambda, s)$ open [1] if $A \subseteq [A_{(\Lambda,s)}]^{(\Lambda,s)}$. The family of all $s(\Lambda,s)$ -open sets in a topological space (X,τ) is denoted by $s(\Lambda,s)O(X,\tau)$. The complement of a $s(\Lambda,s)$ open set is called $s(\Lambda, s)$ -closed. The intersection of all $s(\Lambda, s)$ -closed sets containing A is called the $s(\Lambda, s)$ -closure of A and is denoted by $A^{s(\Lambda, s)}$. A subset A is called $s(\Lambda, s)$ -regular if A is $s(\Lambda, s)$ -open and $s(\Lambda, s)$ -closed. The family of all $s(\Lambda, s)$ -regular sets in a topological space (X, τ) is denoted by $s(\Lambda, s)r(X, \tau)$. A point x of X is called a $\delta(\Lambda, s)$ -cluster point [10] of A if $A \cap [U^{(\Lambda,s)}]_{(\Lambda,s)} \neq \emptyset$ for every (Λ,s) -open set U of X containing x. The set of all $\delta(\Lambda, s)$ -cluster points of A is called the $\delta(\Lambda, s)$ -closure [10] of A and is denoted by $A^{\delta(\Lambda,s)}$. A subset A is called $\delta(\Lambda,s)$ -closed [10] if $A = A^{\delta(\Lambda,s)}$. The complement of a $\delta(\Lambda, s)$ -closed set is said to be $\delta(\Lambda, s)$ -open. A subset A is called $\delta s(\Lambda, s)$ -open [7] if $A \subseteq [A_{(\Lambda, s)}]^{\delta(\Lambda, s)}$. The complement of a $\delta s(\Lambda, s)$ open set is called $\delta s(\Lambda, s)$ -closed. The family of all $\delta s(\Lambda, s)$ -open sets in a topological space (X,τ) is denoted by $\delta s(\Lambda,s)O(X,\tau)$. A point x of X is called a $\delta s(\Lambda, s)$ -cluster point [7] of A if $A \cap U \neq \emptyset$ for every $\delta s(\Lambda, s)$ -open set U of X containing x. The set of all $\delta s(\Lambda, s)$ -cluster points of A is called the $\delta s(\Lambda, s)$ -closure [7] of A and is denoted by $A^{\delta s(\Lambda, s)}$.

3 Characterizations of $S\Lambda_s$ -regular spaces and $S\Lambda_s$ -normal spaces

In this section, we introduce the notions of $S\Lambda_s$ -regular spaces and $S\Lambda_s$ -normal spaces. Moreover, some characterizations of $S\Lambda_s$ -regular spaces and $S\Lambda_s$ -normal spaces are discussed.

Definition 3.1. A topological space (X, τ) is said to be $S\Lambda_s$ -regular if for each $s(\Lambda, s)$ -closed set F of X and each point $x \notin F$, there exist $s(\Lambda, s)$ -open sets U and V such that $x \in U$, $F \subseteq V$ and $U \cap V = \emptyset$. On $S\Lambda_s$ -regular spaces and $S\Lambda_s$ -normal...

Lemma 3.2. [9] For a subset A of a topological space (X, τ) , the following properties hold:

- (1) If A is a $s(\Lambda, s)$ -regular set, then it is $\delta s(\Lambda, s)$ -open.
- (2) If A is a $\delta s(\Lambda, s)$ -open set, then it is $s(\Lambda, s)$ -open.
- (3) If A is a $s(\Lambda, s)$ -open set, then $A^{s(\Lambda, s)}$ is $s(\Lambda, s)$ -regular.

Theorem 3.3. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $S\Lambda_s$ -regular.
- (2) For each $s(\Lambda, s)$ -closed set F and each point $x \notin F$, there exist $U, V \in \delta s(\Lambda, s)O(X, \tau)$ such that $x \in U, F \subseteq V$ and $U \cap V = \emptyset$.
- (3) For each point $x \in X$ and each $s(\Lambda, s)$ -open set V containing x, there exists $U \in \delta s(\Lambda, s)O(X, \tau)$ such that $x \in U \subseteq U^{\delta s(\Lambda, s)} \subseteq V$.

Proof. (1) \Rightarrow (2): Let F be a $s(\Lambda, s)$ -closed set and $x \notin F$. Then, there exist $G, H \in s(\Lambda, s)O(X, \tau)$ such that $x \in G, F \subseteq H$ and $G \cap H = \emptyset$. By Lemma 3.2, $G^{s(\Lambda,s)}$ is $s(\Lambda, s)$ -regular and $G^{s(\Lambda,s)} \cap H = \emptyset$. Thus, $G^{s(\Lambda,s)} \cap H^{s(\Lambda,s)} = \emptyset$. Now, we put $U = G^{s(\Lambda,s)}$ and $V = H^{s(\Lambda,s)}$, then U and V are $\delta s(\Lambda, s)$ -open sets such that $x \in U, F \subseteq V$ and $U \cap V = \emptyset$.

(2) \Rightarrow (3): Let $x \in X$ and V be any $s(\Lambda, s)$ -open set containing x. Since $x \notin X - V$, there exist $U, G \in \delta s(\Lambda, s)O(X, \tau)$ such that $x \in U$, $X - V \subseteq G$ and $U \cap G = \emptyset$. Since X - G is $\delta s(\Lambda, s)$ -closed and $U \subseteq X - G$, $x \in U \subseteq U^{\delta s(\Lambda, s)} \subseteq X - G \subseteq V$.

(3) \Rightarrow (1): Let F be a $s(\Lambda, s)$ -closed set and $x \notin F$. Then, X - F is $s(\Lambda, s)$ -open set containing x. By (3), there exists $U \in \delta s(\Lambda, s)O(X, \tau)$ such that $x \in U \subseteq U^{\delta s(\Lambda, s)} \subseteq X - F$. Thus, $x \in U, F \subseteq X - U^{\delta s(\Lambda, s)}$ and $U \cap (X - U^{\delta s(\Lambda, s)}) = \emptyset$. Since $\delta s(\Lambda, s)O(X, \tau) \subseteq s(\Lambda, s)O(X, \tau)$, (X, τ) is $S\Lambda_s$ -regular.

Definition 3.4. A topological space (X, τ) is said to be $S\Lambda_s$ -normal if for each disjoint $s(\Lambda, s)$ -closed sets F and K of X, there exist $s(\Lambda, s)$ -open sets U and V such that $F \subseteq U$, $K \subseteq V$ and $U \cap V = \emptyset$.

Theorem 3.5. For a topological space (X, τ) , the following properties are equivalent:

(1) (X, τ) is $S\Lambda_s$ -normal.

- (2) For each disjoint $s(\Lambda, s)$ -closed sets F and K of X, there exist $U, V \in \delta s(\Lambda, s)O(X, \tau)$ such that $F \subseteq U, K \subseteq V$ and $U \cap V = \emptyset$.
- (3) For each $s(\Lambda, s)$ -closed set F and each $s(\Lambda, s)$ -open set V containing F, there exists $U \in \delta s(\Lambda, s)O(X, \tau)$ such that $F \subseteq U \subseteq U^{\delta s(\Lambda, s)} \subseteq V$.

Proof. The proof is analogous to that of Theorem 3.3.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math., 16, no. 1, (2023), 336–362.
- [2] E. Ekici, T. Noiri, On a generalization of normal, almost normal and mildly normal spaces-I, Math. Moravica, 10, (2006), 9–20.
- [3] E. Ekici, On γ -normal spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.), **59**, no. 98, (2007), 259–272.
- [4] N. El-Deeb, I. A. Hasanein, A. S. Mashhour, T. Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27, no. 75, (1983), 311–315.
- S. R. Malghan, G. B. Navalagi, Almost *p*-regular, *p*-completely regular and almost *p*-completely regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, **34**, no. 82, (1990), 317–326.
- [6] T. Noiri, Almost p-regular spaces and some functions, Acta Math. Hungar., 79, no. 3, (1998), 207–216.
- [7] P. Pue-on, C. Boonpok, On $\delta s(\Lambda, s)$ -open sets in topological spaces, Int. J. Math. Comput. Sci., **18**, no. 4, (2023), 749–753.
- [8] M. K. Singal, S. P. Arya, On almost-regular spaces, Glasnik Mat., 4, no. 24, (1969), 89–99.
- [9] N. Srisarakham, C. Boonpok, Some properties of $S\Lambda_s$ -closed spaces, Int. J. Math. Comput. Sci., **19**, no. 1, (2024), 117–120.

- [10] N. Srisarakham, C. Boonpok, On characterizations of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces, Int. J. Math. Comput. Sci., **18**, no. 4, (2023), 743–747.
- [11] P. Torton, C. Viriyapong, C. Boonpok, Some separation axioms in bigeneralized topological spaces, Int. J. Math. Anal., 6, no. 56, (2012), 2789–2796.